Advertisement

Vesta to the Core

Vesta is one of the largest bodies in the main asteroid belt. Unlike most other asteroids, which are fragments of once larger bodies, Vesta is thought to have survived as a protoplanet since its formation at the beginning of the solar system (see the Perspective by Binzel, published online 20 September). Based on data obtained with the Gamma Ray and Neutron Detector aboard the Dawn spacecraft, Prettyman et al. (p. 242, published online 20 September) show that Vesta's reputed volatile-poor regolith contains substantial amounts of hydrogen delivered by carbonaceous chondrite impactors. Observations of pitted terrain on Vesta obtained by Dawn's Framing Camera and analyzed by Denevi et al. (p. 246, published online 20 September), provide evidence for degassing of volatiles and hence the presence of hydrated materials. Finally, paleomagnetic studies by Fu et al. (p. 238) on a meteorite originating from Vesta suggest that magnetic fields existed on the surface of the asteroid 3.7 billion years ago, supporting the past existence of a magnetic core dynamo.

Abstract

Using Dawn’s Gamma Ray and Neutron Detector, we tested models of Vesta’s evolution based on studies of howardite, eucrite, and diogenite (HED) meteorites. Global Fe/O and Fe/Si ratios are consistent with HED compositions. Neutron measurements confirm that a thick, diogenitic lower crust is exposed in the Rheasilvia basin, which is consistent with global magmatic differentiation. Vesta’s regolith contains substantial amounts of hydrogen. The highest hydrogen concentrations coincide with older, low-albedo regions near the equator, where water ice is unstable. The young, Rheasilvia basin contains the lowest concentrations. These observations are consistent with gradual accumulation of hydrogen by infall of carbonaceous chondrites—observed as clasts in some howardites—and subsequent removal or burial of this material by large impacts.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Supplementary Text
Figs. S1 to S27
Tables S1 to S4
References (38442)

Resources

File (prettyman.sm.pdf)

