Advertisement

Acid History

As human activity continues to pump nearly 50-fold more CO2 into the atmosphere than any existing natural sources, the oceans absorb it. Over time, this vast quantity of excess oceanic CO2 is expected to decrease oceanic pH and have marked effects on calcifying marine species. Looking to the past for records of the consequences, other instances of ocean acidification in geologic history caused by large natural events, such as volcanism, may help predict the oceans' response to contemporary CO2 levels. Hönisch et al. (p. 1058) review the geological events that potentially altered oceanic pH, from the last deglaciation to the largest mass extinction in Earth's history. The current rate of anthropogenic CO2 input into the oceans is much faster than at any other instance in the past, but yet it is unclear whether or not future ocean pH will be significantly affected.

Abstract

Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO2, global warming, and ocean acidification over the past ~300 million years of Earth’s history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry—a consequence of the unprecedented rapidity of CO2 release currently taking place.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (1208277s3.xlsx)
File (hoenisch-som.pdf)
File (hoenisch_carbonate_chem_tutorial.pdf)

References and Notes

1
Ridgwell A., Schmidt D. N., Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat. Geosci. 3, 196 (2010).
2
Materials and methods are available as supporting material on Science Online.
3
Berger W. H., Deep-Sea Res. 15, 31 (1968).
4
Barker S., Elderfield H., Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297, 833 (2002).
5
Barker S., et al., Temporal changes in North Atlantic circulation constrained by planktonic foraminiferal shell weights. Paleoceanography 19, PA3008 (2004).
6
Gibbs S. J., Stoll H. M., Bown P. R., Bralower T. J., Ocean acidification and surface water carbonate production across the Paleocene–Eocene thermal maximum. Earth Planet. Sci. Lett. 295, 583 (2010).
7
Caldeira K., Wickett M. E., Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365 (2003).
8
An online associated carbonate chemistry tutorial is available as supporting material on Science Online.
9
Ridgwell A., Zeebe R. E., The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299 (2005).
10
Archer D., Kheshgi H., Maier-Reimer E., Multiple timescales for neutralization of fossil fuel CO 2. Geophys. Res. Lett. 24, 405 (1997).
11
Monnin E., et al., Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112 (2001).
12
Hönisch B., Hemming N. G., Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet. Sci. Lett. 236, 305 (2005).
13
Beaufort L., et al., Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80 (2011).
14
Farrell J. W., Prell W., Climatic change and CaCO 3 preservation: An 800,000 year bathymetric Reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4, 447 (1989).
15
Hönisch B., Bickert T., Hemming N. G., Modern and Pleistocene boron isotope composition of the benthic foraminifer Cibicidoides wuellerstorfi. Earth Planet. Sci. Lett. 272, 309 (2008).
16
Yu J., et al., Loss of carbon from the deep sea since the Last Glacial Maximum. Science 330, 1084 (2010).
17
Marchitto T. M., Lynch-Stieglitz J., Hemming S. R., Deep Pacific CaCO3 compensation and glacial–interglacial atmospheric CO2. Earth Planet. Sci. Lett. 231, 317 (2005).
18
Seki O., et al., Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201 (2010).
19
Haywood A. M., et al., Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models. Global Planet. Change 66, 208 (2009).
20
Pagani M., Liu Z., LaRiviere J., Ravelo A. C., High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3, 27 (2010).
21
Dowsett H. J., Robinson M. M., Mid-Pliocene planktic foraminifer assemblage of the North Atlantic Ocean. Micropaleontology 53, 105 (2007).
22
P. R. Bown et al., in Coccolithophores—From Molecular Processes to Global Impacts, H. R. Thierstein, J. R. Young, Eds. (Springer, Berlin, 2004), pp. 481–508.
23
Kennett J. P., Stott L. D., Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225 (1991).
24
Zachos J. C., et al., Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611 (2005).
25
