Advertisement
No access
Report

Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder

Science
31 Dec 2015
Vol 351, Issue 6271
pp. 397-400

Offspring affected by sperm small RNAs

Paternal dietary conditions in mammals influence the metabolic phenotypes of offspring. Although prior work suggests the involvement of epigenetic pathways, the mechanisms remains unclear. Two studies now show that altered paternal diet affects the level of small RNAs in mouse sperm. Chen et al. injected sperm transfer RNA (tRNA) fragments from males that had been kept on a high-fat diet into normal oocytes. The progeny displayed metabolic disorders and concomitant alteration of genes in metabolic pathways. Sharma et al. observed the biogenesis and function of small tRNA-derived fragments during sperm maturation. Further understanding of the mechanisms by which progeny are affected by parental exposure may affect human diseases such as diet-induced metabolic disorders.
Science, this issue p. 397, p. 391

Abstract

Increasing evidence indicates that metabolic disorders in offspring can result from the father’s diet, but the mechanism remains unclear. In a paternal mouse model given a high-fat diet (HFD), we showed that a subset of sperm transfer RNA–derived small RNAs (tsRNAs), mainly from 5′ transfer RNA halves and ranging in size from 30 to 34 nucleotides, exhibited changes in expression profiles and RNA modifications. Injection of sperm tsRNA fractions from HFD males into normal zygotes generated metabolic disorders in the F1 offspring and altered gene expression of metabolic pathways in early embryos and islets of F1 offspring, which was unrelated to DNA methylation at CpG-enriched regions. Hence, sperm tsRNAs represent a paternal epigenetic factor that may mediate intergenerational inheritance of diet-induced metabolic disorders.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S13
Tables S1 to S12
References (2938)

Resources

File (aad7977-chen-sm-table-s10.xlsx)
File (aad7977-chen-sm-table-s12.xlsx)
File (aad7977-chen-sm-table-s6.xlsx)
File (aad7977-chen-sm-table-s8.xlsx)
File (aad7977-chen-sm-table-s9.xlsx)
File (aad7977-chen-sm.pdf)
File (aad7977-chen-sm_corrected.pdf)