References and Notes

1
McCord T. B., Adams J. B., Johnson T. V., Asteroid vesta: Spectral reflectivity and compositional implications. Science 168, 1445 (1970).
2
Binzel R. P., Xu S., Chips off of Asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science 260, 186 (1993).
3
D. W. Mittlefehldt, T. J. McCoy, C. A. Goodrich, A. Kracher, Non-chondritic meteorites from asteroidal bodies. Rev. Mineral. Geochem. 36, 4.1 (1998).
4
Drake M. J., The eucrite/Vesta story. Meteorit. Planet. Sci. 36, 501 (2001).
5
McSween H. Y., Mittlefehldt D. W., Beck A. W., Mayne R. G., McCoy T. J., HED meteorites and their relationship to the geology of Vesta and the Dawn Mission. Space Sci. Rev. 163, 141 (2011).
6
K. Keil, in Asteroids III, W. F. Bottke, A. Cellino, P. Paolicchi, R. P. Binzel, Eds. (Univ. Arizona Press in collaboration with the Lunar and Planetary Institute, Tucson, AZ, 2002), pp. 573–584.
7
Warren P. H., Kallemeyn G. W., Huber H., Ulff-Møller F., Choe W., Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias. Geochim. Cosmochim. Acta 73, 5918 (2009).
8
Housen K. R., Wilkening L. L., Regoliths on small bodies in the solar system. Annu. Rev. Earth Planet. Sci. 10, 355 (1982).
9
Prettyman T. H., et al., Dawn’s Gamma Ray and Neutron Detector. Space Sci. Rev. 163, 371 (2011).
10
Usui T., McSween H. Y., Mittlefehldt D. W., Prettyman T. H., K-Th-Ti systematics and new three-component mixing model of HED meteorites: Prospective study for interpretation of gamma-ray and neutron spectra for the Dawn mission. Meteorit. Planet. Sci. 45, 1170 (2010).
11
Russell C. T., et al., Dawn at Vesta: Testing the protoplanetary paradigm. Science 336, 684 (2012).
12
Descriptions of data and methods are available as supplementary materials on Science Online.
13
Burbine T. H., McCoy T. J., Hinrichs J. L., Lucey P. G., Spectral properties of angrites. Meteorit. Planet. Sci. 41, 1139 (2006).
14
Clark B. E., et al., E-type asteroid spectroscopy and compositional modeling. J. Geophys. Res. 109, (E2), E02001 (2004).
15
Cloutis E. A., et al., Spectral reflectance properties of ureilites. Meteorit. Planet. Sci. 45, 1668 (2010).
16
Mittlefehldt D. W., Ibitira: A basaltic achondrite from a distinct parent asteroid and implications for the Dawn mission. Meteorit. Planet. Sci. 40, 665 (2005).
17
Schenk P., et al., The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694 (2012).
18
Jaumann R., et al., Vesta’s shape and morphology. Science 336, 687 (2012).
19
Asphaug E., Impact origin of the Vesta family. Meteorit. Planet. Sci. 32, 965 (1997).
20
Feldman W. C., et al., Evidence for water ice near the lunar poles. J. Geophys. Res. 106, (E10), 23231 (2001).
21
Colaprete A., et al., Detection of water in the LCROSS ejecta plume. Science 330, 463 (2010).
22
De Sanctis M. C., et al., Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697 (2012).
23
Thomas P. C., et al., Impact excavation on asteroid 4 Vesta: Hubble space telescope results. Science 277, 1492 (1997).
24
Marchi S., et al., The violent collisional history of asteroid 4 Vesta. Science 336, 690 (2012).
25
D. W. Mittlefehldt, in Treatise on Geochemistry, D. H. Heinrich, K. T. Karl, Eds. (Pergamon, Oxford, 2007), pp. 291–324.
26
R. Bustin, E. K. Gibson Jr., in The Second Conference on Lunar Bases and Space Activities of the 21st Century, W. W. Mendell, Ed. (NASA, Washington, DC, 1992), pp. 437–445.
27
Schultz L., Franke L., Helium, neon, and argon in meteorites: A data collection. Meteorit. Planet. Sci. 39, 1889 (2004).
28
Hasegawa S., et al., Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophys. Res. Lett. 30, 2123 (2003).
29
Rivkin A., McFadden L., Binzel R., Sykes M., Rotationally-resolved spectroscopy of Vesta I: 2–4 μm region. Icarus 180, 464 (2006).
30
Reddy V., et al., Color and albedo heterogeneity of Vesta from Dawn. Science 336, 700 (2012).
31
Zolensky M. E., Weisberg M. K., Buchanan P. C., Mittlefehldt D. W., Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon. Meteorit. Planet. Sci. 31, 518 (1996).
32
J. S. Herrin, M. E. Zolensky, J. A. Cartwright, D. W. Mittlefehldt, D. K. Ross, Carbonaceous chondrite-rich howardites; The potential for hydrous lithologies on the HED parent. Proc. Lunar Planet. Sci. Conf. 42, 2806 (2011).
33
K. Lodders, B. J. Fegley, The Planetary Scientist’s Companion (Oxford Univ. Press, New York, 1998).
34
Kerridge J. F., Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707 (1985).
35
Denevi B., The nature of pitted terrain on Vesta and implications for the presence of volatiles. Science (2012).
36
Gounelle M., Zolensky M. E., Liou J.-C., Bland P. A., Alard O., Mineralogy of carbonaceous chondritic microclasts in howardites: Identification of C2 fossil micrometeorites. Geochim. Cosmochim. Acta 67, 507 (2003).
37
Li J.-Y., et al., Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope. Icarus 208, 238 (2010).
38
Feldman W. C., et al., Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles. Science 281, 1496 (1998).
39
Elphic R. C., et al., Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. J. Geophys. Res. 105, (E8), 20333 (2000).
40
Gasnault O., et al., Composition from fast neutrons: Application to the Moon. Geophys. Res. Lett. 28, 3797 (2001).
41
Lawrence D. J., et al., Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J. Geophys. Res. 107, (E12), 5130 (2002).
42
Boynton W. V., et al., Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297, 81 (2002).
43
Metzger A. E., Trombka J. I., Peterson L. E., Reedy R. C., Arnold J. R., Lunar surface radioactivity: Preliminary results of the apollo 15 and apollo 16 gamma-ray spectrometer experiments. Science 179, 800 (1973).
44
Feldman W. C., et al., Global distribution of neutrons from Mars: results from Mars odyssey. Science 297, 75 (2002).
45
Peplowski P. N., et al., Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science 333, 1850 (2011).
46
Prettyman T. H., et al., Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. 111, (E12), E12007 (2006).
47
Evans L. G., et al., Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteorit. Planet. Sci. 36, 1639 (2001).
48
Yamashita N., et al., Uranium on the Moon: Global distribution and U/Th ratio. Geophys. Res. Lett. 37, L10201 (2010).
49
Zhu M. H., Ma T., Chang J., Chang'E-1 gamma ray spectrometer and preliminary radioactive results on the lunar surface. Planet. Space Sci. 58, 1547 (2010).
50
Prettyman T. H., Feldman W. C., Titus T. N., Characterization of Mars' seasonal caps using neutron spectroscopy. J. Geophys. Res. 114, (E8), E08005 (2009).
51
T. H. Prettyman, in Encyclopedia of the Solar System, L.-A. McFadden, P. R. Weissman, T. V. Johnson, Eds. (Academic Press, San Diego, CA, ed. 2, 2007), pp. 765-786.
52
Feldman W. C., Auchampaugh G., Byrd R., A novel fast-neutron detector for space applications. Nucl. Instrum. Methods Phys. Res. A 306, 350 (1991).
53
Feldman W. C., et al., Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission. J. Geophys. Res. Planets 109, (E7), E07S06 (2004).
54
Boynton W., et al., The Mars Odyssey gamma-ray spectrometer instrument suite. Space Sci. Rev. 110, 37 (2004).
55
Feldman W., et al., Fast neutron flux spectrum aboard Mars Odyssey during cruise. J. Geophys. Res. 107, (A6), 1083 (2002).
56
Goldsten J. O., et al., The MESSENGER gamma-ray and neutron spectrometer. Space Sci. Rev. 131, 339 (2007).
57
Neutron monitors of the Bartol Research Institute are supported by NSF grant ATM-0000315.
58
Gaskell R. W., et al., Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43, 1049 (2008).
59
Raymond C. A., et al., The Dawn Topography Investigation. Space Sci. Rev. 163, 487 (2011).
60
Prettyman T. H., et al., Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy. J. Geophys. Res. 109, (E5), E05001 (2004).
61
Usui T., McSween H. Y., Geochemistry of 4 Vesta based on HED meteorites: Prospective study for interpretation of gamma ray and neutron spectra for the Dawn mission. Meteorit. Planet. Sci. 42, 255 (2007).
62
Lodders K., Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220 (2003).
63
Anders E., Grevesse N., Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197 (1989).
64
Palme H., Jones A., Solar system abundances of the elements. Treatise Geochem. 1, 41 (2003).
65
Wasson J., Kallemeyn G., Compositions of chondrites. Philos. Trans. R. Soc. Lond. A 325, 535 (1988).
66
Nittler L. R., et al., Bulk element compositions of meteorites: A guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarct. Meteorite Res. 17, 231 (2004).
67
D. B. Pelowitz et al., “MCNPX 2.7.0 Extensions,” Los Alamos National Laboratory document LA-UR-11-02295 (2011).
68
McKinney G. W., et al., MCNPX benchmark for cosmic ray interactions with the Moon. J. Geophys. Res. 111, (E6), E06004 (2006).
69
Lawrence D. J., et al., Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles. J. Geophys. Res. 111, (E8), E08001 (2006).
70
Hendricks J. S., Prettyman T. H., MCNPX correlated ENDF neutron-induced photons. Trans. Am. Nucl. Soc. 105, 747 (2011).
71
Evans L. G., Reedy R. C., Starr R. D., Kerry K. E., Boynton W. V., Analysis of gamma ray spectra measured by Mars Odyssey. J. Geophys. Res. Planets 111, E03S04 (2006).
72
Kobayashi S., et al., Determining the Absolute Abundances of Natural Radioactive Elements on the Lunar Surface by the Kaguya Gamma-ray Spectrometer. Space Sci. Rev. 154, 193 (2010).
73
P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill New York, ed. 2, 1992).
74
Feldman W. C., et al., Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, (E9), E09006 (2004).
75
Jutzi M., Asphaug E., Mega-ejecta on asteroid Vesta. Geophys. Res. Lett. 38, L01102 (2011).
76
R. C. Reedy, Planetary gamma-ray spectroscopy. 9th Lunar Planet. Sci. Conf., 2961 (1978).
77
G. R. Gilmore, in Practical Gamma-Ray Spectrometry. (John Wiley & Sons, Ltd, 2008), pp. 101-129.
78
Barrat J. A., Bohn M., Gillet P., Yamaguchi A., Evidence for K-rich terranes on Vesta from impact spherules. Meteorit. Planet. Sci. 44, 359 (2009).
79
Heber V. S., et al., Noble gas composition of the solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 73, 7414 (2009).
80
U. Ott, in Noble Gases in Geochemistry and Cosmochemistry, D. Porcelli, C. J. Ballentine, R. Wieler, Eds. (Mineralogical Society of America, Washington, DC, 2002), vol. 47, pp. 71–100.
81
J. A. Cartwright, D. W. Mittlefehldt, J. E. Quinn, U. Ott, The continuing quest for “regolithic” howardites. Proc. Lunar Planet. Sci. Conf. 43, 1211 (2012).
82
Grimberg A., et al., Solar wind neon from Genesis: Implications for the lunar noble gas record. Science 314, 1133 (2006).
83
Wieler R., Grimberg A., Heber V. S., Consequences of the non-existence of the “SEP” component for noble gas geo-and cosmochemistry. Chem. Geol. 244, 382 (2007).
84
R. Wieler, in Noble Gases in Geochemistry and Cosmochemistry, D. Porcelli, C. J. Ballentine, R. Wieler, Eds. (Mineralogical Society of America, Washington DC, 2002), vol. 47, pp. 21–70.
85