Zachos J. C., McCarren H., Murphy B., Röhl U., Westerhold T., Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth Planet. Sci. Lett. 299, 242 (2010).
26
Zeebe R. E., Zachos J. C., Dickens G. R., Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nat. Geosci. 2, 576 (2009).
27
Panchuk K., Ridgwell A., Kump L. R., Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison. Geology 36, 315 (2008).
28
Zeebe R. E., Zachos J. C., Reversed deep-sea carbonate ion basin gradient during Paleocene-Eocene thermal maximum. Paleoceanography 22, PA3201 (2007).
29
E. Thomas, in Geological Society of America Special Paper, S. Monechi, R. Coccioni, M. R. Rampino, Eds. (Geological Society of America, Boulder, CO, 2007), pp. 1–23.
30
Rodríguez-Tovar F. J., Uchman A., Alegret L., Molina E., Impact of the Paleocene–Eocene Thermal Maximum on the macrobenthic community: Ichnological record from the Zumaia section, northern Spain. Mar. Geol. 282, 178 (2011).
31
Scheibner C., Speijer R. P., Late Paleocene–early Eocene Tethyan carbonate platform evolution — A response to long- and short-term paleoclimatic change. Earth Sci. Rev. 90, 71 (2008).
32
Kiessling W., Simpson C., On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56 (2011).
33
Gibbs S. J., Bralower T. J., Bown P. R., Zachos J. C., Bybell L. M., Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients. Geology 34, 233 (2006).
34
Sluijs A., Brinkhuis H., A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf. Biogeosciences 6, 1755 (2009).
35
Sluijs A., et al., Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci. 2, 777 (2009).
36
Raffi I., De Bernardi B., Response of calcareous nannofossils to the Paleocene–Eocene Thermal Maximum: Observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge — SW Atlantic). Mar. Micropaleontol. 69, 119 (2008).
37
Gibbs S. J., Bown P. R., Sessa J. A., Bralower T. J., Wilson P. A., Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum. Science 314, 1770 (2006).
38
Schulte P., et al., The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214 (2010).
39
D'Hondt S., Pilson M. E. Q., Sigurdsson H., Hanson A. K., Carey S., Surface-water acidification and extinction at the Cretaceous-Tertiary boundary. Geology 22, 983 (1994).
40
Zeebe R. E., Westbroek P., A simple model for the CaCO 3 saturation state of the ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean. Geochem. Geophys. Geosyst. 4, 1104 (2003).
41
Langdon C., et al., Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem. Cycles 14, 639 (2000).
42
Jenkyns H. C., Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).
43
Leckie R. M., et al., Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17, 1041 (2002).
44
Erba E., Tremolada F., Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO 2, and anoxia. Paleoceanography 19, PA1008 (2004).
45
Erba E., Bottini C., Weissert H. J., Keller C. E., Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a. Science 329, 428 (2010).
46
Gibbs S. J., Robinson S. A., Bown P. R., Jones T. D., Henderiks J., Comment on “Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a”. Science 332, 175–; author reply, 175 (2011).
47
Suan G., et al., Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: Consequence for its possible causes. Earth Planet. Sci. Lett. 267, 666 (2008).
48
Cohen A. S., Coe A. L., Kemp D. B., The Late Palaeocene Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. J. Geol. Soc. London 164, 1093 (2007).
49
Mattioli E., Pittet B., Petitpierre L., Mailliot S., Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE). Global Planet. Change 65, 134 (2009).
50
Whiteside J. H., Olsen P. E., Kent D. V., Fowell S. J., Et-Touhami M., Synchrony between the Central Atlantic magmatic province and the Triassic–Jurassic mass-extinction event? Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 345 (2007).
51
Kemp D. B., Coe A. L., Cohen A. S., Schwark L., Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396 (2005).
52
Ruhl M., Bonis N. R., Reichart G. J., Sinninghe Damsté J. S., Kürschner W. M., Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333, 430 (2011).
53
Crne A. E., Weissert H., Gorican S., Bernasconi S. M., A biocalcification crisis at the Triassic-Jurassic boundary recorded in the Budva Basin (Dinarides, Montenegro). Geol. Soc. Am. Bull. 123, 40 (2011).
