Advertisement
No access
Review

Opportunities and challenges in liquid cell electron microscopy

Science
18 Dec 2015
Vol 350, Issue 6267

Advances in seeing small things

Electron microscopes, particularly those with aberration correction, can view materials at the subnanometer scale. Additional improvements make it possible to obtain images at lower electron doses, thus minimizing the damage to the sample. However, for a number of materials, particularly those of biological origin, samples need to be imaged in solution. Ross reviews recent advances that have made it possible to do liquid cell electron microscopy, which opens up the possibility of studying problems such as the changes inside a battery during operation, the growth of crystals from solution, or biological molecules in their native state.
Science, this issue p. 10.1126/science.aaa9886

Structured Abstract

BACKGROUND

Transmission electron microscopy offers structural and compositional information with atomic resolution, but its use is restricted to thin, solid samples. Liquid samples, particularly those involving water, have been challenging because of the need to form a thin liquid layer that is stable within the microscope vacuum. Liquid cell electron microscopy is a developing technique that allows us to apply the powerful capabilities of the electron microscope to the imaging and analysis of liquid specimens. We can examine liquid-based processes in materials science and physics that are traditionally inaccessible to electron microscopy, and image biological structures at high resolution without the need for freezing or drying. The changes that occur inside batteries during operation, the attachment of atoms during the self-assembly of nanocrystals, and the structures of biological materials in liquid water are examples in which a microscopic view is providing unique insights.

ADVANCES

The difficulty of imaging water and other liquids was recognized from the earliest times in the development of transmission electron microscopy. Achieving a practical solution, however, required the use of modern microfabrication techniques to build liquid cells with thin but strong windows. Usually made of silicon nitride on a silicon support, these liquid cells perform two jobs: They separate the liquid from the microscope vacuum while also confining it into a layer that is thin enough for imaging with transmitted electrons. Additional functionality such as liquid flow, electrodes, or heating can be incorporated in the liquid cell. The first experiments to make use of modern liquid cells provided information on electrochemical deposition, nanomaterials synthesis, diffusion in liquids, and the structure of biological assemblies. Materials and processes now under study include corrosion, biomolecular structure, bubble dynamics, radiation effects, and biomineralization. New window materials such as graphene can improve resolution, and elemental analysis is possible by measuring energy loss or x-ray signals. Advances in electron optics and detectors, and the correlation of liquid cell microscopy data with probes such as fluorescence, have increased the range of information available from the sample. Because the equipment is not too expensive and works in existing electron microscopes, liquid cell microscopy programs have developed around the world.

OUTLOOK

Liquid cell electron microscopy is well positioned to explore new frontiers in electrochemistry and catalysis, nanomaterial growth, fluid physics, diffusion, radiation physics, geological and environmental processes involving clays and aerosols, complex biomaterials and polymers, and biological functions in aqueous environments. Continuing improvements in equipment and technique will allow materials and processes to be studied under different stimuli—for example, in extreme temperatures, during gas/liquid mixing, or in magnetic or electric fields. Correlative approaches that combine liquid cell electron microscopy with light microscope or synchrotron data promise a deeper study of chemical, electrochemical, and photochemical reactions; analytical electron microscopy will provide details of composition and chemical bonding in water; high-speed and aberration-corrected imaging extend the scales of the phenomena that can be examined. As liquid cell microscopy becomes more capable and quantitative, it promises the potential to extend into new areas, adopt advanced imaging modes such as holography, and perhaps even solve grand challenge problems such as the structure of the electrochemical double layer or molecular movements during biological processes.
Schematic diagram of a liquid cell for the transmission electron microscope and its application for imaging phenomena in materials science, life science, and physics.
The liquid cell is made from two vacuum-tight electron transparent membranes. In this diagram the membranes are made of silicon nitride (blue) on a silicon support (gray), although other materials are possible. A spacer layer (not shown) keeps the membranes at a controlled separation of about 100 nm to 1 mm. The cell is filled with the liquid of interest, and the liquid may be flowed using an external pump (not shown). The electron beam (pink) passes through the membranes and liquid to allow recording of images, movies, or spectroscopic data for compositional analysis. Several possible experiments are illustrated: growth of nanocrystals in solution, nucleation and growth of bubbles, imaging biological structures such as whole cells or viruses in liquid water, and imaging electrochemical processes at an electrode (yellow) that is built into the liquid cell. The dimensions of the electron beam and the nanoscale objects are exaggerated for clarity.

