Advertisement
No access
Research Article
Breast Cancer

Ferroportin and Iron Regulation in Breast Cancer Progression and Prognosis

Science Translational Medicine
4 Aug 2010
Vol 2, Issue 43
p. 43ra56

Iron: Out of Control in Cancer

Toddlers cause an awful lot of damage if let loose without an adult to control their behavior. The same is true for the body’s iron, which when released from its usual protein-binding partners can wreak toxic havoc. Thus, cells usually have an elaborate regulatory system to keep this essential but dangerous metal under control—except for some cancer cells, which have too little of an iron export protein called ferroportin. Pinnix et al. now show that breast cancers with low concentrations of ferroportin tend to contain extra intracellular free iron and to show signs of being more aggressive, suggesting that abnormal iron regulation in cancers may contribute to malignancy.
In an array of normal and cancerous breast epithelial cells, the authors showed that cells with less ferroportin and more of a ferroportin regulator called hepcidin tended to be aggressive. To confirm that the lower ferroportin and higher intracellular free iron actually affected tumor growth, they implanted mice with cancer cells identical except for the addition of extra ferroportin to bring the level of ferroportin in cancer cells to a level near that of normal breast cells. The additional ferroportin in this set of tumors inhibited their growth. In patients, too, the ferroportin status of breast cancer cells proved informative. Women who had breast cancers with lower ferroportin survived for shorter times, and the ferroportin concentrations of a particular tumor could be used to predict survival, providing information beyond the existing markers used clinically such as the estrogen receptor. The authors also came to a more positive conclusion: Having breast cancer with high ferroportin concentrations is a promising sign for a patient and predicts a 90% 10-year survival rate.
Ferroportin, as a marker for iron regulation, may be useful prognostically and in treatment planning. Although it is not yet apparent exactly how higher concentrations of free iron may cause cancer cells to be more aggressive, the cellular iron-regulatory system is clearly a key to understanding breast, and possibly other, cancers. When iron gets out of control, it seems to cause quite a bit of trouble.

Abstract

Ferroportin and hepcidin are critical proteins for the regulation of systemic iron homeostasis. Ferroportin is the only known mechanism for export of intracellular non–heme-associated iron; its stability is regulated by the hormone hepcidin. Although ferroportin profoundly affects concentrations of intracellular iron in tissues important for systemic iron absorption and trafficking, ferroportin concentrations in breast cancer and their influence on growth and prognosis have not been examined. We demonstrate here that both ferroportin and hepcidin are expressed in cultured human breast epithelial cells and that hepcidin regulates ferroportin in these cells. Further, ferroportin protein is substantially reduced in breast cancer cells compared to nonmalignant breast epithelial cells; ferroportin protein abundance correlates with metabolically available iron. Ferroportin protein is also present in normal human mammary tissue and markedly decreased in breast cancer tissue, with the highest degree of anaplasia associated with lowest ferroportin expression. Transfection of breast cancer cells with ferroportin significantly reduces their growth after orthotopic implantation in the mouse mammary fat pad. Gene expression profiles in breast cancers from >800 women reveal that decreased ferroportin gene expression is associated with a significant reduction in metastasis-free and disease-specific survival that is independent of other breast cancer risk factors. High ferroportin and low hepcidin gene expression identifies an extremely favorable cohort of breast cancer patients who have a 10-year survival of >90%. Ferroportin is a pivotal protein in breast biology and a strong and independent predictor of prognosis in breast cancer.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Fig. S1. Ferroportin mRNA and splice variants in breast epithelial cells.
Fig. S2. Assessment of hepcidin mRNA in breast cells by RT-PCR.
Fig. S3. Increased ferroportin expression decreases ferritin in breast cancer cells.
Fig. S4. Relative concentrations of ferroportin protein in MDA-MB-231 cells and transfectants and specific detection of ferroportin by Western blotting.
Fig. S5. Ferroportin protein is decreased in breast cancer.
Fig. S6. Signal intensities of ferroportin and hepcidin relative to control genes and other breast cancer genes in the Uppsala cohort.
Table S1. Ferroportin and hepcidin expression predict outcome in multivariate analyses.
References

