Advertisement
No access
Reports

Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays

Science
25 Aug 2006
Vol 313, Issue 5790
pp. 1100-1104

Abstract

We report electrical properties of hybrid structures consisting of arrays of nanowire field-effect transistors integrated with the individual axons and dendrites of live mammalian neurons, where each nanoscale junction can be used for spatially resolved, highly sensitive detection, stimulation, and/or inhibition of neuronal signal propagation. Arrays of nanowire-neuron junctions enable simultaneous measurement of the rate, amplitude, and shape of signals propagating along individual axons and dendrites. The configuration of nanowire-axon junctions in arrays, as both inputs and outputs, makes possible controlled studies of partial to complete inhibition of signal propagation by both local electrical and chemical stimuli. In addition, nanowire-axon junction arrays were integrated and tested at a level of at least 50 “artificial synapses” per neuron.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (patolsky.som.pdf)
File (patolsky.som.rev.pdf)

References and Notes

1
A. R. Martin, B. G. Wallace, P. A. Fuchs, J. G. Nicholls, From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System (Sinauer Associates Inc., Sunderland, MA, 2001).
2
U. Windhorst, H. Johansson, Modern Techniques in Neuroscience Research: Electrical Activity of Individual Neurons in Situ: Extra- and Intracellular (Springer, New York, 1999).
3
S. Marom, G. Shahaf, Q. Rev. Biophys.35, 63 (2002).
4
W. L. C. Rutten, Annu. Rev. Biomed. Eng.4, 407 (2002).
5
P. Fromherz, ChemPhysChem3, 276 (2002).
6
H. Oviedo, A. D. Reyes, J. Neurosci.25, 4985 (2005).
7
R. C. Froemke, M. M. Poo, Y. Dan, Nature434, 221 (2005).
8
G. J. Stuart, M. Hausser, Nat. Neurosci.4, 63 (2001).
9
A. Lambacher et al., Appl. Phys. A79, 1607 (2004).
10
A. Offenhausser, C. Sprossler, M. Matsuzawa, W. Knoll, Biosens. Bioelectron.12, 819 (1997).
11
M. Merz, P. Fromherz, Adv. Funct. Mater.15, 739 (2005).
12
M. Voelker, P. Fromherz, Small1, 206 (2005).
13
C. D. James et al., IEEE Trans. Biomed. Eng.51, 1640 (2004).
14
Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, H. P. C. Robinson, IEEE Trans. Biomed. Eng.50, 241 (2003).
15
Y. Huang, C. M. Lieber, Pure Appl. Chem.76, 2051 (2004).
16
F. Patolsky, G. Zheng, C. M. Lieber, Anal. Chem.78, 4261 (2006).
17
Y. Cui, Q. Q. Wei, H. Park, C. M. Lieber, Science293, 1289 (2001).
18
G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Nat. Biotechnol.23, 1294 (2005).
19
F. Patolsky et al., Proc. Natl. Acad. Sci. U.S.A.101, 14017 (2004).
20
Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett.3, 149 (2003).
21
G. F. Zheng, W. Lu, S. Jin, C. M. Lieber, Adv. Mater.16, 1890 (2004).
22
S. Jin et al., Nano Lett.4, 915 (2004).
23
C. Wyart et al., J. Neurosci. Methods117, 123 (2002).
24
C. D. James et al., IEEE Trans. Biomed. Eng.47, 17 (2000).
25
Materials and methods are available as supporting material on Science Online.
26
S. M. Sze, in Physics of Semiconductor Devices (Wiley, New York, 1981), pp. 431–456.
27
A. T. Gulledge, G. J. Stuart, J. Neurosci.23, 11363 (2003).
28
M. Tarek, Biophys. J.88, 4045 (2005).
29
M. E. Larkum, J. J. Zhu, J. Neurosci.22, 6991 (2002).
30
R. Larryet al., in Fundamental Neuroscience (Elseiver Science, San Diego, CA, 2003), pp. 115–136.
31
A. L. Hodgkin, A. F. Huxley, J. Physiol.117, 500 (1952).
32
L. G. Nowak, J. Bullier, Exp. Brain Res.118, 477 (1998).
33
R. Yuste, D. W. Tank, D. Kleinfeld, Cereb. Cortex7, 546 (1997).
34
S. Antic, G. Major, D. Zecevic, J. Neurophysiol.82, 1615 (1999).
35
H. Kawaguchi, K. Fukunishi, Exp. Brain Res.122, 378 (1998).
36
N. J. M. Rijkhoff, E. L. Koldewijn, P. E. V. van Kerrebroeck, F. M. J. Debruyne, H. Wijkstra, IEEE Trans. Biomed. Eng.41, 413 (1994).
37
A. Vuckovic, J. J. Struijk, N. J. M. Rijkhoff, Med. Biol. Eng. Comput.43, 365 (2005).
38
G. Q. Bi, M. M. Poo, Nature401, 792 (1999).
39
A. Frick, J. Magee, D. Johnston, Nat. Neurosci.7, 126 (2004).
40
B.P.T. thanks the NSF for graduate fellowship support. C.M.L. acknowledges support of this work by Defense Advanced Research Projects Agency and Applied Biosystems.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 313 | Issue 5790
25 August 2006