Abstract

Transmission electron microscopy offers structural and compositional information with atomic resolution, but its use is restricted to thin, solid samples. Liquid samples, particularly those involving water, have been challenging because of the need to form a thin liquid layer that is stable within the microscope vacuum. Liquid cell electron microscopy is a developing technique that allows us to apply the powerful capabilities of the electron microscope to imaging and analysis of liquid specimens. We describe its impact in materials science and biology. We discuss how its applications have expanded via improvements in equipment and experimental techniques, enabling new capabilities and stimuli for samples in liquids, and offering the potential to solve grand challenge problems.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
de Jonge N., Ross F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011). 10.1038/nnano.2011.161
2
Sinclair R., In situ high-resolution transmission electron microscopy of material reactions. Mater. Res. Soc. Bull. 38, 1065–1071 (2013). 10.1557/mrs.2013.285
3
Liao H.-G., Niu K., Zheng H., Observation of growth of metal nanoparticles. Chem. Commun. 49, 11720–11727 (2013). 10.1039/c3cc47473a
4
Parsons D. F., Structure of wet specimens in electron microscopy. Improved environmental chambers make it possible to examine wet specimens easily. Science 186, 407–414 (1974). 10.1126/science.186.4162.407
5
E. P. Butler, K. F. Hale, Dynamic Experiments in the Electron Microscope (North-Holland, 1981), Chapter 6.
6
Ruska E., Beitrag zur uebermikroskopischen Abbildungen bei hoeheren Drucken. Kolloid Z. 100, 212–219 (1942). 10.1007/BF01519549
7
Danilatos G. D., Review and outline of environmental SEM at present. J. Microsc. 162, 391–402 (1991). 10.1111/j.1365-2818.1991.tb03149.x
8
D. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (Wiley, 2008).
9
Wang C.-M., Liao H.-G., Ross F. M., Observation of materials processes in liquids by electron microscopy. MRS Bull. 40, 46–52 (2015). 10.1557/mrs.2014.283
10
Huang J. Y., Zhong L., Wang C. M., Sullivan J. P., Xu W., Zhang L. Q., Mao S. X., Hudak N. S., Liu X. H., Subramanian A., Fan H., Qi L., Kushima A., Li J., In situ observation of the electrochemical lithiation of a single SnO₂ nanowire electrode. Science 330, 1515–1520 (2010). 10.1126/science.1195628
11
Wang C. M., Xu W., Liu J., Choi D. W., Arey B., Saraf L. V., Zhang J. G., Yang Z. G., Thevuthasan S., Baer D. R., Salmon N., In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities. J. Mater. Res. 25, 1541–1547 (2010). 10.1557/JMR.2010.0198
12
Abrams I. M., McBain J. W., A closed cell for electron microscopy. Science 100, 273–274 (1944). 10.1126/science.100.2595.273
13
Double D. D., Hellawell A., Perry S. J., The hydration of Portland cement. Proc. R. Soc. London Ser. A 359, 435–451 (1978). 10.1098/rspa.1978.0050
14
Williamson M. J., Tromp R. M., Vereecken P. M., Hull R., Ross F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532–536 (2003). 10.1038/nmat944
15
Mueller C., Harb M., Dwyer J. R., Miller R. J. D., Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett. 4, 2339–2347 (2013). 10.1021/jz401067k
16
Grogan J. M., Bau H. H., The nanoaquarium: A platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst. 19, 885–894 (2010). 10.1109/JMEMS.2010.2051321
17
Jensen E., Burrows A., Mølhave K., Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc. Microanal. 20, 445–451 (2014). 10.1017/S1431927614000300
18
Leenheer A. J., Sullivan J. P., Shaw M. J., Harris C. T., A sealed liquid cell for in situ transmission electron microscopy of controlled electrochemical processes. J. Microelectromech. Syst. 24, 1061–1068 (2015).
19
Ring E. A., de Jonge N., Microfluidic system for transmission electron microscopy. Microsc. Microanal. 16, 622–629 (2010). 10.1017/S1431927610093669