Resources

File (2-43ra56-sm.pdf)

References and Notes

1
Thelander L., Gräslund A., Thelander M., Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: Possible regulation mechanism. Biochem. Biophys. Res. Commun. 110, 859–865 (1983).
2
Buss J. L., Torti F. M., Torti S. V., The role of iron chelation in cancer therapy. Curr. Med. Chem. 10, 1021–1034 (2003).
3
Cairo G., Bernuzzi F., Recalcati S., A precious metal: Iron, an essential nutrient for all cells. Genes Nutr. 1, 25–39 (2006).
4
Maffettone C., Chen G., Drozdov I., Ouzounis C., Pantopoulos K., Tumorigenic properties of iron regulatory protein 2 (IRP2) mediated by its specific 73-amino acids insert. PLoS One 5, e10163 (2010).
5
Chen G., Fillebeen C., Wang J., Pantopoulos K., Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts. Carcinogenesis 28, 785–791 (2007).
6
Whitnall M., Howard J., Ponka P., Richardson D. R., A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc. Natl. Acad. Sci. U.S.A. 103, 14901–14906 (2006).
7
Green D. A., Antholine W. E., Wong S. J., Richardson D. R., Chitambar C. R., Inhibition of malignant cell growth by 311, a novel iron chelator of the pyridoxal isonicotinoyl hydrazone class: Effect on the R2 subunit of ribonucleotide reductase. Clin. Cancer Res. 7, 3574–3579 (2001).
8
Karp J. E., Giles F. J., Gojo I., Morris L., Greer J., Johnson B., Thein M., Sznol M., Low J., A phase I study of the novel ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) in combination with the nucleoside analog fludarabine for patients with refractory acute leukemias and aggressive myeloproliferative disorders. Leuk. Res. 32, 71–77 (2008).
9
Rao V., Klein S., Agama K., Toyoda E., Adachi N., Pommier Y., Shacter E., The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIα in breast cancer cells. Cancer Res. 69, 948–957 (2009).
10
Abboud S., Haile D. J., A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912 (2000).
11
McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T. J., Farzaneh F., Hediger M. A., Hentze M. W., Simpson R. J., A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).
12
Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A., Law T. C., Brugnara C., Lux S. E., Pinkus G. S., Pinkus J. L., Kingsley P. D., Palis J., Fleming M. D., Andrews N. C., Zon L. I., Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).
13
Donovan A., Lima C. A., Pinkus J. L., Pinkus G. S., Zon L. I., Robine S., Andrews N. C., The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1, 191–200 (2005).
14
S. Marro, D. Chiabrando, E. Messana, J. Stolte, E. Turco, E. Tolosano, M. U. Muckenthaler, Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter. Haematologica, in press.
15
Zhang D. L., Hughes R. M., Ollivierre-Wilson H., Ghosh M. C., Rouault T. A., A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 9, 461–473 (2009).
16
Lymboussaki A., Pignatti E., Montosi G., Garuti C., Haile D. J., Pietrangelo A., The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J. Hepatol. 39, 710–715 (2003).
17
Nemeth E., Tuttle M. S., Powelson J., Vaughn M. B., Donovan A., Ward D. M., Ganz T., Kaplan J., Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).
18
De Domenico I., Nemeth E., Nelson J. M., Phillips J. D., Ajioka R. S., Kay M. S., Kushner J. P., Ganz T., Ward D. M., Kaplan J., The hepcidin-binding site on ferroportin is evolutionarily conserved. Cell Metab. 8, 146–156 (2008).
19
De Domenico I., Ward D. M., Langelier C., Vaughn M. B., Nemeth E., Sundquist W. I., Ganz T., Musci G., Kaplan J., The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol. Biol. Cell 18, 2569–2578 (2007).
20