Wieler R., The solar noble gas record in lunar samples and meteorites. Space Sci. Rev. 85, 303 (1998).
86
Bunch T. E., Chang S., Frick U., Neil J., Moreland G., Carbonaceous chondrites; I, Characterization and significance of carbonaceous chondrite (CM) xenoliths in the Jodzie howardite. Geochim. Cosmochim. Acta 43, 1727 (1979).
87
Lal D., Rajan R. S., Observations on space irradiation of individual crystals of gas-rich meteorites. Nature 223, 269 (1969).
88
Pellas P., Poupeau G., Lorin J. C., Reeves H., Audouze J., Primitive low-energy particle irradiation of meteoritic crystals. Nature 223, 272 (1969).
89
Wilkening L., Lal D., Reid A. M., The evolution of the Kapoeta howardite based on fossil track studies. Earth Planet. Sci. Lett. 10, 334 (1971).
90
Jarosewich E., Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25, 323 (1990).
91
Laul J. C., The Bholghati (howardite) consortium: An overview. Geochim. Cosmochim. Acta 54, 2155 (1990).
92
Buchanan P. C., Zolensky M. E., Reid A. M., Carbonaceous chondrite clasts in the howardites Bholghati and EET87513. Meteoritics 28, 659 (1993).
93
Ahrens L. H., Pinson W. H., Kearns M. M., Association of rubidium and potassium and their abundance in common igneous rocks and meteorites. Geochim. Cosmochim. Acta 2, 229 (1952).
94
Alaerts L., Lewis R. S., Matsuda J.-i., Anders E., Isotopic anomalies of noble gases in meteorites and their origins—VI. Presolar components in the Murchison C2 chondrite. Geochim. Cosmochim. Acta 44, 189 (1980).
95
Alderman A. R., A siderolite from Pinnaroo, South Australia. Trans. R. Soc. South Australia 64, 109 (1940).
96
Allégre C. J., Birck J. L., Fourcade S., Semet M. P., Rubidium-87/strontium-87 age of juvinas basaltic achondrite and early igneous activity in the solar system. Science 187, 436 (1975).
97
Allen R. O., Mason B., Minor and trace elements in some meteoritic minerals. Geochim. Cosmochim. Acta 37, 1435 (1973).
98
Aylmer D., Herzog G. F., Klein J., Middleton R., 10Be and 26Al contents of eucrites: Implications for production rates and exposure ages. Geochim. Cosmochim. Acta 52, 1691 (1988).
99
Barrat J. A., et al., Petrology and geochemistry of the fine-grained, unbrecciated diogenite Northwest Africa 4215. Meteorit. Planet. Sci. 41, 1045 (2006).
100
Barrat J. A., Blichert-Toft J., Gillet P. H., Keller F., The differentiation of eucrites: The role of in situ crystallization. Meteorit. Planet. Sci. 35, 1087 (2000).
101
Barrat J. A., Gillet P., Lesourd M., Blichert-Toft J., Poupeau G. R., The Tatahouine diogenite: Mineralogical and chemical effects of sixty-three years of terrestrial residence. Meteorit. Planet. Sci. 34, 91 (1999).
102
Barrat J. A., et al., Petrology and geochemistry of the unbrecciated achondrite Northwest Africa 1240 (NWA 1240): An HED parent body impact melt. Geochim. Cosmochim. Acta 67, 3959 (2003).
103
Barrat J. A., et al., Geochemistry of diogenites: Still more diversity in their parental melts. Meteorit. Planet. Sci. 43, 1759 (2008).
104
Barrat J. A., et al., The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts. Geochim. Cosmochim. Acta 71, 4108 (2007).
105
Barrat J.-A., Yamaguchi A., Zanda B., Bollinger C., Bohn M., Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites. Geochim. Cosmochim. Acta 74, 6218 (2010).
106
Bate G. L., Huizenga J. R., Abundances of ruthenium, osmium and uranium in some cosmic and terrestrial sources. Geochim. Cosmochim. Acta 27, 345 (1963).
107
Bate G. L., Huizenga J. R., Portraz H. A., Thorium in stone meteorites by neutron activation analysis. Geochim. Cosmochim. Acta 16, 88 (1959).
108
Bate G. L., Huizenga J. R., Potratz H. A., Thorium content of stone meteorites. Science 126, 612 (1957).
109
Bate G. L., Potratz H. A., Huizenga J. R., Scandium, chromium and europium in stone meteorites by simultaneous neutron activation analysis. Geochim. Cosmochim. Acta 18, 101 (1960).
110
Beck A. W., et al., MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin. Meteorit. Planet. Sci. 46, 1133 (2011).
111
Becker R. H., Schlutter D. J., Rider P. E., Pepin R. O., An acid-etch study of the Kapoeta achondrite: Implications for the argon-36/argon-38 ratio in the solar wind. Meteorit. Planet. Sci. 33, 109 (1998).
112
Begemann F., Weber H. W., Vilcsek E., Hintenberger H., Rare gases and 36Cl in stony-iron meteorites: cosmogenic elemental production rates, exposure ages, diffusion losses and thermal histories. Geochim. Cosmochim. Acta 40, 353 (1976).
113
Birck J. L., Allègre C. J., Chronology and chemical history of the parent body of basaltic achondrites studied by the 87Rb-87Sr method. Earth Planet. Sci. Lett. 39, 37 (1978).
114
Birck J. L., Allègre C. J., 87Rb-87Sr chronology of the Binda howardite. Nature 282, 288 (1979).
115
Birck J. L., Allègre C. J., 87Rb/87Sr study of diogenites. Earth Planet. Sci. Lett. 55, 116 (1981).
116
Bischoff A., et al., Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara. Geochim. Cosmochim. Acta 57, 1587 (1993).
117
Black D. C., On the origins of trapped helium, neon and argon isotopic variations in meteorites—II. Carbonaceous meteorites. Geochim. Cosmochim. Acta 36, 377 (1972).
118
Boctor N. Z., Palme H., Spettel B., El Goresy A., MacPherson G. J., Caldera: A second unbrecciated noncumulate eucrite. Meteoritics 29, 445 (1994).
119
Bogard D. D., Clark R. S., Keith J. E., Reynolds M. A., Noble gases and radionuclides in Lost City and other recently fallen meteorites. J. Geophys. Res. 76, 4076 (1971).
120
Bogard D. D., Garrison D. H., 39Ar-40Ar ages of eucrites and thermal history of asteroid 4 Vesta. Meteorit. Planet. Sci. 38, 669 (2003).
121
Bogard D. D., Taylor G. J., Keil K., Smith M. R., Schmitt R. A., Impact melting of the Cachari eucrite 3.0 Gy ago. Geochim. Cosmochim. Acta 49, 941 (1985).
122
Brückner J., Dreibus G., Rieder R., Wänke H., Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry. J. Geophys. Res. Planets 108, (E12), 8094 (2003).
123
Buchanan P. C., Lindstrom D. J., Mittlefehldt D. W., Koeberl C., Reimold W. U., The South African polymict eucrite Macibini. Meteorit. Planet. Sci. 35, 1321 (2000).
124
Buchanan P. C., Mittlefehldt D. W., Lithic components in the paired howardites EET 87503 and EET 87513: Characterization of the regolith of 4 Vesta. Antarct. Meteorite Res. 16, 128 (2003).
125
Buchanan P. C., et al., Petrology of the Indian eucrite Piplia Kalan. Meteorit. Planet. Sci. 35, 609 (2000).
126
Buchanan P. C., Reid A. M., Petrology of the polymict eucrite Petersburg. Geochim. Cosmochim. Acta 60, 135 (1996).
127
Burger M., Eugster O., Krähenbühl U., Refractory trace elements in different classes of achondrites by RNAA and INAA and some noble gas data. Meteoritics 24, 256 (1989).
128
Busemann H., Baur H., Wieler R., Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949 (2000).
129
Caffee M. W., Goswami J. N., Hohenberg C. M., Swindle T. D., Cosmogenic neon from precompaction irradiation of Kapoeta and Murchison. Proc. Lunar Planet. Sci. Conf. 14, B267 (1983).
130
Christophe-Michel-Levy M., Bourot-Denise M., Palme H., Spettel B., Wänke H., L'eucrite de Bouvante: chimie, petrologie et mineralogie. Bulletin de Minerologie 110, 449 (1987).
131
Clark R. S., Rowe M. W., Ganapathy R., Kuroda P. K., Iodine, uranium and tellurium contents in meteorites. Geochim. Cosmochim. Acta 31, 1605 (1967).
132
Cleverly W. H., Jarosewich E., Mason B., Camel Donga meteorite, a new eucrite from the Nullarbor Plain, Western Australia. Meteoritics 21, 263 (1986).
133
V. M. Dang, A. V. Ivanov, Y. A. Shukolyukov, Noble gases in the Kaidun meteorite. in Proc. 15th Lunar Planet. Sci. Conf., 554 (1984).
134
J. S. Delaney, M. Prinz, C. E. Nehru, C. P. Stokes, Allan Hills A81001, cumulate eucrites and black clasts from polymict eucrites. Proc. Lunar Planet. Sci. Conf. 15, 212 (1984).
135
Desnoyers C., Jérome D. Y., The Malvern howardite; A petrological and chemical discussion. Geochim. Cosmochim. Acta 41, 81 (1977).
136
Dickinson T., et al., Petrology and shock age of the Palo Blanco Creek eucrite. Chem. Erde 44, 245 (1985).
137
M. B. Duke, thesis, California Institute of Technology (1963).
138
Duke M. B., Silver L. T., Petrology of eucrites, howardites and mesosiderites. Geochim. Cosmochim. Acta 31, 1637 (1967).
139
Dyakonova M. I., Kharitonova V. Y., The chemical composition of eighteen stony meteorites in the collection of the U.S.S.R. Academy of Sciences. Meteoritika 21, 52 (1961).
140
Easton A. J., Lovering J. F., Determination of small quantities of K and Na in stony meteoritic material, rocks and minerals. Anal. Chim. Acta 30, 543 (1964).
141
Edwards G., Sodium and potassium in meteorites. Geochim. Cosmochim. Acta 8, 285 (1955).
142
Edwards G. E., Urey H. C., Determination of alkali metals in meteorites by a distillation process. Geochim. Cosmochim. Acta 7, 154 (1955).
143
W. D. Ehmann, L. L. Chyi, A. N. Garg, M. Z. Ali, in Origin and distribution of the elements, L. H. Ahrens, Ed. (Pergamon Press, New York, 1979), pp. 247–259.
144
Ehmann W. D., Durbin D. R., Silicon abundances in some meteorites and standard rocks by activation analysis. Geochim. Cosmochim. Acta 32, 461 (1968).
145
O. Eugster et al., Solar-wind-trapped and cosmic-ray-produced noble gases in Luna 20 soil. Proc. Lunar Sci. Conf. 6, 1989 (1975).
146
Eugster O., Eberhardt P., Thalmann C., Weigel A., Neon-E in CM-2 chondrite LEW90500 and collisional history of CM-2 chondrites, Maralinga, and other CK chondrites. Geochim. Cosmochim. Acta 62, 2573 (1998).
147
Eugster O., Michel T., Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites. Geochim. Cosmochim. Acta 59, 177 (1995).
148
A. V. Fisenko et al., Presolar diamond in CR and CI clasts of the Kaidun meteorite. in Proc. 31st Lunar Planet. Sci. Conf., #1834 (2000).
149
Fisher D. E., Uranium content of some stone meteorites and their Pu-Xe decay interval. Nature 222, 1156 (1969).
150
Fisher D. E., Achondritic uranium. Earth Planet. Sci. Lett. 20, 151 (1973).
151
Fitzgerald M. J., Muckera and Millbillillie-Australian achondritic meteorites. Trans. R. Soc. South Australia 104, 201 (1980).
152
Floran R. J., et al., Mineralogy, petrology, and trace element geochemistry of the Johnstown meteorite: a brecciated orthopyroxenite with siderophile and REE-rich components. Geochim. Cosmochim. Acta 45, 2385 (1981).
153
Fredriksson K., The Manegaon diogenite. Meteoritics 17, 141 (1977).
154
Fredriksson K., Kraut F., Impact glass in the Cachari eucrite. Geochim. Cosmochim. Acta 31, 1701 (1967).
155
Fredriksson K., Noonan A., Brenner P., Sudre C., Bulk and major phase composition of eight hypersthene achondrites. Meteoritics 11, 278 (1976).
156
U. Frick et al., Diffusion properties of light noble gases in lunar fines. Procedings of the Lunar Science Conference, 4th, 1987 (1973).
157
T. Fukuoka, Pairing of five Yamato '79 achondrites by the chemical compositions. Papers presented to the Fifteenth Symposium on Antarctic Meteorites, 155 (1990).
158
T. Fukuoka, W. V. Boynton, M.-S. Ma, R. A. Schmitt, Genesis of howardites, diogenites, and eucrites. Proc. Lunar Sci. Conf. 8, 187 (1977).