20
White E. R., Singer S. B., Augustyn V., Hubbard W. A., Mecklenburg M., Dunn B., Regan B. C., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012). 10.1021/nn3017469
21
Mehdi B. L., Gu M., Parent L. R., Xu W., Nasybulin E. N., Chen X., Unocic R. R., Xu P., Welch D. A., Abellan P., Zhang J. G., Liu J., Wang C. M., Arslan I., Evans J., Browning N. D., In-situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal. 20, 484–492 (2014). 10.1017/S1431927614000488
22
Unocic R. R., Sacci R. L., Brown G. M., Veith G. M., Dudney N. J., More K. L., Walden F. S., Gardiner D. S., Damiano J., Nackashi D. P., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal. 20, 452–461 (2014). 10.1017/S1431927614000166
23
White E. R., Mecklenburg M., Singer S. B., Aloni S., Regan B. C., Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express 4, 055201 (2011). 10.1143/APEX.4.055201
24
Tai K., Liu Y., Dillon S. J., In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal. 20, 330–337 (2014). 10.1017/S1431927613014128
25
Degen K., Dukes M., Tanner J. R., Kelly D. F., The development of affinity capture devices-a nanoscale purification platform for biological in situ transmission electron microscopy. RSC Adv. 2, 2408–2412 (2012). 10.1039/c2ra01163h
26
Dukes M. J., Thomas R., Damiano J., Klein K. L., Balasubramaniam S., Kayandan S., Riffle J. S., Davis R. M., McDonald S. M., Kelly D. F., Improved microchip design and application for in situ transmission electron microscopy of macromolecules. Microsc. Microanal. 20, 338–345 (2014). 10.1017/S1431927613013858
27
Varano A. C., Rahimi A., Dukes M. J., Poelzing S., McDonald S. M., Kelly D. F., Visualizing virus particle mobility in liquid at the nanoscale. Chem. Commun. 51, 16176 (2015). 10.1039/c5cc05744b
28
Mirsaidov U. M., Zheng H., Casana Y., Matsudaira P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J. 102, L15–L17 (2012). 10.1016/j.bpj.2012.01.009
29
D. B. Peckys, N. de Jonge, Studying the stoichiometry of epidermal growth factor receptor in intact cells using correlative microscopy. J. Vis. Exp. 103, e53186 (2015). 10.3791/53186
30
Sugi H., Minoda H., Inayoshi Y., Yumoto F., Miyakawa T., Miyauchi Y., Tanokura M., Akimoto T., Kobayashi T., Chaen S., Sugiura S., Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber. Proc. Natl. Acad. Sci. U.S.A. 105, 17396–17401 (2008). 10.1073/pnas.0809581105
31
Liao H. G., Zherebetskyy D., Xin H., Czarnik C., Ercius P., Elmlund H., Pan M., Wang L. W., Zheng H., Facet development during platinum nanocube growth. Science 345, 916–919 (2014). 10.1126/science.1253149
32
Jungjohann K. L., Evans J. E., Aguiar J. A., Arslan I., Browning N. D., Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal. 18, 621–627 (2012). 10.1017/S1431927612000104
33
Holtz M. E., Yu Y., Gunceler D., Gao J., Sundararaman R., Schwarz K. A., Arias T. A., Abruña H. D., Muller D. A., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14, 1453–1459 (2014). 10.1021/nl404577c
34
Lewis E. A., Haigh S. J., Slater T. J. A., He Z., Kulzick M. A., Burke M. G., Zaluzec N. J., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun. 50, 10019–10022 (2014). 10.1039/C4CC02743D
35
Creemer J. F., Helveg S., Hoveling G. H., Ullmann S., Molenbroek A. M., Sarro P. M., Zandbergen H. W., Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993–998 (2008). 10.1016/j.ultramic.2008.04.014
36
Radisic A., Vereecken P. M., Hannon J. B., Searson P. C., Ross F. M., Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238–242 (2006). 10.1021/nl052175i
37
Yuk J. M., Park J., Ercius P., Kim K., Hellebusch D. J., Crommie M. F., Lee J. Y., Zettl A., Alivisatos A. P., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012). 10.1126/science.1217654
38