54
Payne J. L., et al., Proc. Natl. Acad. Sci. U.S.A. 107, 8543 (2010).
55
Sobolev S. V., et al., Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312 (2011).
56
Shen S. Z., et al., Calibrating the end-Permian mass extinction. Science 334, 1367 (2011).
57
Le Quéré C., et al., Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831 (2009).
58
Wignall P. B., Kershaw S., Collin P.-Y., Crasquin-Soleau S., Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: Comment. Geol. Soc. Am. Bull. 121, 954 (2009).
59
Knoll A. H., Bambach R. K., Payne J. L., Pruss S., Fischer W. W., Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295 (2007).
60
Zachos J., Pagani M., Sloan L., Thomas E., Billups K., Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686 (2001).
61
Cui Y., et al., Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 4, 481 (2011).
62
Ruhl M., et al., Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK). Earth Planet. Sci. Lett. 295, 262 (2010).
63
Lemarchand D., Gaillardet J., Lewin E., Allègre C. J., The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408, 951 (2000).
64
Coggon R. M., Teagle D. A., Smith-Duque C. E., Alt J. C., Cooper M. J., Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114 (2010).
65
R. E. Zeebe, A. Ridgwell, in Ocean Acidification, J.-P. Gattuso, L.Hansson, Eds. (Oxford Univ. Press, Oxford, 2011), pp. 21–40.
66
Stanley S. M., Hardie L. A., Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 3 (1998).
67
Ries J. B., Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795 (2010).
68
Turley C., et al., The societal challenge of ocean acidification. Mar. Pollut. Bull. 60, 787 (2010).
69
Gruber N., Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369, 1980 (2011).
70
E. T. Sundquist, K. Visser, Elsevier, in Treatise on Geochemistry: Biogeochemistry, W. H. Schlesinger, Ed. (Elsevier, Pergamon, Oxford, 2004), chap. 9.
71
Dickson J. A. D., Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298, 1222 (2002).
72
Demicco R. V., Lowenstein T. K., Hardie L. A., Spencer R. J., Model of seawater composition for the Phanerozoic. Geology 33, 877 (2005).
73
Ridgwell A., A Mid Mesozoic Revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339 (2005).
74
Weiss R. F., Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203 (1974).
75
Mojica Prieto F. J., Millero F. J., The values of pK1 + pK2 for the dissociation of carbonic acid in seawater. Geochim. Cosmochim. Acta 66, 2529 (2002).
76
Wolf-Gladrow D. A., Zeebe R. E., Klaas C., Körtzinger A., Dickson A. G., Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Mar. Chem. 106, 287 (2007).
77
A. G. Dickson et al., PICES Special Publication 3, 191 (2007).
78
R. E. Zeebe, D. A. Wolf-Gladrow, CO2 in Seawater: Equilibrium, Kinetics, Isotopes. vol. 65, pp. 1–346.
79
Edwards N. R., M. R. Clim. Dyn. 24, 415 (2005).
80
Ridgwell A., et al., Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4, 87 (2007).
81
A. Ridgwell, J. Hargreaves, Glob. Biogeochem. Cycle 21, GB2008 (2007).
82
Archer D., et al., Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annu. Rev. Earth Planet. Sci. 37, 117 (2009).
83
A. J. Ridgwell, thesis, Univ. of East Anglia at Norwich, UK (2001).
84
Ridgwell A., Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography 22, PA4102 (2007).
85
Munhoven G., Glacial–interglacial changes of continental weathering: estimates of the related CO2 and HCO3− flux variations and their uncertainties. Global Planet. Change 33, 155 (2002).
86
G. Colbourn, thesis, University of East Anglia, UK (2011).
87
Berner R. A., GEOCARB II; a revised model of atmospheric CO 2 over Phanerozoic time. Am. J. Sci. 294, 56 (1994).
88
Brady P. V., J. Geophys. Res. Oceans 96, 18 (1991).
89
Key R. M., et al., A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles 18, GB4031 (2004).
90
R. G. Najjar et al., Glob. Biogeochem. Cycle 21, GB3007 (2007).
91
Feely R. A., et al., Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362 (2004).
92
Ridgwell A., Zondervan I., Hargreaves J. C., Bijma J., Lenton T. M., Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback. Biogeosciences 4, 481 (2007).
93
A. B. Colosimo et al., in Proc. ODP, Sci. Results, T. J. Bralower, I. Premoli Silva, M. J. Malone, Eds. (2006), vol. 198, pp. 1–36.