Submission history

Received: 12 April 2006
Accepted: 18 July 2006
Published in print: 25 August 2006

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/313/5790/1100/DC1
Materials and Methods
SOM Text
Figs. S1 to S10
References

Authors

Affiliations

Fernando Patolsky*
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Brian P. Timko*
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Guihua Yu
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Ying Fang
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Andrew B. Greytak
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Gengfeng Zheng
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Charles M. Lieber [email protected]
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

Notes

To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing, Journal of Functional Biomaterials, 14, 1, (35), (2023).https://doi.org/10.3390/jfb14010035
    Crossref
  2. Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors, Biosensors, 13, 3, (326), (2023).https://doi.org/10.3390/bios13030326
    Crossref
  3. Developing clinical grade flexible implantable electronics, Flexible and Printed Electronics, 8, 1, (013002), (2023).https://doi.org/10.1088/2058-8585/aca779
    Crossref
  4. A cascade nanozyme with antimicrobial effects against nontypeable Haemophilus influenzae , Nanoscale, 15, 3, (1014-1023), (2023).https://doi.org/10.1039/D2NR04306H
    Crossref
  5. Materials and Structural Designs for Neural Interfaces, ACS Applied Electronic Materials, (2023).https://doi.org/10.1021/acsaelm.2c01608
    Crossref
  6. Effect of Surface Modification on the Fundamental Electrical Characteristics of Solution-Gated Indium Tin Oxide-Based Thin-Film Transistor Fabricated by One-Step Sputtering, Langmuir, 39, 12, (4282-4290), (2023).https://doi.org/10.1021/acs.langmuir.2c03225
    Crossref
  7. Recent advances in nanowire sensor assembly using laminar flow in open space, TrAC Trends in Analytical Chemistry, 159, (116918), (2023).https://doi.org/10.1016/j.trac.2023.116918
    Crossref
  8. 3D conductive material strategies for modulating and monitoring cells, Progress in Materials Science, 133, (101041), (2023).https://doi.org/10.1016/j.pmatsci.2022.101041
    Crossref
  9. Neuroflex: Intraneural and Extraneural Flexible Sensor Architectures for Neural Probing, Handbook of Neuroengineering, (531-559), (2023).https://doi.org/10.1007/978-981-16-5540-1_16
    Crossref
  10. Label-Free Morpho-Molecular Imaging for Studying the Differential Interaction of Black Phosphorus with Tumor Cells, Nanomaterials, 12, 12, (1994), (2022).https://doi.org/10.3390/nano12121994
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media