V. P. Adiga, G. D. Dunn, A. P. Alivisatos, A. Zettl, Electrically integrated graphene on silicon nitride liquid flow cells for high resolution electron microscopy, U.S. Patent Application Ser. No. 14/817,551. http://ipo.lbl.gov/lbnl2014-129/.
39
Grogan J. M., Schneider N. M., Ross F. M., Bau H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 14, 359–364 (2014). 10.1021/nl404169a
40
Schneider N. M., Norton M. M., Mendel B. J., Grogan J. M., Ross F. M., Bau H. H., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014). 10.1021/jp507400n
41
Zheng H., Smith R. K., Jun Y. W., Kisielowski C., Dahmen U., Alivisatos A. P., Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009). 10.1126/science.1172104
42
den Heijer M., Shao I., Radisic A., Reuter M. C., Ross F. M., Patterned electrochemical deposition of copper using an electron beam. APL Materials 2, 022101 (2014). 10.1063/1.4863596
43
Sutter E., Jungjohann K., Bliznakov S., Courty A., Maisonhaute E., Tenney S., Sutter P., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun. 5, 4946 (2014). 10.1038/ncomms5946
44
Radisic A., Ross F. M., Searson P. C., In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110, 7862–7868 (2006). 10.1021/jp057549a
45
Radisic A., Vereecken P. M., Searson P. C., Ross F. M., The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci. 600, 1817–1826 (2006). 10.1016/j.susc.2006.02.025
46
Zheng H., Claridge S. A., Minor A. M., Alivisatos A. P., Dahmen U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460–2465 (2009). 10.1021/nl9012369
47
de Jonge N., Peckys D. B., Kremers G. J., Piston D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. U.S.A. 106, 2159–2164 (2009). 10.1073/pnas.0809567106
48
Sun M., Liao H.-G., Niu K., Zheng H., Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep. 3, 3227 (2013). 24233151
49
Zeng Z., Liang W.-I., Liao H.-G., Xin H. L., Chu Y.-H., Zheng H., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014). 10.1021/nl403922u
50
Mehdi B. L., Qian J., Nasybulin E., Park C., Welch D. A., Faller R., Mehta H., Henderson W. A., Xu W., Wang C. M., Evans J. E., Liu J., Zhang J.-G., Mueller K. T., Browning N. D., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015). 10.1021/acs.nanolett.5b00175
51
Schneider N. M., Park J. H., Grogan J. M., Kodambaka S., Steingart D. A., Ross F. M., Bau H. H., Visualization of active and passive control of morphology during electrodeposition. Microsc. Microanal. 20, 1530–1531 (2014). 10.1017/S1431927614009386
52
Mehdi B. L., Gu M., Parent L. R., Xu W., Nasybulin E. N., Chen X., Unocic R. R., Xu P., Welch D. A., Abellan P., Zhang J. G., Liu J., Wang C. M., Arslan I., Evans J., Browning N. D., In-situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal. 20, 484–492 (2014). 10.1017/S1431927614000488
53
Gu M., Parent L. R., Mehdi B. L., Unocic R. R., McDowell M. T., Sacci R. L., Xu W., Connell J. G., Xu P., Abellan P., Chen X., Zhang Y., Perea D. E., Evans J. E., Lauhon L. J., Zhang J. G., Liu J., Browning N. D., Cui Y., Arslan I., Wang C. M., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13, 6106–6112 (2013). 10.1021/nl403402q
54
Sacci R. L., Dudney N. J., More K. L., Parent L. R., Arslan I., Browning N. D., Unocic R. R., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. (Camb.) 50, 2104–2107 (2014). 10.1039/c3cc49029g
55
Abellan P., Mehdi B. L., Parent L. R., Gu M., Park C., Xu W., Zhang Y., Arslan I., Zhang J.-G., Wang C.-M., Evans J. E., Browning N. D., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14, 1293–1299 (2014). 10.1021/nl404271k
56
Chee S. W., Duquette D. J., Ross F. M., Hull R., Metastable structures in Al thin films prior to the onset of corrosion pitting as observed using liquid cell transmission electron microscopy. Microsc. Microanal. 20, 462–468 (2014). 10.1017/S1431927614000221
57