94
Bains S., Corfield R. M., Norris R. D., Mechanisms of climate warming at the end of the paleocene. Science 285, 724 (1999).
95
E. Thomas et al., in Climate and Biota of the early Paleogene (Salzburg, Austria, 2011).
96
E. Thomas, in Causes and Consequences of Globally Warm Climates of the Paleogene, S. Wing, P. Gingerich, B. Schmitz, E. Thomas, Eds. (Geologic Society of America, 2003), pp. 319-332.
97
Zachos J. C., et al., A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302, 1551 (2003).
98
John C. M., et al., North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography 23, PA2217 (2008).
99
Stassen P., et al., J. Micropalaentol., 2012
100
Sluijs A., et al., Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218 (2007).
101
Dickens G. R., O’Neil J. R., Rea D. K., Owen R. M., Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965 (1995).
102
Wignall P. B., Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1 (2001).
103
De’ath G., Lough J. M., Fabricius K. E., Declining coral calcification on the Great Barrier Reef. Science 323, 116 (2009).
104
de Moel H., et al., Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences 6, 1917 (2009).
105
Indermühle A., et al., Nature 398, 121 (1999).
106
Tans P., Keeling R., www.esrl.noaa.gov/gmd/ccgg/trends. (2010).
107
Bates N. R., Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J. Geophys. Res. Oceans 112, (C9), C09013 (2007).
108
J. A. Kleypas et al., “Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research, report of a workshop held 18–20 April 2005, St. Petersburg, FL” (NSF, NOAA, and the U.S. Geological Survey, Washington, DC, 2006).
109
Gledhill D. K., Wanninkhof R., Millero F. J., Eakin M., Ocean acidification of the Greater Caribbean Region 1996–2006. J. Geophys. Res. Oceans 113, (C10), C10031 (2008).
110
Rayner N. A., et al., Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Clim. 19, 446 (2006).
111
Foster G. L., Seawater pH, pCO2 and [CO2−3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254 (2008).
112
MARGO Project members, Nat. Geosci. 2, 127 (2009).
113
Pälike H., et al., The heartbeat of the Oligocene climate system. Science 314, 1894 (2006).
114
Holbourn A., Kuhnt W., Schulz M., Flores J.-A., Andersen N., Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet. Sci. Lett. 261, 534 (2007).
115
Pagani M., Zachos J. C., Freeman K. H., Tipple B., Bohaty S., Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600 (2005).
116
Dowsett H. J., et al., Middle Pliocene sea surface temperature variability. Paleoceanography 20, PA2014 (2005).
117
Lawrence K. T., Herbert T. D., Brown C. M., Raymo M. E., Haywood A. M., High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218 (2009).
118
Flower B. P., Kennett J. P., Middle Miocene ocean-climate transition: High-resolution oxygen and carbon isotopic records from Deep Sea Drilling Project Site 588A, southwest Pacific. Paleoceanography 8, 811 (1993).
119
Flower B. P., Kennett J. P., The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108, 537 (1994).
120
Flower B. P., Kennett J. P., Middle Miocene deepwater paleoceanography in the southwest Pacific: Relations with East Antarctic Ice Sheet development. Paleoceanography 10, 1095 (1995).
121
Stap L., Sluijs A., Thomas E., Lourens L., Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean. Paleoceanography 24, PA1211 (2009).
122
Svensen H., et al., Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542 (2004).
123
Kelly D. C., Bralower T. J., Zachos J. C., Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141, 139 (1998).
124
Uchikawa J., Zeebe R. E., Examining possible effects of seawater pH decline on foraminiferal stable isotopes during the Paleocene-Eocene Thermal Maximum. Paleoceanography 25, PA2216 (2010).
125
Ekdale A. A., Bromley R. G., J. Sediment. Petrol. 54, 681 (1984).
126
W. Kiessling, P. A. Claeys, in Geological and biological effects of impact events, E. Buffetaut, C. Koeberl, Eds. (Springer, Berlin, 2001), pp. 33–140.
127
Beerling D. J., Lomax B. H., Royer D. L., Upchurch G. R., Kump L. R., An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proc. Natl. Acad. Sci. U.S.A. 99, 7836 (2002).
128
