Advertisement
No access
Special Reviews

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

Science
18 Nov 2005
Vol 310, Issue 5751
pp. 1139-1143

Abstract

Normal tissue cells are generally not viable when suspended in a fluid and are therefore said to be anchorage dependent. Such cells must adhere to a solid, but a solid can be as rigid as glass or softer than a baby's skin. The behavior of some cells on soft materials is characteristic of important phenotypes; for example, cell growth on soft agar gels is used to identify cancer cells. However, an understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels (or to other cells) with which elasticity can be tuned to approximate that of tissues. Key roles in molecular pathways are played by adhesion complexes and the actinmyosin cytoskeleton, whose contractile forces are transmitted through transcellular structures. The feedback of local matrix stiffness on cell state likely has important implications for development, differentiation, disease, and regeneration.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
E. Ruoslahti, M. D. Pierschbacher, Science238, 491 (1987).
2
H. L. Hadden, C. A. Henke, Am. J. Respir. Crit. Care Med.162, 1553 (2000).
3
For example, classic palpation self-exam reveals that tumor stiffening can be quantitated by both MRI (4) and ultrasound elastography (5).
4
A. L. McKnight et al., AJR Am. J. Roentgenol.178, 1411 (2002).
5
J. Bercoff et al., Ultrasound Med. Biol.29, 1387 (2003).
6
D. R. Welch et al., Cancer Res.60, 1552 (2000).
7
A. K. Harris, P. Wild, D. Stopak, Science208, 177 (1980).
8
Since (7), methods for measuring traction force have become more quantitative by embedding beads in either films (9) or gels (10) or by using deformable patterns (11) or posts (12).
9
T. Oliver, M. Dembo, K. Jacobson, J. Cell Biol.145, 589 (1999).
10
W. A. Marganski, M. Dembo, Y. Wang, Methods Enzymol.361, 197 (2003).
11
N. Q. Balaban et al., Nat. Cell Biol.3, 466 (2001).
12
J. L. Tan et al., Proc. Natl. Acad. Sci. U.S.A.100, 1484 (2003).
13
F. J. Alenghat, D. E. Ingber, Sci. STKE119, pe6 (2002).
14
(Fibroblasts and epithelial cells) R. J. Pelham, Y. Wang. Proc. Natl. Acad. Sci. U.S.A. 94, 13661 (1997) with Erratum 95, 12070a (1998).
15
(Endothelial cells) C. F. Deroanne, C. M. Lapiere, B. V. Nusgens., Cardiovasc. Res. 49, 647 (2001).
16
(Transformed cells) H. B. Wang, M. Dembo, Y. Wang., Am. J. Physiol. Cell Physiol. 279, C1345 (2000).
17
(Smooth muscle cells) A. Engler et al. Biophys. J. 86, 617 (2004).
18
R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, J. Kas, Phys. Rev. Lett.85, 880 (2000).
19
The Hertz model for a spherical probe of radius R indenting a thick slab gives Ef/d3/2R1/2 where the force f indents to a depth d. The shear modulus, G, of an isotropic, incompressible material is GE/3, reflecting the fact that shearing and tensile extension are related by a rotation of frame.
20
C. M. Lo, H. B. Wang, M. Dembo, Y. Wang, Biophys. J.79, 144 (2000).
21
C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, P. A. Janmey, Nature435, 191 (2005).
22
Y. C. Fung, A First Course in Continuum Mechanics: For Physical and Biological Engineers and Scientists (Prentice Hall, Englewood Cliffs, NJ, ed. 3, 1994).
23
M. M. Stevens, J. George, Science310, 1135 (2005).
24
A. Gefen, S. S. Margulies, J. Biomech.37, 1339 (2004).
25
S. Hu et al., Am. J. Physiol. Cell Physiol.287, C1184 (2004).
26
G. Bao, S. Suresh, Nat. Mater.2, 715 (2003).
27
F. Wottawah et al., Phys. Rev. Lett.94, 098103 (2005).
28
(Skeletal Muscle Cells) A. J. Engler et al., J. Cell Biol. 166, 877 (2004).
29
Y. Yoshikawa, T. Yasuike, A. Yagi, T. Yamada, Biochem. Biophys. Res. Commun.256, 13 (1999).
30
S. Diridollou et al., Skin Res. Technol.6, 214 (2000).
31
W. M. Leader, D. Stopak, A. K. Harris, J. Cell Sci.64, 1 (1983).
32
E. Cukierman, R. Pankov, D. R. Stevens, K. M. Yamada, Science294, 1708 (2001).
33
M. Chrzanowska-Wodnicka, K. Burridge, J. Cell Biol.133, 1403 (1996).
34
O. J. Pletjushkina et al., Cell Motil. Cytoskeleton48, 235 (2001).
35
N. Wang et al., Proc. Natl. Acad. Sci. U.S.A.98, 7765 (2001).
36
P. C. Bridgman, S. Dave, C. F. Asnes, A. N. Tullio, R. S. Adelstein, J. Neurosci.21, 6159 (2001).
37
(Neurons) L. A. Flanagan, Y. E. Ju, B. Marg, M. Osterfield, P. A. Janmey, Neuroreport 13, 2411 (2002).