Chee S. W., Pratt S. H., Hattar K., Duquette D., Ross F. M., Hull R., Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun. 51, 168–171 (2015). 10.1039/C4CC06443G
58
Zhong X., Burke M. G., Schilling S., Haigh S. J., Zaluzec N. J., Novel hybrid sample preparation method for in situ liquid cell TEM analysis. Microsc. Microanal. 20 (suppl. S3), 1514–1515 (2014).http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25010485&dopt=Abstract 10.1017/S1431927614009301
59
Liao H. G., Cui L., Whitelam S., Zheng H., Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012). 10.1126/science.1219185
60
Liao H. G., Zheng H., Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 135, 5038–5043 (2013). 10.1021/ja310612p
61
Woehl T. J., Park C., Evans J. E., Arslan I., Ristenpart W. D., Browning N. D., Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Lett. 14, 373–378 (2014). 10.1021/nl4043328
62
Jungjohann K. L., Bliznakov S., Sutter P. W., Stach E. A., Sutter E. A., In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett. 13, 2964–2970 (2013). 10.1021/nl4014277
63
De Clercq A., Dachraoui W., Margeat O., Pelzer K., Henry C. R., Giorgio S., Growth of Pt-Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett. 5, 2126–2130 (2014). 10.1021/jz500690a
64
Woehl T. J., Evans J. E., Arslan I., Ristenpart W. D., Browning N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6, 8599–8610 (2012). 10.1021/nn303371y
65
Park C., Woehl T. J., Evans J. E., Browning N. D., Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects. IEEE Trans. Pattern Anal. Mach. Intell. 37, 611–624 (2015). 10.1109/TPAMI.2014.2346202
66
Parent L. R., Robinson D. B., Woehl T. J., Ristenpart W. D., Evans J. E., Browning N. D., Arslan I., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano 6, 3589–3596 (2012). 10.1021/nn300671g
67
Kraus T., de Jonge N., Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 29, 8427–8432 (2013). 10.1021/la401584z
68
Zhu G., Jiang Y., Lin F., Zhang H., Jin C., Yuan J., Yang D., Zhang Z., In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun. 50, 9447–9450 (2014). 10.1039/C4CC03500C
69
Jiang Y., Zhu G., Lin F., Zhang H., Jin C., Yuan J., Yang D., Zhang Z., In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett. 14, 3761–3765 (2014). 10.1021/nl500670q
70
Wu J., Gao W., Yang H., Zuo J.-M., Imaging shape-dependent corrosion behavior of Pt nanoparticles over extended time using a liquid flow cell and TEM. Microsc. Microanal. 20, 1508–1509 (2014). 10.1017/S1431927614009271
71
Noh K. W., Liu Y., Sun L., Dillon S. J., Challenges associated with in-situ TEM in environmental systems: The case of silver in aqueous solutions. Ultramicroscopy 116, 34–38 (2012). 10.1016/j.ultramic.2012.03.012
72
Liu Y., Tai K., Dillon S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater. 25, 2927–2933 (2013). 10.1021/cm303522z
73
Evans J. E., Jungjohann K. L., Browning N. D., Arslan I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011). 10.1021/nl201166k
74
Niu K.-Y., Park J., Zheng H., Alivisatos A. P., Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 13, 5715–5719 (2013). 10.1021/nl4035362
75
Xin H. L., Zheng H., In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett. 12, 1470–1474 (2012). 10.1021/nl2041854
76
Zheng H., Mirsaidov U. M., Wang L. W., Matsudaira P., Electron beam manipulation of nanoparticles. Nano Lett. 12, 5644–5648 (2012). 10.1021/nl302788g
77
Li D., Nielsen M. H., Lee J. R. I., Frandsen C., Banfield J. F., De Yoreo J. J., Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012). 10.1126/science.1219643
78
Grogan J. M., Rotkina L., Bau H. H., In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83, 061405 (2011). 10.1103/PhysRevE.83.061405
79
Park J., Zheng H., Lee W. C., Geissler P. L., Rabani E., Alivisatos A. P., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6, 2078–2085 (2012). 10.1021/nn203837m
