Advertisement
No access
Research Articles

Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans

Science
16 Jul 2004
Vol 305, Issue 5682
pp. 362-366

Abstract

Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state ofthe oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell–forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per kilogram per year, are observed beginning near the aragonite saturation horizon. The total water column CaCO3 dissolution rate for the global oceans is approximately 0.5 ± 0.2 petagrams of CaCO3-C per year, which is approximately 45 to 65% of the export production of CaCO3.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (feely.som.pdf)

References and Notes

1
C. L. Sabineet al., in The Global Carbon Cycle: Integrating Humans, Climate, And The Natural World. SCOPE 62, C. B. Field, M. R. Raupach Eds. (Island Press, Washington, DC, 2004), pp. 17–46.
2
C. Prenticeet al., in Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. Houghton et al., Eds. (Cambridge Univ. Press, New York, 2001), pp. 183–238.
3
P. G. Brewer, Geophys. Res. Lett.24, 1367 (1997).
4
K. Caldeira, M. E. Wickett, Nature425, 365 (2003).
5
B. A. Seibel, V. J. Fabry, in Climate Change and Biodiversity: Synergistic Impacts, L. Hannah, T. Lovejoy, Eds. (Conservation International, Washington, DC, 2003), pp. 59–67.
6
W. S. Broecker, in The Fate of Fossil CO2 in the Oceans, N. R. Anderson, A. Malahoff, Eds. (Plenum, New York, 1977), pp. 207–212.
7
J. D. Milliman, Global Biogeochem. Cycles7, 927 (1993).
8
J. D. Milliman, A. W. Droxler, Geol. Rundsch.85, 496 (1996).
9
J. D. Millimanet al., Deep-Sea Res. Part I46, 1653 (1999).
10
W. S. Broecker, T.-H. Peng, Tracers in the Sea (Lamont-Doherty Geological Observatory, Palisades, New York, 1982).
11
W. S. Broecker, in Treatise on Geochemistry, H. D. Holland, K. K. Turekian, Eds. (Elsevier, London, vol. 6, 2003), pp. 1–21.
12
R. A. Feelyet al., Global Biogeochem. Cycles16, 1144 (2002).
13
S. Chung et al., Global Biogeochem. Cycles17, 1093 (2003).
14
S.-N. Chunget al., Limnol. Oceanogr.49, 315(2004).
15
C. L. Sabine, R. M. Key, R. A. Feely, D. Greeley, Global Biogeochem. Cycles16, 1067 (2002).
16
L. A. Anderson, J. L. Sarmiento, Global Biogeochem. Cycles8, 65 (1994).
17
S. Kanamori, H. Ikegami, J. Oceanogr. Soc. Jpn.38, 57 (1982).
18
The details of the methods for determining the CaCO3 dissolution are given in the supporting online materials.
19
D. Iglesias-Rodriguezet al., Eos83, 365 (2002).
20
K. Lee, Limnol. Oceanogr.46, 1287 (2001).
21
R. Schiebel, Global Biogeochem. Cycles16, 10.1029/2001GB001459 (2002).
22
N. R. Catubiget al., Paleoceanography13, 298 (1998).
23
W. S. Broecker, T. Takahashi, H. J. Simpson, T.-H. Peng, Science206, 409 (1979).
24
J. A. Kleypaset al., Science284, 118 (1999).
25
T. Takahashiet al., Deep-Sea Res. Part II49, 1601 (2002).
26
S. Reynaudet al., Global Change Biol.9, 1 (2003).
27
F. Marubini, H. Barnett, C. Langdon, M. J. Atkinson, Mar. Ecol. Prog. Ser.220, 153 (2001).
28
A. Sciandraet al., Mar. Ecol. Prog. Ser.261, 111 (2003).
29
K. Simkiss, K. M. Wilbur, Biomineralization (Academic Press, New York, 1989).
30
H. A. Lowenstam, S. Weiner, On Biomineralization (Oxford Univ. Press, Oxford, 1989).
31
A. Mucci, Am. J. Sci.238, 780 (1983).
32
C. Langdonet al., Global Biogeochem. Cycles14, 639 (2000).
33
F. Marubini, B. Thake, Limnol. Oceanogr.44, 716 (1999).
34
M. Spindler, Neues Jahrb. Geol. Palaontol. Mh.9, 659 (1980).
35
H. Pestana, J. Sediment. Petrol.55, 184 (1985).
36
V. J. Fabry, W. G. Deuser, Deep-Sea Res. Part A38, 713 (1991).
37
U. Riebesellet al., Nature407, 364 (2000).
38
I. Zondervan, R. E. Zeebe, B. Rost, U. Riebesell, Global Biogeochem. Cycles15, 507 (2001).
39
H. J. Spero, J. Bijma, D. W. Lea, B. E. Bemis, Nature390, 497 (1997).
40
S. Barker, H. Elderfield, Science297, 833 (2002).
41
N. Gruberet al., in The Global Carbon Cycle: Integrating Humans, Climate, and The Natural World. SCOPE 62, C. B. Field, M. R. Raupach, Eds. (Island Press, Washington, DC, 2004), pp. 45–76.
42
D. Archer, E. Maier-Reimer, Nature367, 260 (1994).
43
R. A. Armstrong, C. Lee, J. I. Hedges, S. Honjo, S. G. Wakeham, Deep-Sea Res.49, 219 (2002).
44
A. J. Ridgwell, Geochem. Geophys. Geosyst.4, 1051 (2003).
45
F. J. Millero, Geochim. Cosmochim. Acta59, 661 (1995).
46
P. R. Betzeret al., Science224, 1074 (1984).
47
M. Rodier, R. LeBorgne, Deep-Sea Res. Part II44, 2085 (1997).
48
S. Tsunogai, S. Noriki, Tellus Ser. B Chem. Phys. Meteorol.43, 256 (1991).
49
C. S. Wonget al., Deep-Sea Res.46, 2735 (1999).
50
S. Honjo, J. Dymond, R. Collier, S. Manganini, Deep-Sea Res.42, 831 (1995).
51
H. Kawahata, A. Suzuki, H. Ohta, Deep-Sea Res.47, 2061 (2000).
52
S. Noriki, K. Hamahara, K. Harada, J. Oceanogr.55, 693 (1999).
53
We thank all of those that contributed to the global data set complied for this project, including those responsible for the hydrographic, nutrient, oxygen, carbon, and CFC measurements and the chief scientists. This work was funded by grants from the National Oceanic and Atmospheric Administration, the National Science Foundation, and the Department of Energy. Partial support for K.L. was also provided by the Advanced Environmental Biotechnical Research Center at Pohung University of Science and Technology. This is Pacific Marine Environmental Laboratory contribution number 2633.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 305 | Issue 5682
16 July 2004