159
T. Fukuoka, Y. Ikeda, Chemical compositions of 5 Yamato polymict eucrites. Papers presented to the Eighth Symposium on Antarctic Meteorites, 49 (1983).
160
Fukuoka T., Nakamura N., Chemical compositions of the ALH-77302 polymict eucrite. Mem. Nat. Inst. Polar Res. Special Issue 20, 193 (1981).
161
J. G. Funkhauser, O. A. Schaffer, D. D. Bogard, J. Zähringer, Gas analysis of the lunar surface. Procedings of the Apollo 11 Lunar Science Conference, 1111 (1970).
162
Gast P. W., The isotopic composition of strontium and the age of stone meteorites–I. Geochim. Cosmochim. Acta 26, 927 (1962).
163
Gast P. W., Terrestrial ratios of potassium to rubidium and the composition of the Earth's mantle. Science 147, 858 (1965).
164
P. W. Gast, N. J. Hubbard, H. Wiesmann, Chemical composition and petrogenesis of basalts from Tranquility Base. Proceedings of the Apollo 11 Lunar Science Conference, 1143 (1970).
165
Geiss J., Hess D. C., Argon-potassium ages and the isotopic compositions of argon from meteorites. Astrophys. J. 127, 224 (1958).
166
Ghosh S., et al., The Vissannapeta eucrite. Meteorit. Planet. Sci. 35, 913 (2000).
167
Gibson E. K., Moore C. B., Primus T. M., Lewis C. F., Sulfur in achondritic meteorites. Meteoritics 20, 503 (1985).
168
Grady M. M., et al., Yamato-82042: An unusual carbonaceons chondrite with CM affinities. Mem. Nat. Inst. Polar Res. Special Issue 46, 162 (1987).
169
Grossman L., Olsen E., Davis A. M., Tanaka T., MacPherson G. J., The Antarctic achondrite ALHA 76005: a polymict eucrite. Geochim. Cosmochim. Acta 45, 1267 (1981).
170
Hamauchi H., Reed G. W., Turkevich A., Uranium and barium in stone meteorites. Geochim. Cosmochim. Acta 12, 337 (1957).
171
J. Hamet, N. Nakamura, D. M. Unruh, M. Tatsumoto, Origin and history of the adcumulate eucrite, Moama as inferred from REE abundances, Sm-Nd and U-Pb systematics. Proceedings of the 9th Lunar and Planetary Science Conference, 1115 (1978).
172
Haughton S. H., Partridge F. C., The meteorite fall of Macibini, Zululand. Trans. Geol. Soc. S. Afr. 41, 205 (1938).
173
U. Herpers et al., in Workshop on Differences between Antarctic and Non-Antarctic Meteorites, C. Koeberl, W. A. Cassidy, Eds. (Lunar and Planetary Institute, Houston, 1989), pp. 46–48.
174
Heymann D., Anders E., Rowe M. W., Meteorites with short cosmic-ray exposure ages, as determined from their Al26 content. Geochim. Cosmochim. Acta 31, 1793 (1967).
175
Heymann D., Mazor E., Light-dark structure and rare gas content of the carbonaceous chondrite Nogoya. J. Geophys. Res. 72, 2704 (1967).
176
Hintenberger H., Jochum K. P., Seufert M., The concentrations of the heavy metals in the four new Antarctic meteorites Yamato (a), (b), (c) and (d) and in Orgueil, Murray, Allende, Abee, Allegan, Mocs and Johnstown. Earth Planet. Sci. Lett. 20, 391 (1973).
177
Hintenberger H., König H., Schultz L., Wänke H., Radiogene, spallogene und primordiale Edelgase in Steinmeteoriten. Zeitschrift fuer Naturforschung Teil A: Physik Physikalische Chemie Kosmophysik 19, 327 (1964).
178
Hintenberger H., Vilcsek E., Wänke H., Ueber die Isotopenzusammensetzung und den Sitz der leichten Uredelgase in Steinmeteoriten. Zeitschrift fuer Naturforschung Teil A: Physik Physikalische Chemie Kosmophysik 20, 939 (1965).
179
H. Hintenberger, H. W. Weber, S. L., Solar, spallogenic, and radiogenic rare gases in Apollo 17 soils and breccias. Procedings of the Lunar Science Conference, 5th, 2005 (1974).
180
H. Hintenberger et al., Concentrations and isotopic abundances of the rare gases, hydrogen and nitrogen in Apollo 11 lunar matter. Procedings of the Apollo 11 Lunar Science Conference, 1269 (1970).
181
Höfler H., Sorantin H., Application of nondestructive activation analysis to meteorites: Determination of aluminum, vanadium, manganese and gold in stony and iron meteorites. Chem. Geol. 2, 273 (1967).
182
Holzheid A., Palme H., The formation of eucrites: Constraints from metal-silicate partition coefficients. Meteorit. Planet. Sci. 42, 1817 (2007).
183
Humayun M., Clayton R. N., Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochim. Cosmochim. Acta 59, 2131 (1995).
184
Ikeda Y., Ebihara M., Prinz M., Enclaves in the Mt. Padbury and Vaca Muerta mesosiderites: Magmatic and residue (or cumulate) rock types. Proc. NIPR Symp. Antarct. Meteorites 3, 99 (1990).
185
Jacobsen S. B., Wasserburg G. J., Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth Planet. Sci. Lett. 67, 137 (1984).
186
Jarosewich E., Mason B., Chemical analyses with notes on one mesosiderite and seven chondrites. Geochim. Cosmochim. Acta 33, 411 (1969).
187
D. Y. Jérome, thesis, University of Oregon (1970).
188
Jochum K. P., Grais K. I., Hintenberger H., Chemical composition and classification of 19 Yamato meteorites. Meteoritics 15, 31 (1980).
189
Kamaguchi A., Okano J., K-Ar ages of Yamato-74 meteorites. Mem. Nat. Inst. Polar Res. Special Issue 12, 178 (1979).
190
Kaneoka I., 40Ar-39Ar ages of Antarctic meteorites: Y-74191, Y-75258, Y-7803, Y-74450 and ALH-765. Mem. Nat. Inst. Polar Res. Special Issue 20, 250 (1981).
191
Kaneoka I., Ozima M., Yanagisawa M., 40Ar-39Ar age studies of four Yamato-74 meteorites. Mem. Nat. Inst. Polar Res. Special Issue 12, 186 (1979).
192
Kharitonova V. Y., Barsukova L. D., Chemical composition of the Aliskerovo, Aprel'skii, Vetluga, and Kuleshovka meteorites. Meteoritika 40, 41 (1982) (in Russian).
193
Kiesl W., Seitner H., Kluger F., Hecht F., Determination of trace elements by chemical analysis and neutron activation in meteorites of the collection of the viennese museum of natural history. Monatsh. Chem. 98, 972 (1967).
194
Kiesl W., Weinke H. H., Wichtl M., The Medanitos Meteorite. Meteoritics 13, 513 (1978).
195
Kirova O. A., Dyakonova M. I., Meteoritika 27, 167 (1966).
196
Kirsten T., Krankowsky D., Zähringer J., Edelgas- und kalium-bestimmungen an einer größeren zahl von steinmeteoriten. Geochim. Cosmochim. Acta 27, 13 (1963).
197
Kolesov G. M., Determination of some trace and rare-earth elements in achondrites and tektites by instrumental neutron activation analysis. Meteoritika 35, 59 (1976) (in Russian).
198
Kolesov G. M., Hernandez A., Investigation of the chemical composition of meteorites by an activation method using a microtron. Meteoritika 43, 106 (1984) (in Russian).
199
König H., Wänke H., Uranbestimmungen un steinmeteoriten mittels Neutronenaktivierung uber die xenon isotope 133 und 135. Zeitschrift fuer Naturforschung Teil A: Physik Physikalische Chemie Kosmophysik 14, 866 (1959).
200
Kunz G. F., On some American meteorites. Am. J. Sci. 34, 467 (1887).
201
Kvasha L. G., Dyakonova M. I., Eucrite Pomozdino. Meteoritika 31, 109 (1972).
202
Lang B., Synowiec J., Pietruszewski A., Suplinska M., Krol E., Some features of the Yamato-74013 diogenite: The opaque minerals and the abundances of some trace elements. Mem. Nat. Inst. Polar Res. Special Issue 17, 145 (1980).
203
Laul J. C., Keays R. R., Ganapathy R., Anders E., Morgan J. W., Chemical fractionations in meteorites—V. Volatile and siderophile elements in achondrites and ocean ridge basalts. Geochim. Cosmochim. Acta 36, 329 (1972).
204
Levsky L. K., New data on the isotopic composition of noble gases in stony meteorites. Meteoritika 31, 149 (1972).
205
Levsky L. K., Rare gases in carbonaceous chondrites. Meteoritika 38, 27 (1979).
206
Levsky L. K., Fedorova I. V., Yakovleva S. Z., Distribution of inert gases in chondrites. Geochimiya 5, 515 (1971).
207
Loveland W., Schmitt R. A., Fisher D. E., Aluminum abundances in stony meteorites. Geochim. Cosmochim. Acta 33, 375 (1969).
208
Lovering J. F., The Moama eucrite - A pyroxene-plagioclase adcumulate. Meteoritics 10, 101 (1975).
209
Lugmair G. W., Shukolyukov A., Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863 (1998).
210
Ma M. S., Schmitt R. A., Genesis of the cumulate eucrites Serra de Mage and Moore County; a geochemical study. Meteoritics 14, 81 (1979).
211
J. D. Macdougall, D. Phinney, Olivine separates from Murchison and Cold Bokkeveld: Particle tracks and noble gases. Proc. Lunar Sci. Conf. 8, 293 (1977).
212
Manhes G., Allègre C. J., Provost A., U—Th—Pb systematics of the eucrite “Juvinas”: Precise age determination and evidence for exotic lead. Geochim. Cosmochim. Acta 48, 2247 (1984).
213
Marvin U. B., Mason B., Catalog of antarctic meteorites, 1977-1978. Smithsonian Contrib. Earth Sciences 23, 48 (1980).
214
Mason B., The Bununu meteorite, and a discussion of the pyroxene-plagioclase achondrites. Geochim. Cosmochim. Acta 31, 107 (1967).
215
Mason B., Notes on Australian meteorites. Rec. Aust. Mus. 29, 169 (1974).
216
Mason B., Jarosewich E., The composition of the Johnstown meteorite. Meteoritics 6, 241 (1971).
217
Mason B., Jarosewich E., The Barea, Dyarrl Island, and Emery meteorites, and a review of the mesosiderites. Mineral. Mag. 39, 204 (1973).
218
Mason B., Jarosewich E., Nelen J. A., The pyroxene-plagioclase achondrites. Smithsonian Contrib. Earth Sciences 22, 27 (1979).
219
Mason B., Wiik H. B., The composition of the Barratta, Carraweena, Kapoeta, Mooresfort, and Ngawi meteorites. Am. Mus. Novit. 2273, 1 (1966).
220
Mason B., Wiik H. B., The composition of the Bath, Frankfort, Kakangari, Rose City, and Tadjera meteorites. Am. Mus. Novit. 2272, 1 (1966).
221
Masuda A., Tanaka T., REE, Ba, Sr and Rb in the Yamato meteorites, with special reference to Yamato-691(a), -692(b) and -693(c). Mem. Nat. Inst. Polar Res. Special Issue 8, 229 (1978).
222
Masuda A., Tanaka T., Rare earth element distribution in the Melrose-b howardite; pre-terrestrial negative Ce anomaly. Earth Planet. Sci. Lett. 49, 109 (1980).
223
Masuda A., Tanaka T., Shimizu H., Wakisaka T., Nakumura N., Rare-earth geochemistry of Antarctic diogenites. Mem. Nat. Inst. Polar Res. Special Issue 15, 177 (1979).
224
Mazor E., Heymann D., Anders E., Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781 (1970).
225
McCarthy T. S., Ahrens L. H., Erlank A. J., Further evidence in support of the mixing model for howardite origin. Earth Planet. Sci. Lett. 15, 86 (1972).
226
McCarthy T. S., Erlank A. J., Willis J. P., On the origin of eucrites and diogenites. Earth Planet. Sci. Lett. 18, 433 (1973).
227
McCarthy T. S., Erlank A. J., Willis J. P., Ahrens L. H., New chemical analyses of six achondrites and one chondrite. Meteoritics 9, 215 (1974).
228
Megrue G. H., Rare-gas chronology of calcium-rich achondrites. J. Geophys. Res. 71, 4021 (1966).
229
Megrue G. H., Isotopic analysis of rare gases with a laser microprobe. Science 157, 1555 (1967).
230
Megrue G. H., Rare gas chronology of hypersthene achondrites and pallasites. J. Geophys. Res. 73, 2027 (1968).
231
G. H. Megrue, in Meteorite Research, P. M. Millman, Ed. (Reidel, Dordrecht, 1969), pp. 922-933.
232
Merrill G. P., On the composition and structure of the Hamblen County, Tennessee, meteorite. Am. J. Sci. s4-2, 149 (1896).
233