D’Hondt S., consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295 (2005).
129
Brinkhuis H., Bujak J. P., Smit J., Versteegh G. J. M., Visscher H., Dinoflagellate-based sea surface temperature reconstructions across the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141, 67 (1998).
130
Bice K. L., et al., A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21, PA2002 (2006).
131
Forster A., Schouten S., Moriya K., Wilson P. A., Sinninghe Damsté J. S., Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic. Paleoceanography 22, PA1219 (2007).
132
Erbacher J., Huber B. T., Norris R. D., Markey M., Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature 409, 325 (2001).
133
Schaller M. F., Wright J. D., Kent D. V., Atmospheric PCO₂ perturbations associated with the Central Atlantic Magmatic Province. Science 331, 1404 (2011).
134
Kiessling W., et al., Facies 24, 657 (2009).
135
McElwain J. C., Beerling D. J., Woodward F. I., Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285, 1386 (1999).
136
Korte C., Hesselbo S. P., Jenkyns H. C., Rickaby R. E. M., Spotl C., Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic-Jurassic boundary sections in SW Britain. J. Geol. Soc. London 166, 431 (2009).
137
Kamo S. L., et al., Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett. 214, 75 (2003).
138
Payne J. L., et al., Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geol. Soc. Am. Bull. 119, 771 (2007).
139
Clapham M. E., Payne J. L., Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059 (2011).
140
Svensen H., et al., Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490 (2009).
141
Kidder D. L., Worsley T. R., Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 207 (2004).
142
Ekart D. D., et al., A 400 million year carbon isotope record of pedogenic carbonate; implications for paleoatomospheric carbon dioxide. Am. J. Sci. 299, 805 (1999).
143
Tabor N. J., Yapp C. J., Montañez I. P., Goethite, calcite, and organic matter from Permian and Triassic soils: carbon isotopes and CO2 concentrations 1. Geochim. Cosmochim. Acta 68, 1503 (2004).
144
Montañez I. P., et al., CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315, 87 (2007).
145
Breecker D. O., Sharp Z. D., McFadden L. D., Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geol. Soc. Am. Bull. 121, 630 (2009).
146
Rustad J. R., Bylaska E. J., Jackson V. E., Dixon D. A., Calculation of boron-isotope fractionation between B(OH)3(aq) and B(OH)4-(aq). Geochim. Cosmochim. Acta 74, 2843 (2010).
147
Pearson P. N., Palmer M. R., Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695 (2000).
148
Royer D. L., Berner R. A., Beerling D. J., Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci. Rev. 54, 349 (2001).
149
Pagani M., Lemarchand D., Spivack A., Gaillardet J., A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates. Geochim. Cosmochim. Acta 69, 953 (2005).
150
Pearson P. N., et al., Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413, 481 (2001).
151
Tripati A. K., Roberts C. D., Eagle R. A., Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326, 1394 (2009).
152
Yu J., Elderfield H., Hönisch B., B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography 22, PA2202 (2007).
153
Allen K. A., et al., Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa. Earth Planet. Sci. Lett. 309, 291 (2011).
154
Beerling D. J., Royer D. L., Fossil plants as indicators of the Phanerozoic global carbon cycle. Annu. Rev. Earth Planet. Sci. 30, 527 (2002).
155
Tipple B. J., Meyers S. R., Pagani M., Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies. Paleoceanography 25, PA3202 (2010).
156
A Geologic Time Scale. F. M. Gradstein, J. G. Ogg, A. G. Smith, Eds., (Cambridge Univ Press, Cambridge, 2004).
157
Suchecki R. K., et al., J. Sediment. Petrol. 58, 801 (1988).
158
Freeman K. H., Hayes J. M., Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem. Cycles 6, 185 (1992).
159
Van Der Burgh J., Visscher H., Dilcher D. L., Kürschner W. M., Paleoatmospheric signatures in neogene fossil leaves. Science 260, 1788 (1993).
160
Kürschner W. M., van der Burgh J., Visscher H., Dilcher D. L., Oak leaves as biosensors of late neogene and early pleistocene paleoatmospheric CO2 concentrations. Mar. Micropaleontol. 27, 299 (1996).
