1887

Abstract

Whitefly-transmitted geminiviruses are major pathogens of the important crop cassava in Africa. The intensive sampling and sequencing of cassava mosaic disease-causing viruses that occurred in the wake of a severe outbreak in Central Africa (1997–2002) allowed us to estimate the rate of evolution of this virus. East African cassava mosaic virus and related species are obligately bipartite (DNA-A and DNA-B segments), and these two genome segments have different evolutionary histories. Despite these phylogenetic differences, we inferred high rates of nucleotide substitution in both segments: mean rates of 1.60×10 and 1.33×10 substitutions site year for DNA-A and DNA-B, respectively. While similarly high substitution rates were found in datasets free of detectable recombination, only that estimated for the coat protein gene (), for which an additional DNA-A sequence isolated in 1995 was available, was statistically robust. These high substitution rates also confirm that those previously estimated for the monopartite tomato yellow leaf curl virus (TYLCV) are representative of multiple begomoviruses. We also validated our rate estimates by comparing them with those depicting the emergence of TYLCV in North America. These results further support the notion that geminiviruses evolve as rapidly as many RNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009266-0
2009-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1539.html?itemId=/content/journal/jgv/10.1099/vir.0.009266-0&mimeType=html&fmt=ahah

References

  1. Arguello-Astorga G., Ascencio-Ibáñez J. T., Dallas M. B., Orozco B. M., Hanley-Bowdoin L. 2007; High-frequency reversion of geminivirus replication protein mutants during infection. J Virol 81:11005–11015 [CrossRef]
    [Google Scholar]
  2. Berrie L. C., Rybicki E. P., Rey M. E. C. 2001; Complete nucleotide sequence and host range of South African cassava mosaic virus : further evidence for recombination amongst begomoviruses. J Gen Virol 82:53–58
    [Google Scholar]
  3. Blok J., Mackenzie A., Guy P., Gibbs A. 1987; Nucleotide sequence comparisons of Turnip yellow mosaic virus isolates from Australia and Europe. Arch Virol 97:283–295 [CrossRef]
    [Google Scholar]
  4. Bull S. E., Briddon R. W., Sserubombwe W. S., Ngugi K., Markham P. G., Stanley J. 2006; Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. J Gen Virol 87:3053–3065 [CrossRef]
    [Google Scholar]
  5. Bull S. E., Briddon R. W., Sserubombwe W. S., Ngugi K., Markham P. G., Stanley J. 2007; Infectivity, pseudorecombination and mutagenesis of Kenyan cassava mosaic begomoviruses. J Gen Virol 88:1624–1633 [CrossRef]
    [Google Scholar]
  6. Caulfield J. L., Wishnok J. S., Tannenbaum S. R. 1998; Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J Biol Chem 273:12689–12695 [CrossRef]
    [Google Scholar]
  7. Chen R., Holmes E. C. 2006; Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol 23:2336–2341 [CrossRef]
    [Google Scholar]
  8. Denhardt D. T., Silver R. B. 1966; An analysis of the clone size distribution of ΦX174 mutants and recombinants. Virology 30:10–19 [CrossRef]
    [Google Scholar]
  9. Drake J. W. 1991; A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164 [CrossRef]
    [Google Scholar]
  10. Drake J. W. 1993; Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90:4171–4175 [CrossRef]
    [Google Scholar]
  11. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. 1998; Rates of spontaneous mutation. Genetics 148:1667–1686
    [Google Scholar]
  12. Drummond A. J., Rambaut A. 2007; beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214 [CrossRef]
    [Google Scholar]
  13. Drummond A. J., Ho S. Y. W., Phillips M. J., Rambaut A. 2006; Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88 [CrossRef]
    [Google Scholar]
  14. Duffy S., Holmes E. C. 2007; Multiple introductions of the Old World begomovirus Tomato yellow leaf curl virus into the New World. Appl Environ Microbiol 73:7114–7117 [CrossRef]