Metzler K., Bobe K. D., Palme H., Spettel B., Stöffler D., Thermal and impact metamorphism on the HED parent asteroid. Planet. Space Sci. 43, 499 (1995).
234
Ming T., et al., Isotopic anomalies of Ne, Xe, and C in meteorites. I. Separation of carriers by density and chemical resistance. Geochim. Cosmochim. Acta 52, 1221 (1988).
235
Mittlefehldt D. W., Beck A. W., Lee C.-T. A., McSween H. Y., Buchanan P. C., Compositional constraints on the genesis of diogenites. Meteorit. Planet. Sci. 47, 72 (2012).
236
Mittlefehldt D. W., Petrographic and chemical characterization of igneous lithic clasts from mesosiderites and howardites and comparison with eucrites and diogenites. Geochim. Cosmochim. Acta 43, 1917 (1979).
237
Mittlefehldt D. W., Petrology and geochemistry of the Elephant Moraine A79002 diogenite: A genomict breccia containing a magnesian harzburgite component. Meteorit. Planet. Sci. 35, 901 (2000).
238
Mittlefehldt D. W., Chou C.-L., Wasson J. T., Mesosiderites and howardites: Igneous formation and possible genetic relationships. Geochim. Cosmochim. Acta 43, 673 (1979).
239
Mittlefehldt D. W., Lindstrom M. M., Magnesian basalt clasts from the EET 92014 and Kapoeta howardites and a discussion of alleged primary magnesian HED basalts. Geochim. Cosmochim. Acta 61, 453 (1997).
240
Mittlefehldt D. W., Lindstrom M. M., Geochemistry of eucrites: Genesis of basaltic eucrites, and Hf and Ta as petrogenetic indicators for altered antarctic eucrites. Geochim. Cosmochim. Acta 67, 1911 (2003).
241
Miura Y., Nagao K., Fujitani T., 81Kr terrestrial ages and grouping of Yamato eucrites based on noble gas and chemical compositions. Geochim. Cosmochim. Acta 57, 1857 (1993).
242
Miyamoto M., Takeda H., Yanai K., Haramura H., Mineralogical examination of the Allan Hills No. 5 meteorite. Mem. Nat. Inst. Polar Res. Special Issue 12, 59 (1979).
243
Moore C. B., Brown H., The distribution of manganese and titanium in stony meteorites. Geochim. Cosmochim. Acta 26, 495 (1962).
244
Morgan J. W., Ganapathy R., Higuchi H., Krähenbühl U., Volatile and siderophile trace elements in anorthositic rocks from Fiskenaesset. West Greenland: Comparison with lunar and meteoritic analogues. Geochim. Cosmochim. Acta 40, 861 (1976).
245
Morgan J. W., Higuchi H., Takahashi H., Hertogen J., A “chondritic” eucrite parent body; inference from trace elements. Geochim. Cosmochim. Acta 42, 27 (1978).
246
Morgan J. W., Lovering J. F., Uranium and thorium abundances in stony meteorites II. The achondrite meteorites. J. Geophys. Res. 69, 1989 (1964).
247
Morgan J. W., Lovering J. F., Uranium and thorium in the Nuevo Laredo achondrite. J. Geophys. Res. 70, 2002 (1965).
248
Morgan J. W., Lovering J. F., Uranium and thorium in achondrites. Geochim. Cosmochim. Acta 37, 1697 (1973).
249
G. H. Morrison, in Activation Analysis in Geochemistry and Cosmochemistry, A. O. Brunfelt, E. Steinnes, Eds. (Universitetsforlaget, Oslo, 1971), pp. 51-54.
250
Müller H. W., Zähringer J., Chemische Unterschiede bei Uredelgashaltigen Steinmeteoriten. Earth Planet. Sci. Lett. 1, 25 (1966).
251
Murthy V. R., Schmitt R. A., Rey P., Rubidium-strontium age and elemental and isotopic abundances of some trace elements in lunar samples. Science 167, 476 (1970).
252
Nakamura N., A preliminary isotopic study on four Yamato diogenites-Sm-Nd and Rb-Sr systematics. Mem. Nat. Inst. Polar Res. Special Issue 15, 219 (1979).
253
Nakamura N., Masuda A., REE abundances in the whole rock and mineral separates of the Allan Hills-765 meteorite. Mem. Nat. Inst. Polar Res. Special Issue 17, 159 (1980).
254
Nakamura N., Tatsumoto M., Coffrant D., Sm-Nd isotopic systematics and REE abundance studies of the ALH-765 eucrite. Mem. Nat. Inst. Polar Res. Special Issue 30, 323 (1983).
255
Nakamura T., Nagao K., Metzler K., Takaoka N., Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies. Geochim. Cosmochim. Acta 63, 257 (1999).
256
Nakamura T., Nagao K., Takaoka N., Microdistribution of primordial noble gases in CM chondrites determined by in situ laser microprobe analysis: decipherment of nebular processes. Geochim. Cosmochim. Acta 63, 241 (1999).
257
Nelen J., Mason B., The Estherville meteorite. Smithsonian Contrib. Earth Sciences 9, 55 (1972).
258
Nichiporuk W., Chodos A., Helin E., Brown H., Determination of iron, nickel, cobalt, calcium, chromium and manganese in stony meteorites by x-ray fluorescence. Geochim. Cosmochim. Acta 31, 1911 (1967).
259
Nyquist L. E., et al., Age of a eucrite clast from the Bholghati howardite. Geochim. Cosmochim. Acta 54, 2195 (1990).
260
Nyquist L. E., et al., Rb-Sr and Sm-Nd internal isochron ages of a subophitic basalt clast and a matrix sample from the Y75011 eucrite. J. Geophys. Res. 91, (B8), 8137 (1986).
261
Okada A., Petrological studies of the Yamato meteorites Part 1. Mineralogy of the Yamato meteorites. Mem. Nat. Inst. Polar Res. Special Issue 5, 14 (1975).
262
Okamoto C., Ebihara M., Yamaguchi A., Geochemical study of metal-rich eucrites from Antarctica. Antarct. Meteorites XXVIII, 68 (2004).
263
Olsen E., Noonan A., Fredriksson K., Jarosewich E., Moreland G., Eleven new meteorites from Antarctica, 1976-1977. Meteoritics 13, 209 (1978).
264
N. Onuma, M. Hirano, Sr/Ca-Ba/Ca systematics in Antarctic Ca-rich achondrites and their origins. Mem. Nat. Inst. Polar Res. Special Issue 20, 202 (1981).
265
Padia J. T., Rao M. N., Neon isotope studies of Fayetteville and Kapoeta meteorites and clues to ancient solar activity. Geochim. Cosmochim. Acta 53, 1461 (1989).
266
H. Palme et al., New data on lunar samples and achondrites and a comparison of the least fractionated samples from the Earth, the Moon and the eucrite parent body. Proc. Lunar Planet. Sci. Conf. 6, 25 (1978).
267
H. Palme, W. Rammensee, The significance of W in planetary differentiation processes: Evidence from new data on eucrites. Proc. Lunar Planet. Sci. Conf. 12B, 949 (1981).
268
H. Palme, B. Spettel, A. Burghele, G. Weckwerth, H. Wänke, Elephant Moraine polymict eucrites: A eucrite-howardite compositional link. Proc. Lunar Planet. Sci. Conf. 14, 590 (1983).
269
Palme H., Wlotzka F., Spettel B., Dreibus G., Weber H., Camel Donga: A eucrite with high metal content. Meteoritics 23, 49 (1988).
270
Patterson C. C., The Pb207/Pb206 ages of some stone meteorites. Geochim. Cosmochim. Acta 7, 151 (1955).
271
Patzer A., Schultz L., Noble gases in enstatite chondrites I: Exposure ages, pairing, and weathering effects. Meteorit. Planet. Sci. 36, 947 (2001).
272
Patzer A., Schultz L., Franke L., New noble gas data of primitive and differentiated achondrites including Northwest Africa 011 and Tafassasset. Meteorit. Planet. Sci. 38, 1485 (2003).
273
Paul R. L., Lipschutz M. E., Chemical studies of differentiated meteorites: I. Labile trace elements in Antarctic and non-Antarctic eucrites. Geochim. Cosmochim. Acta 54, 3185 (1990).
274
A. Pedroni, thesis, Eidgenössische Technische Hochschule (1989).
275
Petaev M. I., et al., The Chaunskij anomalous mesosiderite: Petrology, chemistry, oxygen isotopes, classification and origin. Geochem. Int. 38, S322 (2000).
276
J. A. Philpotts, C. C. Schnetzler, Apollo 11 lunar samples: K, Rb, Sr, Ba and rare-earth concentrations in some rocks and separated phases. Proceedings of the Apollo 11 Lunar Science Conference, 1471 (1970).
277
Podosek F. A., Huneke J. C., Argon 40-argon 39 chronology of four calcium-rich achondrites. Geochim. Cosmochim. Acta 37, 667 (1973).
278
Powell B. N., Petrology and chemistry of mesosiderites–II. Silicate textures and compositions and metal-silicate relationships. Geochim. Cosmochim. Acta 35, 5 (1971).
279
Prior G. T., On the mesosiderite-grahamite group of meteorites: With analyses of Vaca Muerta, Hainholz, Simondium, Powder Mill Creek. Mineral. Mag. 18, 151 (1918).
280
B. V. S. Project, Basaltic Volcanism on the Terrestrial Planets (Pergamon Press, New York, 1981), pp. 1286.
281
Rajan R. S., Huneke J. C., Smith S. P., Wasserburg G. J., Argon 40-argon 39 chronology of lithic clasts from the Kapoeta howardite. Geochim. Cosmochim. Acta 43, 957 (1979).
282
M. N. Rao, D. H. Garrison, D. D. Bogard, Activity of the ancient Sun based on noble gas studies of etched Kapoeta mineral separates. Proc. Lunar Planet. Sci. Conf. 21, 993 (1990).
283
Rao M. N., Garrison D. H., Palma R. L., Bogard D. D., Energetic proton irradiation history of the howardite parent body regolith and implications for ancient solar activity. Meteorit. Planet. Sci. 32, 531 (1997).
284
Reed G. W., Jovanovic S., Some halogen measurements on achondrites. Earth Planet. Sci. Lett. 6, 316 (1969).
285
Reed G. W., Kigoshi K., Turkevich A., Determination of concentrations of heavy elements in meteorites by neutron activation analysis. Geochim. Cosmochim. Acta 20, 122 (1960).
286
Reynolds J. H., Isotopic composition of primordial xenon. Phys. Rev. Lett. 4, 351 (1960).
287
Reynolds J. H., Frick U., Neil J. M., Phinney D. L., Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmochim. Acta 42, 1775 (1978).
288
R. Rieder, H. Wänke, in Meteorite Research, P. M. Millman, Ed. (Reidel Publishing Co., Dordrecht, Holland, 1969), pp. 75–86.
289
Rowe M. W., van Dilla M. A., Anderson E. C., On the radioactivity of stone meteorites. Geochim. Cosmochim. Acta 27, 983 (1963).
290
Schaudy R., Kiesl W., Hecht F., Activation analytical determination of elements in meteorites: Determination of manganese, sodium, gallium, copper, gold, and chromium in seven stony and three iron meteorites from the collection of the viennese museum of natural history. Chem. Geol. 2, 279 (1967).
291
Scherer P., Schultz L., Noble gas record, collisional history, and pairing of CV, CO, CK, and other carbonaceous chondrites. Meteorit. Planet. Sci. 35, 145 (2000).
292
Schmitt R. A., Goles G. G., Smith R. H., Osborn T. W., Elemental abundances in stone meteorites. Meteoritics 7, 131 (1972).
293
Schmitt R. A., et al., Abundances of the fourteen rare-earth elements, scandium, and yttrium in meteoritic and terrestrial matter. Geochim. Cosmochim. Acta 27, 577 (1963).
294
Schmitt R. A., Smith R. H., Olehy D. A., Rare-earth, yttrium and scandium abundances in meteoritic and terrestrial matter-II. Geochim. Cosmochim. Acta 28, 67 (1964).
295
C. C. Schnetzler, J. A. Philpotts, in Meteorite Research, P. M. Millman, Ed. (Reidel Publishing, Dordrecht, Holland, 1969), pp. 206–216.
296
Shima M., The abundances of titanium, zirconium and hafnium in stony meteorites. Geochim. Cosmochim. Acta 43, 353 (1979).
297
Shimizu H., Masuda A., REE, Ba, Sr and Rb abundances in some unique Antarctic achondrites. Mem. Nat. Inst. Polar Res. Special Issue 20, 211 (1981).
298
Shimizu H., Masuda A., REE characteristics of Antarctic eucrites. Mem. Nat. Inst. Polar Res. Special Issue 25, 145 (1982).
299
Shimizu H., Masuda A., REE patterns of eucrites and their genetic implications. Geochim. Cosmochim. Acta 50, 2453 (1986).
300
Shimizu H., Masuda A., Tanaka T., Cerium anomaly in REE pattern of Antarctic eucrite. Mem. Nat. Inst. Polar Res. Special Issue 30, 341 (1983).