38
M. A. Griffin, S. Sen, H. L. Sweeney, D. E. Discher, J. Cell Sci.117, 5855 (2004).
39
P. C. Georges, P. A. Janmey, in preparation.
40
T. Yeung et al., Cell Motil. Cytoskeleton60, 24 (2005).
41
Y. Wang, in preparation.
42
P. C. Georges, P. A. Janmey, J. Appl. Physiol.98, 1547 (2005).
43
G. P. Raeber, M. P. Lutolf, J. A. Hubbell, Biophys. J.89, 1374 (2005).
44
A. Saez, A. Buguin, P. Silberzan, B. Ladoux, Biophys J., in press.
45
A. Engler, L. Richert, J. Wong, C. Picart, D. E. Discher, Surf. Sci.570, 142 (2004).
46
Phagocytosis of rigid yeast particles by neutrophils involves a large contractile stress (∼1 kPa) and implicates myosin (47), consistent with stiffness sensitivity of phagocytosis by macrophages (48).
47
E. A. Evans, A. Leung, D. Zhelev, J. Cell Biol.122, 1295 (1993).
48
(Macrophages) K. A. Beningo, Y. Wang, J. Cell Sci. 115, 849 (2002).
49
M. Jin, I. Andricioaei, T. A. Springer, Structure (Cambridge)12, 2137 (2004).
50
A. F. Straight et al., Science299, 1743 (2003).
51
B. Hinz, G. Celetta, J. J. Tomasek, G. Gabbiani, C. Chaponnier, Mol. Biol. Cell12, 2730 (2001).
52
A. Katsumi et al., J. Cell Biol.158, 153 (2002).
53
(Smooth muscle cells) S. R. Peyton, A. J. Putnam, J. Cell. Physiol. 204, 198 (2005).
54
N. Zaari, P. Rajagopalan, S. K. Kim, A. J. Engler, J. Y. Wong, Adv. Mater.16, 2133 (2004).
55
S. L. Goodman, G. Risse, K. von der Mark, J. Cell Biol.109, 799 (1989).
56
M. H. Zaman, R. D. Kamm, P. Matsudaira, D. A. Lauffenburger, Biophys. J.89, 1389 (2005).
57
P. Y. Jay, P. A. Pham, S. A. Wong, E. L. Elson, J. Cell Sci.108, 387 (1995).
58
D. Riveline et al., J. Cell Biol.153, 1175 (2001).
59
L. P. Cramer, T. J. Mitchison, J. Cell Biol.131, 179 (1995).
60
A. Doyle, W. Marganski, J. Lee, J. Cell Sci.117, 2203 (2004).
61
M. Tamada, M. P. Sheetz, Y. Sawada, Dev. Cell7, 709 (2004).
62
I. Fillingham et al., Structure (Cambridge)13, 65 (2005).
63
Recent unfolding of spectrin helical bundles at force levels that myosins can generate are described in (64).
64
R. Law et al., Biophys. J.85, 3286 (2003).
65
Y. T. Shiu et al., Biophys. J.86, 2558 (2004).
66
A. R. Asthagiri, C. A. Reinhart, A. F. Horwitz, D. A. Lauffenburger, J. Cell Sci.113, 4499 (2000).
67
T. Wakatsuki, R. B. Wysolmerski, E. L. Elson, J. Cell Sci.116, 1617 (2003).
68
A. Nicolas, B. Geiger, S. A. Safran, Proc. Natl. Acad. Sci. U.S.A.101, 12520 (2004).
69
I. B. Bischofs, U. S. Schwarz, Proc. Natl. Acad. Sci. U.S.A.100, 9274 (2003).
70
M. S. Steinberg, Science137, 762 (1962).
71
J. P. Trinkaus, J. P. Lentz, Dev. Biol.89, 115 (1964).
72
K. Jakab, A. Neagu, V. Mironov, R. R. Markwald, G. Forgacs, Proc. Natl. Acad. Sci. U.S.A.101, 2864 (2004).
73
R. A. Foty, M. S. Steinberg, Dev. Biol.278, 255 (2005).
74
S. E. Zalik, E. Lewandowski, Z. Kam, B. Geiger, Biochem. Cell Biol.77, 527 (1999).
75
E. A. Evans, V. Heinrich, F. Ludwig, W. Rawicz, Biophys. J.85, 2342 (2003).
76
N. K. Noren, W. T. Arthur, K. Burridge, J. Biol. Chem.278, 13615 (2003).
77
W. T. Arthur, N. K. Noren, K. Burridge, Biol. Res.35, 239 (2002).
78
In vitro studies of cadherin-coated surfaces show no cytoskeleton assembly and no response to contractile inhibitors (79).
79
H. Delanoe-Ayari, R. Al Kurdi, M. Vallade, D. Gulino-Debrac, D. Riveline, Proc. Natl. Acad. Sci. U.S.A.101, 2229 (2004).
80
A. K. Harris, J. Theor. Biol.61, 267 (1976).
81
A. Engler, S. Sen, H. L. Sweeney, D. E. Discher, in preparation.
82
R. G. Wells, J. Clin. Gastroenterol.39, S158 (2005).
83
M. A. Griffin et al., J. Cell Sci.118, 1405 (2005).
84
E. J. Semler, P. A. Lancin, A. Dasgupta, P. V. Moghe, Biotechnol. Bioeng.89, 296 (2005).
85
H. J. Kong et al., Nat. Mater.4, 460 (2005).
86
K. A. Beningo, M. Dembo, Y. Wang, Proc. Natl. Acad. Sci. U.S.A.101, 18024 (2004).
87
G. Baneyx, L. Baugh, V. Vogel, Proc. Natl. Acad. Sci. U.S.A.99, 5139 (2002).
88
A. L. Sieminski, R. P. Hebbel, K. J. Gooch, Exp. Cell Res.297, 574 (2004).
89
Y. Shikinami, M. Okuno, Biomaterials24, 3161 (2003).
90
P. F. Gratzer, J. P. Santerre, J. M. Lee, Biomaterials.25, 2081 (2004).
91
K. Rottner, A. Hall, J. V. Small, Curr. Biol.9, 640 (1999).
92
Support was provided by NIH, NSF-PECASE (D.E.D.), and Penn's NSF-MRSEC.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 310 | Issue 5751
18 November 2005

