Advertisement

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (barrangou.som.pdf)

References and Notes

1
M. Breitbart, F. Rohwer, Trends Microbiol.13, 278 (2005).
2
S. Chibani-Chennoufi, A. Bruttin, M.-L. Dillmann, H. Brüssow, J. Bacteriol.186, 3677 (2004).
3
J. M. Sturino, T. R. Klaenhammer, Nat. Rev. Microbiol.4, 395 (2006).
4
H. Brüssow, Annu. Rev. Microbiol.55, 283 (2001).
5
R. Jansen, J. D. A. van Embden, W. Gaastra, L. M. Schouls, Mol. Microbiol.43, 1565 (2002).
6
A. Bolotin et al., Nat. Biotechnol.22, 1554 (2004).
7
A. Bolotin, B. Quinquis, A. Sorokin, S. D. Ehrlich, Microbiology151, 2551 (2005).
8
F. J. M. Mojica, C. Díez-Villaseñor, J. García-Martínez, E. Soria, J. Mol. Evol.60, 174 (2005).
9
C. Pourcel, G. Salvignol, G. Vergnaud, Microbiology151, 653 (2005).
10
K. S. Makarova, N. V. Grishin, S. A. Shabalina, Y. I. Wolf, E. V. Koonin, Biol. Direct1, 7 (2006).
11
C. Lévesque et al., Appl. Environ. Microbiol.71, 4057 (2005).
12
Information on materials and methods for the generation of phage-resistant mutants, engineering of CRISPR spacers (Figs. S4 and S5), and inactivation of cas genes is available on Science Online.
13
R. K Lillestøl, P. Redder, R. A. Garrett, K. Brügger, Archaea2, 59 (2006).
14
W. M. Russell, T. R. Klaenhammer, Appl. Environ. Microbiol.67, 4361 (2001).
15
K. S. Makarova, L. Aravind, N. V. Grishin, I. B. Rogozin, E. V. Koonin, Nucleic Acids Res.30, 482 (2002).
16
D. H. Haft, J. Selengut, E. F. Mongodin, K. E. Nelson, PloS Comput. Biol.1, e60 (2005).
17
P. M. A. Groenen, A. E. Bunschoten, D. van Soolingen, J. D. A. van Embden, Mol. Microbiol.10, 1057 (1993).
18
E. F. Mongodin et al., J. Bacteriol.187, 4935 (2005).
19
R. T. DeBoy, E. F. Mongodin, J. B. Emerson, K. E. Nelson, J. Bacteriol.188, 2364 (2006).
20
R. W. Hendrix et al., Proc. Natl. Acad. Sci. U.S.A.96, 2192 (1999).
21
J. S. Godde, A. Bickerton, J. Mol. Evol.62, 718 (2006).
22
We thank L. Bayer, C. Vos, and A.-C. Coûté-Monvoisin of Danisco Innovation, as well as J. Labonté and D. Tremblay of Université Laval for technical support, and E. Bech Hansen for discussions and critical review of the manuscript. Also, we thank T. R. Klaenhammer for providing the integration system. This work was supported by funding from Danisco A/S. Also, S. M. would like to acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Program. Sequences were deposited in GenBank, accession numbers EF434458 to EF434504.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 315 | Issue 5819
23 March 2007

Submission history

Received: 29 November 2006
Accepted: 16 February 2007
Published in print: 23 March 2007

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/315/5819/1709/DC1
Materials and Methods
Figs. S1 to S5
References and Notes

Authors

Affiliations

Rodolphe Barrangou
Danisco USA Inc., 3329 Agriculture Drive, Madison, WI 53716, USA.
Christophe Fremaux
Danisco France SAS, Boîte Postale 10, F-86220 Dangé-Saint-Romain, France.
Hélène Deveau
Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, G1K 7P4 Québec, Canada.
Melissa Richards
Danisco USA Inc., 3329 Agriculture Drive, Madison, WI 53716, USA.
Patrick Boyaval
Danisco France SAS, Boîte Postale 10, F-86220 Dangé-Saint-Romain, France.
Sylvain Moineau
Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, G1K 7P4 Québec, Canada.
Dennis A. Romero
Danisco USA Inc., 3329 Agriculture Drive, Madison, WI 53716, USA.
Philippe Horvath* [email protected]
Danisco France SAS, Boîte Postale 10, F-86220 Dangé-Saint-Romain, France.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. The Use of CRISPR-Cas9 Genetic Technology in Cardiovascular Disease: A Comprehensive Review of Current Progress and Future Prospective, Cureus, (2024).https://doi.org/10.7759/cureus.57869
    Crossref
  2. CRISPR-Cas9 Unleashed: Gene-Slicing Adventures in the Cancer Battlefield, Cancer Insight, 2, 2, (37-48), (2024).https://doi.org/10.58567/ci02020008
    Crossref
  3. Involvement of CRISPR-Cas Systems in Salmonella Immune Response, Genome Editing, and Pathogen Typing in Diagnosis and Surveillance , Salmonella - Perspectives for Low-Cost Prevention, Control and Treatment, (2024).https://doi.org/10.5772/intechopen.109712
    Crossref
  4. Recent advances in genome engineering by CRISPR technology, BMB Reports, 57, 1, (12-18), (2024).https://doi.org/10.5483/BMBRep.2023-0157
    Crossref
  5. Harnessing CRISPR-Cas adaptation for RNA recording and beyond, BMB Reports, 57, 1, (40-49), (2024).https://doi.org/10.5483/BMBRep.2023-0050
    Crossref
  6. Bacteriophages, Newborn, 2, 4, (297-309), (2024).https://doi.org/10.5005/jp-journals-11002-0078
    Crossref
  7. Microbiome-Mediated Strategies to Manage Major Soil-Borne Diseases of Tomato, Plants, 13, 3, (364), (2024).https://doi.org/10.3390/plants13030364
    Crossref
  8. High-Throughput Screening of PAM-Flexible Cas9 Variants for Expanded Genome Editing in the Silkworm (Bombyx mori), Insects, 15, 4, (241), (2024).https://doi.org/10.3390/insects15040241
    Crossref
  9. Recent Advances in Tomato Gene Editing, International Journal of Molecular Sciences, 25, 5, (2606), (2024).https://doi.org/10.3390/ijms25052606
    Crossref
  10. Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches, International Journal of Molecular Sciences, 25, 5, (2456), (2024).https://doi.org/10.3390/ijms25052456
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media