301
Shukla A. D., et al., Piplia Kalan eucrite: Fall, petrography and chemical characteristics. Meteorit. Planet. Sci. 32, 611 (1997).
302
P. Signer, H. E. Suess, in Earth Science and Meteoritics, J. Geiss, E. D. Goldberg, Eds. (North-Holland Press, Amsterdam, 1963), pp. 241–272.
303
A. B. Simpson, thesis, University of Cape Town (1982).
304
A. B. Simpson, L. H. Ahrens, in Comets, Asteroids, Meteorites-Interpretations, Evolution and Origins, A. H. Delsemme, Ed. (Univ. Toledo Press, 1977), pp. 445–450.
305
Sisodia M. S., et al., The Lohawat howardite: Mineralogy, chemistry and cosmogenic effects. Meteorit. Planet. Sci. 36, 1457 (2001).
306
M. R. Smith, thesis, Oregon State University (1982).
307
Smith M. R., Schmitt R. A., Preliminary chemical data for some Allan Hills polymict eucrites. Lunar Sci. XII, 1014 (1981).
308
Smith M. R., Schmitt R. A., Chemical composition of the howardite parent body deduced from Kapoeta primary 'mafic' magmas. J. Geophys. Res. 87, A331 (1982).
309
Smith S. P., Huneke J. C., Wasserburg G. J., Neon in gas-rich samples of the carbonaceous chondrites Mokoia, Murchison, and Cold Bokkeveld. Earth Planet. Sci. Lett. 39, 1 (1978).
310
B. Srinivasan, E. Anders, Noble gases in the Murchison meteorite: Possible relics of s-process nucleosynthesis. Science 201, 51 (July 7, 1978, 1978).
311
Srinivasan B., Gros J., Anders E., Noble gases in separated meteoritic minerals: Murchison (C2), Ornans (C3), Karoonda (C5) and Abee (E4). J. Geophys. Res. 82, 762 (1977).
312
Stauffer H., Primordial argon and neon in carbonaceous chondrites and ureilites. Geochim. Cosmochim. Acta 24, 70 (1961).
313
Stolper E., Experimental petrology of eucritic meteorites. Geochim. Cosmochim. Acta 41, 587 (1977).
314
Symes R. F., Hutchison R., Medanitos and Putinga, two South American meteorites. Mineral. Mag. 37, 721 (1970).
315
Takeda H., A layered-crust model of a howardite parent body. Icarus 40, 455 (1979).
316
Takeda H., Duke M. B., Ishii T., Haramura H., Yanai K., Some unique meteorites found in Antarctica and their relation to asteroids. Mem. Nat. Inst. Polar Res. Special Issue 15, 54 (1979).
317
Takeda H., Miyamoto M., Yanai K., Haramura H., A preliminary mineralogical examination of the Yamato-74 achondrites. Mem. Nat. Inst. Polar Res. Special Issue 8, 170 (1978).
318
Takeda H., Mori H., Ikeda Y., Ishii T., Yanai K., Antarctic howardites and their primitive crust. Mem. Nat. Inst. Polar Res. Special Issue 35, 81 (1984).
319
Takeda H., Mori H., Yanai K., Shiraishi K., Mineralogical examination of the Allan Hills achondrites and their bearing on the parent bodies. Mem. Nat. Inst. Polar Res. Special Issue 17, 119 (1980).
320
Takeda H., Yanai K., Mineralogical examination of the Yamato-79 achondrites: Polymict eucrites and ureilites. Mem. Nat. Inst. Polar Res. Special Issue 25, 97 (1982).
321
Tatsumoto M., Knight R. J., Allègre C. J., Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science 180, 1279 (1973).
322
F. Tera, O. Eugster, D. S. Burnett, G. J. Wasserburg, Comparative study of Li, Na, K, Rb, Cs, Ca, Sr and Ba abundances in achondrites and in Apollo 11 lunar samples. Proceedings of the Apollo 11 Lunar Science Conference, 1637 (1970).
323
Treiman A. H., Drake M. J., Basaltic volcanism on the eucrite parent body: Petrology and chemistry of the polymict eucrite ALHA80102. Proc. Lunar Planet. Sci. Conf. Part 2. J. Geophys. Res. 90, C619 (1985).
324
Unruh D. M., Nakamura N., Tatsumoto M., History of the Pasamonte achondrite: Relative susceptibility of the Sm-Nd, Rb-Sr, and U-Pb systems to metamorphic events. Earth Planet. Sci. Lett. 37, 1 (1977).
325
Urey H. C., Craig H., The composition of the stone meteorites and the origin of the meteorites. Geochim. Cosmochim. Acta 4, 36 (1953).
326
L. van Zelst, in Activation Analysis in Geochemistry and Cosmochemistry, A. O. Brunfelt, E. Steinnes, Eds. (Universitetsforlaget, Oslo, 1971), pp. 99–104.
327
Meteoritical Bulletin Database; available at www.lpi.usra.edu/meteor/metbull.php (2012).
328
Vinogradov A. P., et al., Meteoritika 18, 92 (1960).
329
Vinogradov A. P., Zadorozhnyi I. K., Inert gases in stony meteorites. Geochem. Int. 1, 613 (1964).
330
Vogel N., Leya I., Bischoff A., Baur H., Wieler R., Noble gases in chondrules and associated metal-sulfide-rich samples: Clues on chondrule formation and the behavior of noble gas carrier phases. Meteorit. Planet. Sci. 39, 117 (2004).
331
Vogel N., Wieler R., Bischoff A., Baur H., Microdistribution of primordial Ne and Ar in fine-grained rims, matrices, and dark inclusions of unequilibrated chondrites—Clues on nebular processes. Meteorit. Planet. Sci. 38, 1399 (2003).
332
Vogt J. R., Ehmann W. D., Silicon abundances in stony meteorites by fast neutron activation analysis. Geochim. Cosmochim. Acta 29, 373 (1965).
333
von Michaelis H., Ahrens L. H., Willis J. P., The composition of stony meteorites II. The analytical data and an assessment of their quality. Earth Planet. Sci. Lett. 5, 387 (1969).
334
Wadhwa M., Lugmair G. W., Age of the eucrite “Caldera” from convergence of long-lived and short-lived chronometers. Geochim. Cosmochim. Acta 60, 4889 (1996).
335
Wang M. S., Paul R. L., Lipschutz M. E., Volatile/mobile trace elements in Bholghati howardite. Geochim. Cosmochim. Acta 54, 2177 (1990).
336
Wänke H., Über den Kaliumgehalt der Chondrite, Achondrite und Siderite. Zeitschrift fuer Naturforschung. Teil A: Physik, Physikalische Chemie. Kosmophysik 16, 127 (1961).
337
H. Wänke et al., Multielement analyses of lunar samples and some implications of the results. Proceedings of the 3rd Lunar Science Conference, 1251 (1972).
338
H. Wänke et al., On the chemistry of lunar samples and achondrites. Primary matter in the lunar highlands: A re-evaluation. Proceedings of the Lunar Science Conference, 8th, 2191 (1977).
339
Wänke H., König H., Eine neue Methode zur Kalium-Argon-Altersbestimmung und ihre Anwedung auf Steinmeteorite. Zeitschrift fuer Naturforschung. Teil A: Physik, Physikalische Chemie. Kosmophysik 14, 860 (1959).
340
Warren P. H., Differentiation of siderophile elements in the Moon and the HED parent asteroid. Antarct. Meteorites XXIV, 185 (1999).
341
Warren P. H., Jerde E. A., Composition and origin of Nuevo Laredo Trend eucrites. Geochim. Cosmochim. Acta 51, 713 (1987).
342
P. H. Warren, E. A. Jerde, L. F. Migdisova, A. A. Yaroshevsky, Pomozdino: An anomalous, high-MgO/FeO, yet REE-rich eucrite. Proc. Lunar Planet. Sci. Conf. 14, 281 (1990).
343
Warren P. H., Kallemeyn G. W., Arai T., Kaneda K., Compositional-petrologic investigation of eucrites and the QUE94201 shergottite. Antarct. Meteorites XXI, 195 (1996).
344
Weber H. W., Schultz L., Noble gases in eight unusual carbonaceous chondrites. Meteoritics 26, 406 (1991).
345
Wetherill G. W., Mark R., Lee-Hu C., Chondrites: Initial strontium-87/strontium-86 ratios and the early history of the solar system. Science 182, 281 (1973).
346
Wieler R., Anders E., Baur H., Lewis R. S., Signer P., Characterisation of Q-gases and other noble gas components in the Murchison meteorite. Geochim. Cosmochim. Acta 56, 2907 (1992).
347
Wiik H. B., On regular discontinuities in the composition of meteorites. Societas Scientarium Fennica Commentationes Physico-Mathematicae 34, 135 (1969).
348
L. L. Wilkening, Particle track studies and the origin of gas-rich meteorites. Center for Meteorite Studies, Publication No. 11 (Arizona State University, Tempe, 1971), pp. 36.
349
Wolf R., Ebihara M., Richter G. R., Anders E., Aubrites and diogenites: Trace element clues to their origin. Geochim. Cosmochim. Acta 47, 2257 (1983).
350
Wooden J., et al., Chemical and isotopic studies of the Allan Hills polymict eucrites. Lunar Sci. XII, 1203 (1981).
351
Wooden J. L., Takeda H., Nyquist L. E., Wiesmann H., Bansal B., A Sr and Nd isotopic study of five Yamato polymict eucrites and a comparison to other Antarctic and ordinary eucrites. Mem. Nat. Inst. Polar Res. Special Issue 30, 315 (1983).
352
Yagi K., Lovering J. F., Shima M., Okada A., Mineralogical and petrographical studies of the Yamato meteorites, Yamato-7301(j), -7305(k), -7308(l) and -7303(m) from Antarctica. Mem. Nat. Inst. Polar Res. Special Issue 8, 121 (1978).
353
Yamaguchi A., et al., A new source of basaltic meteorites inferred from Northwest Africa 011. Science 296, 334 (2002).
354
K. Yanai, H. Kojima, H. Haramura, Catalog of the Antarctic Meteorites. (National Institute of Polar Research, Tokyo, Japan, 1995).
355
Zadnik M. G., Noble gases in the Bells (C2) and Sharps (H3) chondrites. Meteoritics 20, 245 (1985).
356
Zähringer J., Ueber die Uredelgase in den Achondriten Kapoeta und Staroe Pesjanoe. Geochim. Cosmochim. Acta 26, 665 (1962).
357
Zähringer J., Rare gases in stony meteorites. Geochim. Cosmochim. Acta 32, 209 (1968).
358
Ahrens L. H., Danchin R. V., The chemical composition of the basaltic achondrites. Phys. Chem. Earth 8, 265 (1971).
359
Binz C. M., Ikramuddin M., Lipschutz M. E., Contents of eleven trace elements in ureilite achondrites. Geochim. Cosmochim. Acta 39, 1576 (1975).
360
Biswas S., Ngo H. T., Lipschutz M. E., Trace element contents of selected Antarctic meteorites. I - Weathering effects and ALH A77005, A77257, A77278 and A 77299. Zeitschrift fuer Naturforschung. Teil A: Physik, Physikalische Chemie. Kosmophysik 35, 191 (1980).
361
Bogard D. D., Garrison D. H., 39Ar-40Ar age of the Ibitira eucrite and constraints on the time of pyroxene equilibration. Geochim. Cosmochim. Acta 59, 4317 (1995).
362
Bogard D. D., Gibson E. K., Moore D. R., Turner N. L., Wilkin R. B., Noble gas and carbon abundances of the Haverö, Dingo Pup Donga, and North Haig ureilites. Geochim. Cosmochim. Acta 37, 547 (1973).
363
Boynton W. V., Starzyk P. M., Schmitt R. A., Chemical evidence for the genesis of the ureilites, the achondrite Chassigny and the nakhlites. Geochim. Cosmochim. Acta 40, 1439 (1976).
364
J. H. Chen, G. J. Wasserburg, paper presented at the Sixteenth Lunar and Planetary Science Conference, Houston, 1985.
365
Curtis D., Gladney E., Jurney E., A revision of the meteorite based cosmic abundance of boron. Geochim. Cosmochim. Acta 44, 1945 (1980).
366
G. Dreibus, B. Spettel, H. Wänke, in Origin and Distribution of the Elements, L. H. Ahrens, Ed. (Pergamon Press, New York, 1979), pp. 33–38.
367
Dyakonova M. I., The chemical composition of some stony meteorites in the collection of the Committee on Meteorites of the Academy of Sciences U.S.S.R. Meteoritika 25, 129 (1964).
368
Easton A. J., Seven new bulk chemical analyses of aubrites. Meteoritics 20, 571 (1985).
369
Fireman E. L., Schwarzer D., Measurement of Li6, He3, and H3 in meteorites and its relation to cosmic radiation. Geochim. Cosmochim. Acta 11, 252 (1957).
370
Gibson E. K., Nature of the carbon and sulfur phases and inorganic gases in the Kenna ureilite. Geochim. Cosmochim. Acta 40, 1459 (1976).
371