161
Hönisch B., Hemming N. G., Archer D., Siddall M., McManus J. F., Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551 (2009).
162
Fletcher B. J., Brentnall S. J., Anderson C. W., Berner R. A., Beerling D. J., Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nat. Geosci. 1, 43 (2008).
163
Lowenstein T. K., Demicco R. V., Elevated Eocene atmospheric CO2 and its subsequent decline. Science 313, 1928 (2006).
164
Platt N. H., Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology 36, 665 (1989).
165
Stott L. D., Higher temperatures and lower oceanic pCO2: A climate enigma at the end of the Paleocene Epoch. Paleoceanography 7, 395 (1992).
166
Beerling D. J., et al., Short communication. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. J. Exp. Bot. 49, 1603 (1998).
167
Cerling T. E., Carbon dioxide in the atmosphere; Evidence from Cenozoic and Mesozoic Paleosols. Am. J. Sci. 291, 377 (1991).
168
Pagani M., Arthur M. A., Freeman K. H., Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273 (1999).
169
Pagani M., Freeman K. H., Arthur M. A., Late miocene atmospheric CO(2) concentrations and the expansion of C(4) grasses. Science 285, 876 (1999).
170
Henderiks J., Pagani M., Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth Planet. Sci. Lett. 269, 576 (2008).
171
McElwain J. C., Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past? Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 83 (1998).
172
Pearson P. N., Foster G. L., Wade B. S., Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature 461, 1110 (2009).
173
Koch P. L., Zachos J. C., Gingerich P. D., Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319 (1992).
174
Muchez P., Peeters C., Keppens E., Viaene W. A., Stable isotopic composition of paleosols in the Lower Viséan of eastern Belgium: Evidence of evaporation and soil-gas CO2. Chem. Geol. 106, 389 (1993).
175
Chen L.-Q., et al., Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am. J. Bot. 88, 1309 (2001).
176
Sinha A., Stott L. D., New atmospheric pCO2 estimates from palesols during the late Paleocene/early Eocene global warming interval. Global Planet. Change 9, 297 (1994).
177
W. M. Kürschner et al., in Geological Perspectives of Global Climate Change, L. C. Gerhard, W. E. Harrison, B. M. Hanson, Eds. (The American Association of Petroleum Geologists, Tulsa, 2001), vol. 47, pp. 169–189.
178
Andrews J. E., Tandon S. K., Dennis P. F., Concentration of carbon dioxide in the Late Cretaceous atmosphere. J. Geol. Soc. London 152, 1 (1995).
179
Royer D. L., et al., Paleobotanical evidence for near present-day levels of atmospheric Co2 during part of the tertiary. Science 292, 2310 (2001).
180
Beerling D. J., Fox A., Anderson C. W., Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves. Am. J. Sci. 309, 775 (2009).
181
Mora C. I., Driese S. G., Colarusso L. A., Middle to Late Paleozoic Atmospheric CO2 Levels from Soil Carbonate and Organic Matter. Science 271, 1105 (1996).
182
Beerling D. J., Low atmospheric CO(2) levels during the Permo- Carboniferous glaciation inferred from fossil lycopsids. Proc. Natl. Acad. Sci. U.S.A. 99, 12567 (2002).
183
Lee Y. I., Stable isotopic composition of calcic paleosols of the Early Cretaceous Hasandong Formation, southeastern Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 150, 123 (1999).
184
Lee Y. I., Hisada K., Stable isotopic composition of pedogenic carbonates of the Early Cretaceous Shimonoseki Subgroup, western Honshu, Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 153, 127 (1999).
185
D. L. Royer, in Causes and Consequences of Globally Warm Climates in the Early Paleogene, S. L. Wing, P. D. Gingerich, B. Schmitz, E. Thomas, Eds. (Geological Society of America Special Paper 369, Boulder, 2003), vol. 369, pp. 79–93.
186
S. G. Driese et al., in Phanerozoic Terrestrial Ecosystems, R. A. Gastaldo, W. A. DiMichele, Eds. (Paleontological Society Special Papers 6, 2000), pp. 47–61.
187
Greenwood D. R., Scarr M. J., Christophel D. C., Leaf stomatal frequency in the Australian tropical rainforest tree Neolitsea dealbata (Lauraceae) as a proxy measure of atmospheric pCO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 196, 375 (2003).
188
Cox J. E., et al., Northeast. Geol. Environ. Sci. 23, 91 (2001).