REFERENCES AND NOTES

1
Daxinger L., Whitelaw E., Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13, 153–162 (2012).
2
Rechavi O., Houri-Ze’evi L., Anava S., Goh W. S., Kerk S. Y., Hannon G. J., Hobert O., Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).
3
Carone B. R., Fauquier L., Habib N., Shea J. M., Hart C. E., Li R., Bock C., Li C., Gu H., Zamore P. D., Meissner A., Weng Z., Hofmann H. A., Friedman N., Rando O. J., Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).
4
Ng S. F., Lin R. C., Laybutt D. R., Barres R., Owens J. A., Morris M. J., Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).
5
Rando O. J., Daddy issues: Paternal effects on phenotype. Cell 151, 702–708 (2012).
6
Radford E. J., Ito M., Shi H., Corish J. A., Yamazawa K., Isganaitis E., Seisenberger S., Hore T. A., Reik W., Erkek S., Peters A. H., Patti M. E., Ferguson-Smith A. C., In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).
7
Wei Y., Yang C. R., Wei Y. P., Zhao Z. A., Hou Y., Schatten H., Sun Q. Y., Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl. Acad. Sci. U.S.A. 111, 1873–1878 (2014).
8
Holoch D., Moazed D., RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71–84 (2015).
9
Grandjean V., Gounon P., Wagner N., Martin L., Wagner K. D., Bernex F., Cuzin F., Rassoulzadegan M., The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136, 3647–3655 (2009).
10
Wagner K. D., Wagner N., Ghanbarian H., Grandjean V., Gounon P., Cuzin F., Rassoulzadegan M., RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev. Cell 14, 962–969 (2008).
11
Rassoulzadegan M., Grandjean V., Gounon P., Vincent S., Gillot I., Cuzin F., RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).
12
Yuan S., Oliver D., Schuster A., Zheng H., Yan W., Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci. Rep. 5, 9266 (2015).
13
Rodgers A. B., Morgan C. P., Leu N. A., Bale T. L., Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. U.S.A. 122, 13699–13704 (2015).
14
Fullston T., Ohlsson Teague E. M., Palmer N. O., DeBlasio M. J., Mitchell M., Corbett M., Print C. G., Owens J. A., Lane M., Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).
15
Gapp K., Jawaid A., Sarkies P., Bohacek J., Pelczar P., Prados J., Farinelli L., Miska E., Mansuy I. M., Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).
16
Jodar M., Selvaraju S., Sendler E., Diamond M. P., Krawetz S. A.Reproductive Medicine Network, The presence, role and clinical use of spermatozoal RNAs. Hum. Reprod. Update 19, 604–624 (2013).
17
Yan W., Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Mol. Cell. Endocrinol. 398, 24–30 (2014).
18
Liebers R., Rassoulzadegan M., Lyko F., Epigenetic regulation by heritable RNA. PLOS Genet. 10, e1004296 (2014).
19
Peng H., Shi J., Zhang Y., Zhang H., Liao S., Li W., Lei L., Han C., Ning L., Cao Y., Zhou Q., Chen Q., Duan E., A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 22, 1609–1612 (2012).
20
Lane M., Robker R. L., Robertson S. A., Parenting from before conception. Science 345, 756–760 (2014).
21
Siklenka K., Erkek S., Godmann M., Lambrot R., McGraw S., Lafleur C., Cohen T., Xia J., Suderman M., Hallett M., Trasler J., Peters A. H., Kimmins S., Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350, aab2006 (2015).
22
Zhang Y., Zhang Y., Shi J., Zhang H., Cao Z., Gao X., Ren W., Ning Y., Ning L., Cao Y., Chen Y., Ji W., Chen Z. J., Chen Q., Duan E., Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J. Mol. Cell Biol. 6, 172–174 (2014).
23
Yan M., Wang Y., Hu Y., Feng Y., Dai C., Wu J., Wu D., Zhang F., Zhai Q., A high-throughput quantitative approach reveals more small RNA modifications in mouse liver and their correlation with diabetes. Anal. Chem. 85, 12173–12181 (2013).
24
Tuorto F., Liebers R., Musch T., Schaefer M., Hofmann S., Kellner S., Frye M., Helm M., Stoecklin G., Lyko F., RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat. Struct. Mol. Biol. 19, 900–905 (2012).
25
Kiani J., Grandjean V., Liebers R., Tuorto F., Ghanbarian H., Lyko F., Cuzin F., Rassoulzadegan M., RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLOS Genet. 9, e1003498 (2013).
26
Cho Y. S., Chen C.-H., Hu C., Long J., Hee Ong R. T., Sim X., Takeuchi F., Wu Y., Go M. J., Yamauchi T., Chang Y.-C., Kwak S. H., Ma R. C. W., Yamamoto K., Adair L. S., Aung T., Cai Q., Chang L.-C., Chen Y.-T., Gao Y., Hu F. B., Kim H.-L., Kim S., Kim Y. J., Lee J. J.-M., Lee N. R., Li Y., Liu J. J., Lu W., Nakamura J., Nakashima E., Ng D. P.-K., Tay W. T., Tsai F.-J., Wong T. Y., Yokota M., Zheng W., Zhang R., Wang C., So W. Y., Ohnaka K., Ikegami H., Hara K., Cho Y. M., Cho N. H., Chang T.-J., Bao Y., Hedman Å. K., Morris A. P., McCarthy M. I., Takayanagi R., Park K. S., Jia W., Chuang L.-M., Chan J. C. N., Maeda S., Kadowaki T., Lee J.-Y., Wu J.-Y., Teo Y. Y., Tai E. S., Shu X. O., Mohlke K. L., Kato N., Han B.-G., Seielstad M., Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in East Asians. Nat. Genet. 44, 67–72 (2012).
27
Jiménez-Palomares M., López-Acosta J. F., Villa-Pérez P., Moreno-Amador J. L., Muñoz-Barrera J., Fernández-Luis S., Heras-Pozas B., Perdomo G., Bernal-Mizrachi E., Cózar-Castellano I., Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 308, E450–E459 (2015).
28
Dibble C. C., Cantley L. C., Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25, 545–555 (2015).
29
Storey J. D., Tibshirani R., Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445 (2003).
30
Benjamini Y., Hochberg Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300 (1995).
31
Wang L., Feng Z., Wang X., Wang X., Zhang X., DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).
32
Zhao X. Y., Li W., Lv Z., Liu L., Tong M., Hai T., Hao J., Guo C. L., Ma Q. W., Wang L., Zeng F., Zhou Q., iPS cells produce viable mice through tetraploid complementation. Nature 461, 86–90 (2009).
33
Li D. S., Yuan Y. H., Tu H. J., Liang Q. L., Dai L. J., A protocol for islet isolation from mouse pancreas. Nat. Protoc. 4, 1649–1652 (2009).
34
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. L., TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
35
Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D. R., Pimentel H., Salzberg S. L., Rinn J. L., Pachter L., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
36
Sturn A., Quackenbush J., Trajanoski Z., Genesis: Cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002).
37
Xi Y., Li W., BSMAP: Whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).
38
Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., Amin N., Schwikowski B., Ideker T., Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 351 | Issue 6271
22 January 2016