E. K. Gibson, Jr., K. Yanai, Total carbon and sulfur abundances in antarctic meteorites. Procedings of the Fourth Symposium on Antarctic Meteorites, 189 (1979).
372
Gillum D. E., Janghorbani M., Miller M. D., Chyi L. L., Ehmann W. D., Elemental abundances in the Haverö meteorite. Meteoritics 7, 573 (1972).
373
C. A. Goodrich, G. W. Lugmair, PCA 82506: A Ureilite with LREE-enriched Component and a Whole Rock Sm-Nd Model Age of 4.55 GA. in Proc. 22nd Lunar Planet. Sci. Conf., #1232 (1991).
374
Goodrich C. A., Patchett P. J., Lugmair G. W., Drake M. J., Sm-Nd and Rb-Sr isotopic systematics of ureilites. Geochim. Cosmochim. Acta 55, 829 (1991).
375
M. M. Grady, P. K. Swart, I. P. Wright, C. T. Pillinger, paper presented at the Thirteenth Lunar and Planetary Science Conference, Houston, 1982.
376
Grady M. M., Wright I. P., Swart P. K., Pillinger C. T., The carbon and nitrogen isotopic composition of ureilites: Implications for their genesis. Geochim. Cosmochim. Acta 49, 903 (1985).
377
H. Higuchi, J. W. Morgak, Ancient meteoritic component in Apollo 17 boulders. Proc. Lunar Sci. Conf. 6, 1625 (1975).
378
Higuchi H., Morgan J. W., Ganapathy R., Anders E., Chemical fractionations in meteorites—X. Ureilites. Geochim. Cosmochim. Acta 40, 1563 (1976).
379
Hintenberger H., Jochum K. P., Braun O., Christ P., Martin W., The Antarctic meteorite Yamato 74123—A new ureilite. Earth Planet. Sci. Lett. 40, 187 (1978).
380
A. J. Irving et al., paper presented at the 42nd Lunar and Planetary Science Conference, Houston, 2011.
381
Jaques A. L., Fitzgerald M. J., The Nilpena ureilite, an unusual polymict breccia: Implications for origin. Geochim. Cosmochim. Acta 46, 893 (1982).
382
Johnson J. E., Scrymgour J. M., Jarosewich E., Mason B., Brachina meteorite—A chassignite from South Australia. Rec. South Australian Museum 17, 309 (1977).
383
E. V. Korotchantseva et al., paper presented at the 34th Lunar and Planetary Science Conference, Houston, 2003.
384
Kothari B. K., Goel P. S., Total nitrogen in meteorites. Geochim. Cosmochim. Acta 38, 1493 (1974).
385
Krankowsky D., Müller O., Isotopenhäufigkeit und Konzentration des Lithiums in Steinmeteoriten. Geochim. Cosmochim. Acta 28, 1625 (1964).
386
Kurat G., et al., D'Orbigny: A non-igneous angritic achondrite? Geochim. Cosmochim. Acta 68, 1901 (2004).
387
Lugmair G. W., Galer S. J. G., Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta 56, 1673 (1992).
388
Ma M. S., Murali A. V., Schmitt R. A., Genesis of the Angra dos Reis and other achondritic meteorites. Earth Planet. Sci. Lett. 35, 331 (1977).
389
B. Mason, Ed., Handbook of Elemental Abundances in Meteorites (Gordon and Breach, New York, 1971), pp. 568.
390
B. Mason, Ed., Cosmochemistry; Part 1, Meteorites, vol. 440-B-1 (United States Geological Survey Professional Paper 440-B-1, Washington, DC, 1979), vol. 440-B-1, pp. 132.
391
McCall G. J. H., Cleverly W. H., New stony meteorite finds including two ureilites from the Nullarbor Plain, Western Australia. Mineral. Mag. 36, 691 (1968).
392
G. McKay, D. Lindstrom, S.-R. Yang, J. Wagstaff, Petrology of Unique Achondrite Lewis Cliff 86010. in Proc. 19th Lunar Planet. Sci. Conf., #1385 (1988).
393
Mittlefehldt D. W., Killgore M., Lee M. T., Petrology and geochemistry of D’Orbigny, geochemistry of Sahara 99555, and the origin of angrites. Meteorit. Planet. Sci. 37, 345 (2002).
394
Mittlefehldt D. W., Lindstrom M. M., Geochemistry and genesis of the angrites. Geochim. Cosmochim. Acta 54, 3209 (1990).
395
C. B. Moore, E. K. Gibson, J. W. Larimer, C. F. Lewis, W. Nichiporuk, Total carbon and nitrogen abundances in Apollo 11 lunar samples and selected achondrites and basalts. Procedings of the Apollo 11 Lunar Science Conference, 1375 (1970).
396
G. Mueller, in Meteorite Research, P. M. Millman, Ed. (Reidel Publishing, Dordrecht, Holland, 1969), pp. 505–517.
397
Murty S. V. S., Shukla P. N., Goel P. S., Lithium in stone meteorites and stony irons. Meteoritics 18, 123 (1983).
398
Nyquist L. E., Bansal B., Wiesmann H., Shih C.-Y., Neodymium, strontium and chromium isotopic studies of the LEW 86010 and Angra dos Reis meteorites and the chronology of the angrite parent body. Meteoritics 29, 872 (1994).
399
M. Prinz, M. K. Weisberg, C. E. Nehru, LEW 87051, a New Angrite: Origin in a Ca-Al-enriched Eucritic Planetesimal? Proc. Lunar Planet. Sci. Conf. 21, 1498 (1990).
400
Prinzhofer A., Papanastassiou D. A., Wasserburg G. J., Samarium-neodymium evolution of meteorites. Geochim. Cosmochim. Acta 56, 797 (1992).
401
M. Quijano-Rico, H. Wänke, in Meteorite Research, P. M. Millman, Ed. (Reidel Publishing, Dordrecht, Holland, 1969), pp. 132-145.
402
Rai V. K., Murty S. V. S., Ott U., Nitrogen components in ureilites. Geochim. Cosmochim. Acta 67, 2213 (2003).
403
Shima M., Geochemical study of boron isotopes. Geochim. Cosmochim. Acta 27, 911 (1963).
404
A. A. Smales, D. Mapper, M. S. W. Webb, R. K. Webster, J. D. Wilson, Elemental composition of lunar surface material. Procedings of the Apollo 11 Lunar Science Conference, 1575 (1970).
405
C. L. Smith, thesis, Open University (2002).
406
Spitz A. H., Boynton W. V., Trace element analysis of ureilites: New constraints on their petrogenesis. Geochim. Cosmochim. Acta 55, 3417 (1991).
407
Takeda H., Mineralogy of Antarctic ureilites and a working hypothesis for their origin and evolution. Earth Planet. Sci. Lett. 81, 358 (1987).
408
Wacker J. F., Noble gases in the diamond-free ureilite, ALHA 78019: The roles of shock and nebular processes. Geochim. Cosmochim. Acta 50, 633 (1986).
409
Wang M. S., Lipschutz M. E., Volatile trace elements in Antarctic ureilites. Meteoritics 30, 319 (1995).
410
Wänke H., et al., The chemistry of the Haverö ureilite. Meteoritics 7, 579 (1972).
411
H. Wänke et al., Chemistry of Apollo 16 and 17 samples: Bulk composition, late stage accumulation and early differentiation of the moon. Proc. Lunar Sci. Conf. 5, 1307 (1974).
412
Warren P. H., Kallemeyn G. W., Explosive volcanism and the graphite-oxygen fugacity buffer on the parent asteroid(s) of the ureilite meteorites. Icarus 100, 110 (1992).
413
Warren P. H., Kallemeyn G. W., Mayeda T., Consortium investigation of the Asuka-881371 angrite: Bulk-rock geochemistry and oxygen isotopes. Antarct. Meteorites XX, 261 (1995).
414
Warren P. H., Ulff-Møller F., Huber H., Kallemeyn G. W., Siderophile geochemistry of ureilites: A record of early stages of planetesimal core formation. Geochim. Cosmochim. Acta 70, 2104 (2006).
415
Wasserburg G. J., Tera F., Papanastassiou D. A., Huneke J. C., Isotopic and chemical investigations on Angra dos Reis. Earth Planet. Sci. Lett. 35, 294 (1977).
416
Wasson J. T., Chou C.-L., Bild R. W., Baedecker P. A., Classification of and elemental fractionation among ureilites. Geochim. Cosmochim. Acta 40, 1449 (1976).
417
Wiik H. B., The chemical composition of the Haverö meteorite and the genesis of the ureilites. Meteoritics 7, 553 (1972).
418
Yamamoto T., Hashizume K. O., Matsuda J.-I., Kase T., Multiple nitrogen isotopic components coexisting in ureilites. Meteorit. Planet. Sci. 33, 857 (1998).
419
C.-L. Chou, W. V. Boynton, R. W. Bild, J. Kimberlin, J. T. Wasson, Trace element evidence regarding a chondritic component in howardite meteorites. Proc. Lunar Sci. Conf. 7, 3501 (1976).
420
Laul J. C., Gosselin D. C., The Bholghati howardite: Chemical study. Geochim. Cosmochim. Acta 54, 2167 (1990).
421
Reid A. M., Buchanan P., Zolensky M. E., Barrett R. A., The Bholghati howardite: Petrography and mineral chemistry. Geochim. Cosmochim. Acta 54, 2161 (1990).
422
Swindle T. D., et al., Noble gases in the howardites Bholghati and Kapoeta. Geochim. Cosmochim. Acta 54, 2183 (1990).
423
Ganapathy R., Anders E., Ages of calcium-rich achondrites—II. Howardites, nakhlites, and the Angra dos Reis angrite. Geochim. Cosmochim. Acta 33, 775 (1969).
424
Lorenz K., Nazarov M., Kurat G., Brandstaetter F., Ntaflos T., Foreign meteoritic material of howardites and polymict eucrites. Petrology 15, 109 (2007).
425
Mittlefehldt D. W., The genesis of diogenites and HED parent body petrogenesis. Geochim. Cosmochim. Acta 58, 1537 (1994).
426
Welten K. C., et al., Lewis Cliff 86360: An Antarctic L-chondrite with a terrestrial age of 2.35 million years. Meteorit. Planet. Sci. 32, 775 (1997).
427
M. A. Nazarov, F. Brandstätter, G. Kurat, Chemistry of carbonaceous xenoliths from the Erevan howardite. in Proc. 25th Lunar Planet. Sci. Conf., 981 (1994).
428
J. A. Cartwright et al., In pursuit of regolithic howardites. in Proc. 75th Annual Meteoritical Society Meeting, #5057 (2012).
429
Mazor E., Anders E., Primordial gases in the Jodzie howardite and the origin of gas-rich meteorites. Geochim. Cosmochim. Acta 31, 1441 (1967).
430
Wilkening L. L., Foreign inclusions in stony meteorites–I. Carbonaceous chondritic xenoliths in the Kapoeta howardite. Geochim. Cosmochim. Acta 37, 1985 (1973).
431
T. E. Bunch, Petrography and petrology of basaltic achondrite polymict breccias (howardites). Proceedings of the Lunar Science Conference, 6th, 469 (1975).
432
A. J. Brearley, Carbonaceous chondrite clasts in the Kapoeta howardite. in Proc. 24th Lunar Planet. Sci. Conf., 183 (1993).
433
Pun A., Keil K., Taylor G. J., Wieler R., The Kapoeta howardite: Implications for the regolith evolution of the howardite-eucrite-diogenite parent body. Meteorit. Planet. Sci. 33, 835 (1998).
434
Dymek R. F., Albee A. L., Chodos A. A., Wasserburg G. J., Petrography of isotopically-dated clasts in the Kapoeta howardite and petrologic constraints on the evolution of its parent body. Geochim. Cosmochim. Acta 40, 1115 (1976).
435
A. Pedroni, H. Baur, R. Wieler, P. Signer, T-Tauri irradiation of Kapoeta grains? in Proc. 19th Lunar Planet. Sci. Conf., 913 (1988).
436
Black D. C., On the origins of trapped helium, neon and argon isotopic variations in meteorites—I. Gas-rich meteorites, lunar soil and breccia. Geochim. Cosmochim. Acta 36, 347 (1972).
437
J. A. Cartwright, S. Herrmann, J. Herrin, D. W. Mittlefehdt, U. Ott, Noble gas analysis in the quest to find “regolithic” howardites. Proc. Lunar Planet. Sci. Conf. 42, 2655 (2011).
438
J. A. M. Cartwright, D.W.; Herrin, J.S.; Herrmann, S.; Ott, U., “Solar-wind-rich” howardites: True regolith vs. CM-implanted components. Meteoritics and Planetary Science Supplement 46, A37 (August 8-12, 2011, 2011).
439
Olsen E., Dod B. D., Schmitt R. A., Sipiera P. P., Monticello: A glass-rich howardite. Meteoritics 22, 81 (1987).
440
Swindle T. D., Burkland M. K., Noble gases in the Monticello howardite. Meteoritics 26, 399 (1991).
441
Olsen E., Fredriksson K., Rajan S., Noonan A., Chondrule-like objects and brown glasses in howardites. Meteoritics 25, 187 (1990).
442
Beck A. W., Welten K. C., McSween H. Y., Viviano C. E., Caffee M. W., Petrologic and textural diversity among the PCA 02 howardite group, one of the largest pieces of the Vestan surface. Meteorit. Planet. Sci. 47, 947 (2012).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 338 | Issue 6104
12 October 2012