Submission history

Received: 1 March 2004
Accepted: 8 June 2004
Published in print: 16 July 2004

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/305/5682/362/DC1
SOM Text
Fig. S1
Table S1
References

Authors

Affiliations

Richard A. Feely* [email protected]
Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA 98115–6349, USA.
Christopher L. Sabine
Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA 98115–6349, USA.
Kitack Lee
School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Nam-gu, Hyoja-dong, Pohang, 790–784, Republic of Korea.
Will Berelson
Department of Earth Sciences, University of Southern California, Los Angeles, Los Angeles, CA 90089–0740, USA.
Joanie Kleypas
Environmental and Societal Impacts Group, National Center for Atmospheric Research, Boulder, CO 80307–3000, USA.
Victoria J. Fabry
Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096–0001, USA.
Frank J. Millero
University of Miami/Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Size, distribution, and vulnerability of the global soil inorganic carbon, Science, 384, 6692, (233-239), (2024)./doi/10.1126/science.adi7918
    Abstract
  2. Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927), Biogeosciences, 20, 3, (597-618), (2023).https://doi.org/10.5194/bg-20-597-2023
    Crossref
  3. Production and accumulation of reef framework by calcifying corals and macroalgae on a remote Indian Ocean cay, Biogeosciences, 20, 5, (1011-1026), (2023).https://doi.org/10.5194/bg-20-1011-2023
    Crossref
  4. The Multi-Generational Effect of Seawater Acidification on Larval Development, Reproduction, Ingestion Rate, and ATPase Activity of Tigriopus japonicus Mori, 1938, Water, 15, 4, (816), (2023).https://doi.org/10.3390/w15040816
    Crossref
  5. Reconstruction of Surface Seawater pH in the North Pacific, Sustainability, 15, 7, (5796), (2023).https://doi.org/10.3390/su15075796
    Crossref
  6. Response of Juvenile Saccharina japonica to the Combined Stressors of Elevated pCO2 and Excess Copper, Plants, 12, 5, (1140), (2023).https://doi.org/10.3390/plants12051140
    Crossref
  7. RNAi Silencing of the Biomineralization Gene Perlucin Impairs Oyster Ability to Cope with Ocean Acidification, International Journal of Molecular Sciences, 24, 4, (3661), (2023).https://doi.org/10.3390/ijms24043661
    Crossref
  8. Elevated CO2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana, Frontiers in Microbiology, 13, (2023).https://doi.org/10.3389/fmicb.2022.1113388
    Crossref
  9. The carbonate system and air-sea CO2 fluxes in coastal and open-ocean waters of the Macaronesia, Frontiers in Marine Science, 10, (2023).https://doi.org/10.3389/fmars.2023.1094250
    Crossref
  10. Coral adaptive capacity insufficient to halt global transition of coral reefs into net erosion under climate change, Global Change Biology, (2023).https://doi.org/10.1111/gcb.16647
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media