80
Bhattacharya D., Bosman M., Mokkapati V. R. S. S., Leong F. Y., Mirsaidov U., Nucleation dynamics of water nanodroplets. Microsc. Microanal. 20, 407–415 (2014). 10.1017/S1431927614000476
81
Ruan C.-Y., Lobastov V. A., Vigliotti F., Chen S., Zewail A. H., Ultrafast electron crystallography of interfacial water. Science 304, 80–84 (2004). 10.1126/science.1094818
82
Browning N. D., Bonds M. A., Campbell G. H., Evans J. E., LaGrange T., Jungjohann K. L., Masiel D. J., McKeown J., Mehraeen S., Reed B. W., Santala M., Recent developments in dynamic transmission electron microscopy. Curr. Opin. Solid State Mater. Sci. 16, 23–30 (2012). 10.1016/j.cossms.2011.07.001
83
Mirsaidov U., Ohl C.-D., Matsudaira P., A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter 8, 7108–7111 (2012). 10.1039/c2sm25331c
84
Mirsaidov U. M., Zheng H., Bhattacharya D., Casana Y., Matsudaira P., Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. U.S.A. 109, 7187–7190 (2012). 10.1073/pnas.1200457109
85
Norton M., Ross F. M., Bau H. H., Nano bubble migration in a tapered conduit in the asymptotic limits of zero capillary and bond numbers: Theory and experiments. Bull. Am. Phys. Soc. 60, H36.00004 (2015) http://meetings.aps.org/Meeting/DFD15/Session/H36.4.
86
Mattia D., Gogotsi Y., Review: Static and dynamic behavior of liquids inside carbon nanotubes. Microfluidics Nanofluidics 5, 289–305 (2008). 10.1007/s10404-008-0293-5
87
Mirsaidov U., Mokkapati V. R. S. S., Bhattacharya D., Andersen H., Bosman M., Özyilmaz B., Matsudaira P., Scrolling graphene into nanofluidic channels. Lab Chip 13, 2874–2878 (2013). 10.1039/c3lc50304f
88
Ring E. A., de Jonge N., Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron 43, 1078–1084 (2012). 10.1016/j.micron.2012.01.010
89
White E. R., Mecklenburg M., Shevitski B., Singer S. B., Regan B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28, 3695–3698 (2012). 10.1021/la2048486
90
Lu J., Aabdin Z., Loh N. D., Bhattacharya D., Mirsaidov U., Nanoparticle dynamics in a nanodroplet. Nano Lett. 14, 2111–2115 (2014). 10.1021/nl500766j
91
Cazade P.-A., Hartkamp R., Coasne B., Structure and dynamics of an electrolyte confined in charged nanopores. J. Phys. Chem. C 118, 5061–5072 (2014). 10.1021/jp4098638
92
Kashyap S., Woehl T. J., Liu X., Mallapragada S. K., Prozorov T., Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. ACS Nano 8, 9097–9106 (2014). 10.1021/nn502551y
93
Nielsen M. H., Lee J. R. I., Hu Q. N., Han T. Y. J., De Yoreo J. J., Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss. 159, 105–121 (2012). 10.1039/c2fd20050c
94
Nielsen M. H., Aloni S., De Yoreo J. J., In situ TEM imaging of CaCO₃ nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).25190792
95
Smeets P. J. M., Cho K. R., Kempen R. G. E., Sommerdijk N. A. J. M., De Yoreo J. J., Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 14, 394–399 (2015). 10.1038/nmat4193
96
Woehl T. J., Kashyap S., Firlar E., Perez-Gonzalez T., Faivre D., Trubitsyn D., Bazylinski D. A., Prozorov T., Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: Toward in vivo imaging. Sci. Rep. 4, 6854 (2014). 10.1038/srep06854
97
Peckys D. B., de Jonge N., Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett. 11, 1733–1738 (2011). 10.1021/nl200285r
98
Ring E. A., Peckys D. B., Dukes M. J., Baudoin J. P., de Jonge N., Silicon nitride windows for electron microscopy of whole cells. J. Microsc. 243, 273–283 (2011). 10.1111/j.1365-2818.2011.03501.x
99
Dukes M. J., Peckys D. B., de Jonge N., Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4, 4110–4116 (2010). 10.1021/nn1010232
100
Peckys D. B., Korf U., de Jonge N., Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci. Advances 1, e1500165 (2015). 10.1126/sciadv.1500165
101