    [Google Scholar]
  15. Duffy S., Holmes E. C. 2008; Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus Tomato yellow leaf curl virus (TYLCV). J Virol 82:957–965 [CrossRef]
    [Google Scholar]
  16. Duffy S., Shackelton L. A., Holmes E. C. 2008; Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276
    [Google Scholar]
  17. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [CrossRef]
    [Google Scholar]
  18. Fargette D., Pinel A., Rakotomalala M., Sangu E., Traoré O., Sérémé D., Sorho F., Issaka S., Hébrard E. other authors 2008; Rice yellow mottle virus , an RNA plant virus, evolves as rapidly as most RNA animal viruses. J Virol 82:3584–3589 [CrossRef]
    [Google Scholar]
  19. Fauquet C., Fargette D. 1990; African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis 74:404–411 [CrossRef]
    [Google Scholar]
  20. Fersht A. R. 1979; Fidelity of replication of phage ΦX174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc Natl Acad Sci U S A 76:4946–4950 [CrossRef]
    [Google Scholar]
  21. Fraile A., Escriu F., Aranda M. A., Malpica J. M., Gibbs A. J., García-Arenal F. 1997; A century of tobamovirus evolution in an Australian population of Nicotiana glauca . J Virol 71:8316–8320
    [Google Scholar]
  22. Frederico L. A., Kunkel T. A., Shaw B. R. 1990; A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29:2532–2537 [CrossRef]
    [Google Scholar]
  23. García-Arenal F., Fraile A., Malpica J. M. 2001; Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186 [CrossRef]
    [Google Scholar]
  24. Ge L., Zhang J., Zhou X., Li H. 2007; Genetic structure and population variability of tomato yellow leaf curl China virus. J Virol 81:5902–5907 [CrossRef]
    [Google Scholar]
  25. Gibbs A. J., Ohshima K., Phillips M. J., Gibbs M. J. 2008; The prehistory of potyviruses: their initial radiation was during the dawn of agriculture. PLoS One 3:e2523 [CrossRef]
    [Google Scholar]
  26. Gilbertson R. L., Rojas M. R., Kon T., Jaquez J. 2007; Introduction of Tomato yellow leaf curl virus into the Dominican Republic: the development of a successful integrated pest management strategy. In Tomato Yellow Leaf Curl Virus Disease pp 279–303Edited by Czosnek H. Dordrecht: Springer;
    [Google Scholar]
  27. Gutierrez C. 1999; Geminivirus DNA replication. Cell Mol Life Sci 56:313–329 [CrossRef]
    [Google Scholar]
  28. Hanada K., Suzuki Y., Gojobori T. 2004; A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol Biol Evol 21:1074–1080 [CrossRef]
    [Google Scholar]
  29. Holmes E. C. 2003; Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J Virol 77:11296–11298 [CrossRef]
    [Google Scholar]
  30. Idris A. M., Guerrero J. C., Brown J. K. 2007; Two distinct isolates of Tomato yellow leaf curl virus threaten tomato production in Arizona and Sonora, Mexico. Plant Dis 91:910
    [Google Scholar]
  31. Isakeit T., Idris A. M., Sunter G., Black M. C., Brown J. K. 2007; Tomato yellow leaf curl virus in tomato in Texas, originating from transplant facilities. Plant Dis 91:466
    [Google Scholar]
  32. Isnard M., Granier M., Frutos R., Reynaud B., Peterschmitt M. 1998; Quasispecies nature of three maize streak virus isolates obtained through different modes of selection from a population used to assess response to infection of maize cultivars. J Gen Virol 79:3091–3099
    [Google Scholar]
  33. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54:156–165 [CrossRef]
    [Google Scholar]
  34. Legg J. P., Fauquet C. M. 2004; Cassava mosaic geminiviruses in Africa. Plant Mol Biol 56:585–599 [CrossRef]
    [Google Scholar]
  35. Malpica J. M., Fraile A., Moreno I., Obies C. I., Drake J. W., Garcia-Arenal F. 2002; The rate and character of spontaneous mutation in an RNA virus. Genetics 162:1505–1511
    [Google Scholar]