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 29 May 2012
Accepted: 13 August 2012
Published in print: 12 October 2012

Permissions

Request permissions for this article.

Acknowledgments

We thank the Dawn team for spacecraft and instrument operations at Vesta. Portions of this work were performed by the Planetary Science Institute under contract with the Jet Propulsion Laboratory (JPL), California Institute of Technology; by JPL under contract with NASA; and by the NASA Dawn Participating Scientist Program. D. Bazell and P. Peplowski of Johns Hopkins University Applied Physics Laboratory assisted in fast-neutron data analysis. The Dawn mission is led by the University of California, Los Angeles, and managed by JPL under the auspices of the NASA Discovery Program Office. The Dawn data are archived with the NASA Planetary Data System.

Authors

Affiliations

Thomas H. Prettyman
Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719–2395, USA.
David W. Mittlefehldt
NASA Johnson Space Center, Houston, TX 77058, USA.
Naoyuki Yamashita
Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719–2395, USA.
David J. Lawrence
Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA.
Andrew W. Beck
Smithsonian Institution, Washington, DC 20560–0119, USA.
William C. Feldman
Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719–2395, USA.
Timothy J. McCoy
Smithsonian Institution, Washington, DC 20560–0119, USA.
Harry Y. McSween
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996–1410, USA.
Michael J. Toplis
Institut de Recherche en Astrophysique et Planétologie, CNRS-Université de Toulouse, France.
Timothy N. Titus
U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ 86001, USA.
Pasquale Tricarico
Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719–2395, USA.
Robert C. Reedy
Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719–2395, USA.
John S. Hendricks
TechSource, Los Alamos, NM 87544, USA.
Olivier Forni
Institut de Recherche en Astrophysique et Planétologie, CNRS-Université de Toulouse, France.
Lucille Le Corre
Max Planck Institute for Solar System Research, Katlenburg-Lindau 37191, Germany.
Jian-Yang Li
Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719–2395, USA.
Hugau Mizzon
Institut de Recherche en Astrophysique et Planétologie, CNRS-Université de Toulouse, France.
Vishnu Reddy
Max Planck Institute for Solar System Research, Katlenburg-Lindau 37191, Germany.
Department of Space Studies, University of North Dakota, Grand Forks, ND 96712, USA.
Carol A. Raymond
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
Christopher T. Russell
Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Petrology and mineralogy of mesosiderite Northwest Africa 12949: Implications for geological history on its parent body, Meteoritics & Planetary Science, 58, 3, (341-359), (2023).https://doi.org/10.1111/maps.13957
    Crossref
  2. Fluid-assisted metasomatic processes on planetary bodies: Evidence from vestan lithologies, Geochimica et Cosmochimica Acta, 340, (51-64), (2023).https://doi.org/10.1016/j.gca.2022.11.007
    Crossref
  3. 3 μm Spectroscopic Survey of Near-Earth Asteroids, The Planetary Science Journal, 3, 10, (243), (2022).https://doi.org/10.3847/PSJ/ac8ced
    Crossref
  4. Current nuclear data needs for applications, Physical Review Research, 4, 2, (2022).https://doi.org/10.1103/PhysRevResearch.4.021001
    Crossref
  5. Chemistry of Planetesimals and Their Samples, Cosmochemistry, (323-345), (2022).https://doi.org/10.1017/9781108885263.014
    Crossref
  6. Meteorites, Interplanetary Dust, and Lunar Samples, Cosmochemistry, (110-138), (2022).https://doi.org/10.1017/9781108885263.007
    Crossref
  7. Isotopic Constraints on the Formation of the Main Belt, Vesta and Ceres, (212-226), (2022).https://doi.org/10.1017/9781108856324.018
    Crossref
  8. Carbon and Organic Matter on Ceres, Vesta and Ceres, (121-133), (2022).https://doi.org/10.1017/9781108856324.011
    Crossref
  9. The Surface Composition of Vesta, Vesta and Ceres, (81-104), (2022).https://doi.org/10.1017/9781108856324.009
    Crossref
  10. Geomorphology of Vesta, Vesta and Ceres, (67-80), (2022).https://doi.org/10.1017/9781108856324.008
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media