Peckys D. B., Baudoin J.-P., Eder M., Werner U., de Jonge N., Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Scientific Reports 3, 2626 (2013). 10.1038/srep02626
102
Pohlmann E. S., Patel K., Guo S., Dukes M. J., Sheng Z., Kelly D. F., Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett. 15, 2329–2335 (2015). 10.1021/nl504481k
103
Peckys D. B., de Jonge N., Liquid scanning transmission electron microscopy: Imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal. 20, 346–365 (2014). 10.1017/S1431927614000099
104
Chen Q., Smith J. M., Park J., Kim K., Ho D., Rasool H. I., Zettl A., Alivisatos A. P., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 13, 4556–4561 (2013). 10.1021/nl402694n
105
Mohanty N., Fahrenholtz M., Nagaraja A., Boyle D., Berry V., Impermeable graphenic encasement of bacteria. Nano Lett. 11, 1270–1275 (2011). 10.1021/nl104292k
106
Park J., Park H., Ercius P., Pegoraro A. F., Xu C., Kim J. W., Han S. H., Weitz D. A., Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 15, 4737–4744 (2015). 10.1021/acs.nanolett.5b01636
107
Wang C., Qiao Q., Shokuhfar T., Klie R. F., High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater. 26, 3410–3414 (2014). 10.1002/adma.201306069
108
Hoppe S. M., Sasaki D. Y., Kinghorn A. N., Hattar K., In-situ transmission electron microscopy of liposomes in an aqueous environment. Langmuir 29, 9958–9961 (2013). 10.1021/la401288g
109
Proetto M. T., Rush A. M., Chien M.-P., Abellan Baeza P., Patterson J. P., Thompson M. P., Olson N. H., Moore C. E., Rheingold A. L., Andolina C., Millstone J., Howell S. B., Browning N. D., Evans J. E., Gianneschi N. C., Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc. 136, 1162–1165 (2014). 10.1021/ja408513m
110
Plamper F. A., Gelissen A. P., Timper J., Wolf A., Zezin A. B., Richtering W., Tenhu H., Simon U., Mayer J., Borisov O. V., Pergushov D. V., Spontaneous assembly of miktoarm stars into vesicular interpolyelectrolyte complexes. Macromol. Rapid Commun. 34, 855–860 (2013). 10.1002/marc.201300053
111
Wojcik M., Hauser M., Li W., Moon S., Xu K., Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells. Nat. Commun. 6, 7384 (2015). 10.1038/ncomms8384
112
A. Fukami, K. Fukushima, N. Kohyama, Observation technique for wet clay minerals using film-sealed environmental cell equipment attached to high-resolution electron microscope, in Microstructure of Fine-Grained Sediments, R. Bennett et al., Eds. (Springer New York, 1991), pp. 321–331.
113
Adachi K., Freney E. J., Buseck P. R., Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering. Geophys. Res. Lett. 38, L13804 (2011). 10.1029/2011GL047540
114
de Gennes P. G., Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985). 10.1103/RevModPhys.57.827
115
Sadki S., Schottland P., Brodie N., Sabouraud G., The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283–293 (2000). 10.1039/a807124a
116
Helveg S., López-Cartes C., Sehested J., Hansen P. L., Clausen B. S., Rostrup-Nielsen J. R., Abild-Pedersen F., Nørskov J. K., Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004). 10.1038/nature02278
117
Miller B. K., Crozier P. A., Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy. Microsc. Microanal. 20, 815–824 (2014). 10.1017/S1431927614000749
118
Gai P. L., Development of wet environment TEM (wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21–28 (2002). 10.1017/S143192760201005X
119
Ross F. M., Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 73, 114501–114522 (2010). 10.1088/0034-4885/73/11/114501
120
Danev R., Nagayama K., Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88, 243–252 (2001). 10.1016/S0304-3991(01)00088-2
121
Simon P., Lichte H., Formanek P., Lehmann M., Huhle R., Carrillo-Cabrera W., Harscher A., Ehrlich H., Electron holography of biological samples. Micron 39, 229–256 (2008). 10.1016/j.micron.2006.11.012