  36. Martin D. P., Williamson C., Posada D. 2005; rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262 [CrossRef]
    [Google Scholar]
  37. Maruthi M. N., Seal S., Colvin J., Briddon R. W., Bull S. E. 2004; East African cassava mosaic Zanzibar virus – a recombinant begomovirus species with a mild phenotype. Arch Virol 149:2365–2377 [CrossRef]
    [Google Scholar]
  38. Nakhla M. K., Maxwell D. P., Martinez R. T., Carvalho M. G., Gilbertson R. L. 1994; Widespread occurrence of the eastern Mediterranean strain of tomato yellow leaf curl geminivirus in tomatoes in the Dominican Republic. Plant Dis 78:926
    [Google Scholar]
  39. Ndunguru J., Legg J. P., Aveling T. A. S., Thompson G., Fauquet C. M. 2005; Molecular biodiversity of cassava begomoviruses in Tanzania: evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. Virol J 2:21 [CrossRef]
    [Google Scholar]
  40. Padidam M., Beachy R. N., Fauquet C. M. 1995; Classification and identification of geminiviruses using sequence comparisons. J Gen Virol 76:249–263 [CrossRef]
    [Google Scholar]
  41. Pond S. L. K., Frost S. D. W. 2005; Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533 [CrossRef]
    [Google Scholar]
  42. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  43. Ramsden C., Melo F. L., Figueiredo L. M., Holmes E. C., Zanotto P. M. 2008; High rates of molecular evolution in hantaviruses. Mol Biol Evol 25:1488–1492 [CrossRef]
    [Google Scholar]
  44. Raney J. L., Delongchamp R. R., Valentine C. R. 2004; Spontaneous mutant frequency and mutation spectrum for gene A of ΦX174 grown in E. coli . Environ Mol Mutagen 44:119–127 [CrossRef]
    [Google Scholar]
  45. Seal S. E., van den Bosch F., Jeger M. J. 2006; Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25:23–46 [CrossRef]
    [Google Scholar]
  46. Shackelton L. A., Holmes E. C. 2006; Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. J Virol 80:3666–3669 [CrossRef]
    [Google Scholar]
  47. Shackelton L. A., Parrish C. R., Truyen U., Holmes E. C. 2005; High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc Natl Acad Sci U S A 102:379–384 [CrossRef]
    [Google Scholar]
  48. Shepherd D. N., Martin D. P., McGivern D. R., Boulton M. I., Thomson J. A., Rybicki E. P. 2005; A three-nucleotide mutation altering the Maize streak virus Rep pRBR–interaction motif reduces symptom severity in maize and partially reverts at high frequency without restoring pRBR–Rep binding. J Gen Virol 86:803–813 [CrossRef]
    [Google Scholar]
  49. Simmons H. E., Holmes E. C., Stephenson A. G. 2008; Rapid evolutionary dynamics of zucchini yellow mosaic virus. J Gen Virol 89:1081–1085 [CrossRef]
    [Google Scholar]
  50. Swofford D. L. 2003 paup* Phylogenetic analysis using parsimony (and other methods), version 4.0b8 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  51. Umemura T., Tanaka Y., Kiyosawa K., Alter H. J., Shih J. W.-K. 2002; Observation of positive selection within hypervariable regions of a newly identified DNA virus (SEN virus). FEBS Lett 510:171–174 [CrossRef]
    [Google Scholar]
  52. van der Walt E., Martin D. P., Varsani A., Polston J. E., Rybicki E. P. 2008; Experimental observations of rapid Maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virol J 5:104 [CrossRef]
    [Google Scholar]
  53. Walsh C. P., Xu G. L. 2006; Cytosine methylation and DNA repair. Curr Top Microbiol Immunol 301:283–315
    [Google Scholar]
  54. Zhou X., Liu Y. L., Calvert L., Munoz C., Otim-Nape G. W., Robinson D. J., Harrison B. D. 1997; Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78:2101–2111
    [Google Scholar]
  55. Zhou X., Robinson D. J., Harrison B. D. 1998; Types of variation in DNA-A among isolates of East African cassava mosaic virus from Kenya. Malawi and Tanzania. J Gen Virol 79:2835–2840
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009266-0
Loading
/content/journal/jgv/10.1099/vir.0.009266-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error