Holmström P., Gåfvels M., Eriksson L. C., Dzikaite V., Hultcrantz R., Eggertsen G., Stål P., Expression of iron regulatory genes in a rat model of hepatocellular carcinoma. Liver Int. 26, 976–985 (2006).
21
Boult J., Roberts K., Brookes M. J., Hughes S., Bury J. P., Cross S. S., Anderson G. J., Spychal R., Iqbal T., Tselepis C., Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin. Cancer Res. 14, 379–387 (2008).
22
McKie A. T., Barlow D. J., The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1). Pflugers Arch. 447, 801–806 (2004).
23
Chen S., Zhu B., Yu L., In silico comparison of gene expression levels in ten human tumor types reveals candidate genes associated with carcinogenesis. Cytogenet. Genome Res. 112, 53–59 (2006).
24
Leong W. I., Lönnerdal B., Iron transporters in rat mammary gland: Effects of different stages of lactation and maternal iron status. Am. J. Clin. Nutr. 81, 445–453 (2005).
25
Elenbaas B., Spirio L., Koerner F., Fleming M. D., Zimonjic D. B., Donaher J. L., Popescu N. C., Hahn W. C., Weinberg R. A., Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).
26
Soule H. D., Maloney T. M., Wolman S. R., Peterson W. D., Brenz R., McGrath C. M., Russo J., Pauley R. J., Jones R. F., Brooks S. C., Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086 (1990).
27
Brooks S. C., Locke E. R., Soule H. D., Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J. Biol. Chem. 248, 6251–6253 (1973).
28
Sartor C. I., Dziubinski M. L., Yu C. L., Jove R., Ethier S. P., Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Res. 57, 978–987 (1997).
29
Ignatoski K. M., Ethier S. P., Constitutive activation of pp125fak in newly isolated human breast cancer cell lines. Breast Cancer Res. Treat. 54, 173–182 (1999).
30
Sørlie T., Perou C. M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M. B., van de Rijn M., Jeffrey S. S., Thorsen T., Quist H., Matese J. C., Brown P. O., Botstein D., Eystein Lønning P., Børresen-Dale A. L., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U.S.A. 98, 10869–10874 (2001).
31
Hall P., Ploner A., Bjöhle J., Huang F., Lin C. Y., Liu E. T., Miller L. D., Nordgren H., Pawitan Y., Shaw P., Skoog L., Smeds J., Wedrén S., Ohd J., Bergh J., Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: A cohort study. BMC Med. 4, 16 (2006).
32
Calza S., Hall P., Auer G., Bjöhle J., Klaar S., Kronenwett U., Liu E. T., Miller L., Ploner A., Smeds J., Bergh J., Pawitan Y., Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res. 8, R34 (2006).
33
Sorlie T., Tibshirani R., Parker J., Hastie T., Marron J. S., Nobel A., Deng S., Johnsen H., Pesich R., Geisler S., Demeter J., Perou C. M., Lønning P. E., Brown P. O., Børresen-Dale A. L., Botstein D., Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. U.S.A. 100, 8418–8423 (2003).
34
van de Vijver M. J., He Y. D., van’t Veer L. J., Dai H., Hart A. A., Voskuil D. W., Schreiber G. J., Peterse J. L., Roberts C., Marton M. J., Parrish M., Atsma D., Witteveen A., Glas A., Delahaye L., van der Velde T., Bartelink H., Rodenhuis S., Rutgers E. T., Friend S. H., Bernards R., A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).
35
Miller L. D., Smeds J., George J., Vega V. B., Vergara L., Ploner A., Pawitan Y., Hall P., Klaar S., Liu E. T., Bergh J., An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl. Acad. Sci. U.S.A. 102, 13550–13555 (2005).
36
Lee P. L., Beutler E., Regulation of hepcidin and iron-overload disease. Annu. Rev. Pathol. 4, 489–515 (2009).
37
Ivshina A. V., George J., Senko O., Mow B., Putti T. C., Smeds J., Lindahl T., Pawitan Y., Hall P., Nordgren H., Wong J. E., Liu E. T., Bergh J., Kuznetsov V. A., Miller L. D., Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 66, 10292–10301 (2006).