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 350 | Issue 6267
18 December 2015

Submission history

Published in print: 18 December 2015

Permissions

Request permissions for this article.

Acknowledgments

The research described in this review was partially supported by the National Science Foundation under NSF-GOALI grants DMR-1310639 and CMMI-1129722. I acknowledge A. W. Ellis and M. C. Reuter of IBM for their technical assistance with the development of the liquid cell technique.

Authors

Affiliations

Frances M. Ross
IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA.

Notes

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Electron videography of a lipid–protein tango, Science Advances, 10, 16, (2024)./doi/10.1126/sciadv.adk0217
    Abstract
  2. Disproportionation chemistry in K2PtCl4 visualized at atomic resolution using scanning transmission electron microscopy, Science Advances, 10, 6, (2024)./doi/10.1126/sciadv.adi0175
    Abstract
  3. Subatomic species transport through atomically thin membranes: Present and future applications, Science, 374, 6568, (2021)./doi/10.1126/science.abd7687
    Abstract
  4. Kinetic pathways of ionic transport in fast-charging lithium titanate, Science, 367, 6481, (1030-1034), (2021)./doi/10.1126/science.aax3520
    Abstract
  5. Single-particle mapping of nonequilibrium nanocrystal transformations, Science, 354, 6314, (874-877), (2021)./doi/10.1126/science.aah4434
    Abstract
  6. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy, Science, 355, 6324, (494-498), (2021)./doi/10.1126/science.aah3582
    Abstract
  7. Programmable two-dimensional nanocrystals assembled from POSS-containing peptoids as efficient artificial light-harvesting systems, Science Advances, 7, 20, (2021)./doi/10.1126/sciadv.abg1448
    Abstract
  8. In situ monitoring of exopolymer-dependent Mn mineralization on bacterial surfaces, Science Advances, 6, 27, (2020)./doi/10.1126/sciadv.aaz3125
    Abstract
  9. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions, Science Advances, 5, 6, (2019)./doi/10.1126/sciadv.aaw5623
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media