189
Roth-Nebelsick A., Konrad W., Assimilation and transpiration capabilities of rhyniophytic plants from the Lower Devonian and their implications for paleoatmospheric CO2 concentration. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 153 (2003).
190
McElwain J. C., Wade-Murphy J., Hesselbo S. P., Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479 (2005).
191
Tanner L. H., Hubert J. F., Coffey B. P., McInerney D. P., Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature 411, 675 (2001).
192
Haworth M., Hesselbo S. P., McElwain J. C., Robinson S. A., Brunt J. W., Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology 33, 749 (2005).
193
Robinson S. A., et al., Atmospheric pCO2 and depositional environment from stable-isotope geochemistry of calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England). J. Geol. Soc. London 159, 215 (2002).
194
Sun B., et al., Acta Geol. Sin. 81, 931 (2007).
195
Nordt L., Atchley S., Dworkin S. I., Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary. Geology 30, 703 (2002).
196
Kürschner W. M., Kvacek Z., Dilcher D. L., The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl. Acad. Sci. U.S.A. 105, 449 (2008).
197
Nordt L., Atchley S., Dworkin S., Terrestrial evidence for two greenhouse events in the latest Cretaceous. GSA Today 13, 4 (2003).
198
Quan C., Sun C., Sun Y., Sun G., High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretac. Res. 30, 424 (2009).
199
P. Ghosh et al., in A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, J. R. Ehleringer, T. E. Cerling, M. D. Dearing, Eds. (Springer, New York, 2005), pp. 8–34.
200
Passalia M. G., Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 17 (2009).
201
Prochnow S. J., Nordt L. C., Atchley S. C., Hudec M. R., Multi-proxy paleosol evidence for middle and late Triassic climate trends in eastern Utah. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 53 (2006).
202
Retallack G. J., Greenhouse crises of the past 300 million years. Geol. Soc. Am. Bull. 121, 1441 (2009).
203
A. Sandler, in Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates, A. M. Alonso-Zarza, L. H. Tanner, Eds. (Geological Society of America Special Paper, Boulder, 2006), vol. 416, pp. 75–88.
204
Yan D. F., et al., Science in China Series D. Earth Sci. 52, 2029 (2009).
205
Montañez I. P., et al., CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315, 87 (2007).
206
Barclay R. S., McElwain J. C., Sageman B. B., Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nat. Geosci. 3, 205 (2010).
207
Cleveland D. M., Nordt L. C., Dworkin S. I., Atchley S. C., Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic-Jurassic boundary: Implications for the biotic crisis? Geol. Soc. Am. Bull. 120, 1408 (2008).
208
Smith R. Y., Greenwood D. R., Basinger J. F., Estimating paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 120 (2010).
209
Retallack G. J., Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 57 (2009).
210
Bonis N. R., Van Konijnenburg-Van Cittert J. H. A., Kürschner W. M., Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeogr. Palaeoclimatol. Palaeoecol. 295, 146 (2010).
211
Leier A., Quade J., DeCelles P., Kapp P., Stable isotopic results from paleosol carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration. Earth Planet. Sci. Lett. 279, 242 (2009).
212
Doria G., et al., Declining atmospheric CO2 during the late Middle Eocene climate transition. Am. J. Sci. 311, 63 (2011).
213
MacRae R. A., Fensome R. A., Williams G. L., Fossil dinoflagellate diversity, originations, and extinctions and their significance. Can. J. Bot. 74, 1687 (1996).
214
Hart M. B., et al., The search for the origin of the planktic Foraminifera. J. Geol. Soc. London 160, 341 (2003).
215
Martin R. E., Cyclic and secular variation in microfossil biomineralization: Clues to the biogeochemical evolution of Phanerozoic oceans. Global Planet. Change 11, 1 (1995).
216
Ezard T. H. G., Aze T., Pearson P. N., Purvis A., Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349 (2011).
217
Clapham M. E., Shen S., Bottjer D. J., The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35, 32 (2009).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 335 | Issue 6072
2 March 2012