38
Zhang J., Liu X., Datta A., Govindarajan K., Tam W. L., Han J., George J., Wong C., Ramnarayanan K., Phua T. Y., Leong W. Y., Chan Y. S., Palanisamy N., Liu E. T., Karuturi K. M., Lim B., Miller L. D., RCP is a human breast cancer–promoting gene with Ras-activating function. J. Clin. Invest. 119, 2171–2183 (2009).
39
Faulk W. P., Hsi B. L., Stevens P. J., Transferrin and transferrin receptors in carcinoma of the breast. Lancet 2, 390–392 (1980).
40
Daniels T. R., Delgado T., Helguera G., Penichet M. L., The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells. Clin. Immunol. 121, 159–176 (2006).
41
Daniels T. R., Delgado T., Rodriguez J. A., Helguera G., Penichet M. L., The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 121, 144–158 (2006).
42
Wu K. J., Polack A., Dalla-Favera R., Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283, 676–679 (1999).
43
Tsuji Y., Kwak E., Saika T., Torti S. V., Torti F. M., Preferential repression of the H subunit of ferritin by adenovirus E1A in NIH-3T3 mouse fibroblasts. J. Biol. Chem. 268, 7270–7275 (1993).
44
Kakhlon O., Cabantchik Z. I., The labile iron pool: Characterization, measurement, and participation in cellular processes. Free Radic. Biol. Med. 33, 1037–1046 (2002).
45
Kakhlon O., Gruenbaum Y., Cabantchik Z. I., Ferritin expression modulates cell cycle dynamics and cell responsiveness to H-ras-induced growth via expansion of the labile iron pool. Biochem. J. 363, 431–436 (2002).
46
Nemeth E., Ganz T., Regulation of iron metabolism by hepcidin. Annu. Rev. Nutr. 26, 323–342 (2006).
47
Parker J. S., Mullins M., Cheang M. C., Leung S., Voduc D., Vickery T., Davies S., Fauron C., He X., Hu Z., Quackenbush J. F., Stijleman I. J., Palazzo J., Marron J. S., Nobel A. B., Mardis E., Nielsen T. O., Ellis M. J., Perou C. M., Bernard P. S., Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).
48
Paik S., Shak S., Tang G., Kim C., Baker J., Cronin M., Baehner F. L., Walker M. G., Watson D., Park T., Hiller W., Fisher E. R., Wickerham D. L., Bryant J., Wolmark N., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).
49
D. T. Horne, U. Scherf, J. Vockley, B2 Gene Logic Inc., U.S. Patent 6,974,667 (2005).
50
Rhodes D. R., Kalyana-Sundaram S., Mahavisno V., Varambally R., Yu J., Briggs B. B., Barrette T. R., Anstet M. J., Kincead-Beal C., Kulkarni P., Varambally S., Ghosh D., Chinnaiyan A. M., Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–180 (2007).
51
Winter J. L., Stackhouse B. L., Russell G. B., Kute T. E., Measurement of PTEN expression using tissue microarrays to determine a race-specific prognostic marker in breast cancer. Arch. Pathol. Lab. Med. 131, 767–772 (2007).
52
Deng Z., Wan M., Sui G., PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol. Cell. Biol. 27, 3780–3792 (2007).
53
Rubinson D. A., Dillon C. P., Kwiatkowski A. V., Sievers C., Yang L., Kopinja J., Rooney D. L., Zhang M., Ihrig M. M., McManus M. T., Gertler F. B., Scott M. L., Van Parijs L., A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).
54
Loi S., Haibe-Kains B., Desmedt C., Lallemand F., Tutt A. M., Gillet C., Ellis P., Harris A., Bergh J., Foekens J. A., Klijn J. G., Larsimont D., Buyse M., Bontempi G., Delorenzi M., Piccart M. J., Sotiriou C., Definition of clinically distinct molecular subtypes in estrogen receptor–positive breast carcinomas through genomic grade. J. Clin. Oncol. 25, 1239–1246 (2007).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Translational Medicine
Volume 2 | Issue 43
August 2010