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 4 November 2015
Accepted: 11 December 2015
Published in print: 22 January 2016

Permissions

Request permissions for this article.

Acknowledgments

Raw data are archived in the Gene Expression Omnibus under accession number GSE75544. This research was supported by the National Basic Research Program of China (grants 2012CBA01300 to Q.Zho., 2015CB943000 to Q.C., and 2014CB542300 to Q.Zha.), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA01000000 to Q.Zho. and E.D), and the National Natural Science Foundation of China (grants 81490742 to E.D., 31200879 to Q.C., 31300960 to H.P., 31300957 to Y.Z., 81472181 to M.Y., and 31470768 and 81321062 to Q.Zha.).

Authors

Affiliations

Qi Chen*,
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89512 USA.
Menghong Yan
Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
Zhonghong Cao
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Xin Li
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Yunfang Zhang
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Junchao Shi
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Gui-hai Feng
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Hongying Peng
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Beijing Royal Integrative Medicine Hospital, Beijing University of Chinese Medicine, Beijing, China.
Xudong Zhang
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Ying Zhang
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Jingjing Qian
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Enkui Duan*
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Qiwei Zhai*
Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
Qi Zhou*
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Notes

*
Corresponding author. E-mail: [email protected] (Q.C.); [email protected] (E.D.); [email protected] (Q.Zha.); [email protected] (Q.Zho.)
These authors contributed equally to this work.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. The role of tRNA-derived small RNAs in aging, BMB Reports, 56, 2, (49-55), (2023).https://doi.org/10.5483/BMBRep.2022-0199
    Crossref
  2. Intergenerational Inheritance of Hepatic Steatosis in a Mouse Model of Childhood Obesity: Potential Involvement of Germ-Line microRNAs, Nutrients, 15, 5, (1241), (2023).https://doi.org/10.3390/nu15051241
    Crossref
  3. Sperm RNA Payload: Implications for Intergenerational Epigenetic Inheritance, International Journal of Molecular Sciences, 24, 6, (5889), (2023).https://doi.org/10.3390/ijms24065889
    Crossref
  4. Using Small Non-Coding RNAs in Extracellular Vesicles of Semen as Biomarkers of Male Reproductive System Health: Opportunities and Challenges, International Journal of Molecular Sciences, 24, 6, (5447), (2023).https://doi.org/10.3390/ijms24065447
    Crossref
  5. Transgenerational Epigenetic Inheritance of Traumatic Experience in Mammals, Genes, 14, 1, (120), (2023).https://doi.org/10.3390/genes14010120
    Crossref
  6. tRNA-derived small RNAs in plant response to biotic and abiotic stresses, Frontiers in Plant Science, 14, (2023).https://doi.org/10.3389/fpls.2023.1131977
    Crossref
  7. tRNA derived fragments:A novel player in gene regulation and applications in cancer, Frontiers in Oncology, 13, (2023).https://doi.org/10.3389/fonc.2023.1063930
    Crossref
  8. Differential expression profiling of tRNA-Derived small RNAs and their potential roles in methamphetamine self-administered rats, Frontiers in Genetics, 14, (2023).https://doi.org/10.3389/fgene.2023.1088498
    Crossref
  9. Multigenerational mistimed feeding drives circadian reprogramming with an impaired unfolded protein response, Frontiers in Endocrinology, 14, (2023).https://doi.org/10.3389/fendo.2023.1157165
    Crossref
  10. Stress‐sensitive dynamics of miRNAs and Elba1 in Drosophila embryogenesis , Molecular Systems Biology, (2023).https://doi.org/10.15252/msb.202211148
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media