Submission history

Published in print: 2 March 2012

Permissions

Request permissions for this article.

Acknowledgments

Funding for the “Workshop on Paleocean Acidification and Carbon Cycle Perturbation Events” was provided by NSF OCE 10-32374 and Past Global Changes (PAGES). We thank the workshop participants for stimulating discussions and contributions to this manuscript, and the USC Wrigley Institute on Catalina Island for hosting the workshop. Particular thanks are owed to Thorsten Kiefer of PAGES, who initiated the workshop and supported it at all stages. This work is a contribution to the “European Project on Ocean Acidification” (EPOCA). Data presented in Fig. 4 are presented in tables S2 and S3 (2).

Authors

Affiliations

Bärbel Hönisch* [email protected]
Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA.
Andy Ridgwell
School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK.
Daniela N. Schmidt
School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK.
Ellen Thomas
Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA.
Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA.
Samantha J. Gibbs
Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK.
Appy Sluijs
Department of Earth Sciences, Utrecht University, 3584 CD Utrecht, Netherlands.
Richard Zeebe
School of Ocean and Earth Science and Technology, Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
Lee Kump
Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.
Rowan C. Martindale
Department of Earth Sciences, University of Southern California (USC), Los Angeles, CA 90089, USA.
Sarah E. Greene
School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK.
Department of Earth Sciences, University of Southern California (USC), Los Angeles, CA 90089, USA.
Wolfgang Kiessling
Museum für Naturkunde at Humboldt University, 10115 Berlin, Germany.
Justin Ries
Department of Marine Sciences, University of North Carolina–Chapel Hill, NC 27599, USA.
James C. Zachos
Earth and Planetary Sciences Department, University of California Santa Cruz, CA 95064, USA.
Dana L. Royer
Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA.
Stephen Barker
School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK.
Thomas M. Marchitto, Jr.
Department of Geological Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA.
Ryan Moyer
University of South Florida St. Petersburg, Department of Environmental Science, Policy, and Geography, St. Petersburg, FL 33701, USA.
Carles Pelejero
Institució Catalana de Recerca i Estudis Avançats and Department of Marine Biology and Oceanography, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Catalonia, Spain.
Patrizia Ziveri
Institute of Environmental Science and Technology, Universitat Autònoma de Barcelona, 01893 Barcelona, Spain.
Department of Earth Sciences, Vrije Universiteit, 1081HV Amsterdam, Netherlands.
Gavin L. Foster
Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK.
Branwen Williams
W. M. Keck Science Department of Claremont McKenna College, Pitzer College, and Scripps College, Claremont, CA 91711, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Review: Ocean acidification during the Paleocene-Eocene Thermal Maximum暁新世-始新世温暖化極大の海洋酸性化, The Journal of the Geological Society of Japan, 129, 1, (179-197), (2023).https://doi.org/10.5575/geosoc.2022.0056
    Crossref
  2. ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model, Geoscientific Model Development, 16, 3, (813-832), (2023).https://doi.org/10.5194/gmd-16-813-2023
    Crossref
  3. A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic, Climate of the Past, 19, 3, (607-636), (2023).https://doi.org/10.5194/cp-19-607-2023
    Crossref
  4. RNAi Silencing of the Biomineralization Gene Perlucin Impairs Oyster Ability to Cope with Ocean Acidification, International Journal of Molecular Sciences, 24, 4, (3661), (2023).https://doi.org/10.3390/ijms24043661
    Crossref
  5. Unique evolution of foraminiferal calcification to survive global changes, Science Advances, 9, 25, (2023)./doi/10.1126/sciadv.add3584
    Abstract
  6. Genome‐wide phylogeography reveals cryptic speciation in the circumglobal planktonic calcifier Limacina bulimoides , Molecular Ecology, (2023).https://doi.org/10.1111/mec.16931
    Crossref
  7. The effects of ocean acidification on fishes – history and future outlook, Journal of Fish Biology, (2023).https://doi.org/10.1111/jfb.15323
    Crossref
  8. Are we ready for ocean acidification? A framework for assessing and advancing policy readiness, Environmental Research Letters, 18, 4, (041001), (2023).https://doi.org/10.1088/1748-9326/acc085
    Crossref
  9. Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism, Nature Geoscience, 16, 2, (169-174), (2023).https://doi.org/10.1038/s41561-022-01115-w
    Crossref
  10. Marine osmium‑uranium‑sulfur isotope evidence for the interaction of volcanism and ocean anoxia during the Middle Pleistocene in the tropical Western Pacific, Palaeogeography, Palaeoclimatology, Palaeoecology, 611, (111360), (2023).https://doi.org/10.1016/j.palaeo.2022.111360
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media