Submission history

Received: 30 March 2010
Accepted: 14 July 2010

Permissions

Request permissions for this article.

Acknowledgments

Acknowledgments: We thank I. De Domenico and J. Kaplan for contributing the ferroportin expression clone and J. Buss for assistance in developing the calcein assay. Funding: Supported in part by grant R37DK42412 from the National Institute of Diabetes and Digestive and Kidney Diseases (F.M.T.), R01 DK071892 (S.V.T.), and by a minority supplement to R37DK42412 (Z.K.P.). Author contributions: Z.K.P. and L.D.M. performed the research and helped write the paper; W.W., T.K., M.C.W., H.H., L.T., and G.S. performed the research; R.D. analyzed the results; S.V.T. and F.M.T. provided funding, designed the research, and wrote the paper. Competing interests: The authors declare that they have no competing interests. Wake Forest University Health Sciences is planning to submit a patent application based on this work. Accession numbers: Accession numbers for the gene expression data are provided in the Microarray data set section of Materials and Methods.

Authors

Affiliations

Zandra K. Pinnix
Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Lance D. Miller
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Wei Wang
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Ralph D’Agostino, Jr.
Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Department of Biostatistics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Tim Kute
Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Mark C. Willingham
Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Heather Hatcher
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Lia Tesfay
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Guangchao Sui
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Xiumin Di
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Suzy V. Torti
Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Frank M. Torti* [email protected]
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Interpreting Iron Homeostasis in Congenital and Acquired Disorders, Pharmaceuticals, 16, 3, (329), (2023).https://doi.org/10.3390/ph16030329
    Crossref
  2. Highly Metastatic Subpopulation of TNBC Cells Has Limited Iron Metabolism and Is a Target of Iron Chelators, Cancers, 15, 2, (468), (2023).https://doi.org/10.3390/cancers15020468
    Crossref
  3. Molecular mechanism of the unusual biphasic effects of the natural compound hinokitiol on iron-induced cellular DNA damage, Free Radical Biology and Medicine, 194, (163-171), (2023).https://doi.org/10.1016/j.freeradbiomed.2022.11.042
    Crossref
  4. Elevated labile iron in castration–resistant prostate cancer is targetable with ferrous iron–activatable antiandrogen therapy, European Journal of Medicinal Chemistry, 249, (115110), (2023).https://doi.org/10.1016/j.ejmech.2023.115110
    Crossref
  5. Ferroptosis in life: To be or not to be, Biomedicine & Pharmacotherapy, 159, (114241), (2023).https://doi.org/10.1016/j.biopha.2023.114241
    Crossref
  6. Iron cycle disruption by heme oxygenase-1 activation leads to a reduced breast cancer cell survival, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1869, 3, (166621), (2023).https://doi.org/10.1016/j.bbadis.2022.166621
    Crossref
  7. Involvement of redox signalling in tumour cell dormancy and metastasis, Cancer and Metastasis Reviews, 42, 1, (49-85), (2023).https://doi.org/10.1007/s10555-022-10077-9
    Crossref
  8. High-Dose Vitamin C for Cancer Therapy, Pharmaceuticals, 15, 6, (711), (2022).https://doi.org/10.3390/ph15060711
    Crossref
  9. Mitochondrial Iron Metabolism: The Crucial Actors in Diseases, Molecules, 28, 1, (29), (2022).https://doi.org/10.3390/molecules28010029
    Crossref
  10. Iron Overload and Breast Cancer: Iron Chelation as a Potential Therapeutic Approach, Life, 12, 7, (963), (2022).https://doi.org/10.3390/life12070963
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media