Submission history

Published in print: 18 November 2005

Permissions

Request permissions for this article.

Authors

Affiliations

Dennis E. Discher* [email protected]
School of Engineering and Applied Science and Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104–6315, USA.
Paul Janmey
School of Engineering and Applied Science and Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104–6315, USA.
Yu-li Wang
Departments of Physiology and Cell Biology, University of Massachusetts, Worcester, MA 01655, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Regulation of mechanical force on cardiomyocytes beating, Acta Physica Sinica, 73, 8, (088701), (2024).https://doi.org/10.7498/aps.73.20240095
    Crossref
  2. In Situ Preparation of Tannic Acid-Modified Poly(N-isopropylacrylamide) Hydrogel Coatings for Boosting Cell Response, Pharmaceutics, 16, 4, (538), (2024).https://doi.org/10.3390/pharmaceutics16040538
    Crossref
  3. Intestinal Inflammation and Regeneration–Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease, International Journal of Molecular Sciences, 25, 2, (1311), (2024).https://doi.org/10.3390/ijms25021311
    Crossref
  4. High-Voltage Electrostatic Field Hydrogel Microsphere 3D Culture System Improves Viability and Liver-like Properties of HepG2 Cells, International Journal of Molecular Sciences, 25, 2, (1081), (2024).https://doi.org/10.3390/ijms25021081
    Crossref
  5. The Impact of 3D Nichoids and Matrix Stiffness on Primary Malignant Mesothelioma Cells, Genes, 15, 2, (199), (2024).https://doi.org/10.3390/genes15020199
    Crossref
  6. Effect of Hydrogel Stiffness on Chemoresistance of Breast Cancer Cells in 3D Culture, Gels, 10, 3, (202), (2024).https://doi.org/10.3390/gels10030202
    Crossref
  7. Soft bioreactor systems: a necessary step toward engineered MSK soft tissue?, Frontiers in Robotics and AI, 11, (2024).https://doi.org/10.3389/frobt.2024.1287446
    Crossref
  8. The future of cell-instructive biomaterials for tissue regeneration–a perspective from early career clinician-scientists, Frontiers in Materials, 10, (2024).https://doi.org/10.3389/fmats.2023.1328904
    Crossref
  9. Stretching of porous poly (l-lactide-co-ε-caprolactone) membranes regulates the differentiation of mesenchymal stem cells, Frontiers in Cell and Developmental Biology, 12, (2024).https://doi.org/10.3389/fcell.2024.1303688
    Crossref
  10. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a reviewLncRNAs在机械转导中的作用及其与Hippo-YAP信号转导的关联, Journal of Zhejiang University-SCIENCE B, 25, 4, (280-292), (2024).https://doi.org/10.1631/jzus.B2300497
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media