Skip to main content
Log in

Kinematics of the outer pseudorings and the spiral structure of the Galaxy

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The kinematics of the outer rings and pseudorings is determined by two processes: the resonance tuning and the gas outflow. The resonance kinematics is clearly observed in the pure rings while the kinematics of the outflow is manifested itself in the pseudorings. The direction of systematical motions in the pure rings depends on the position angle of a point with respect to the bar major axis and on the class of the outer ring. The direction of the radial and azimuthal components of the residual velocities of young stars in the Perseus, Carina, and Sagittarius regions can be explained by the presence of the outer pseudoring of class R 1 R2 in the Galaxy. We present models which reproduce the values and directions of the residual velocities of OB-associations in the Perseus and Sagittarius regions and also model reproducing the directions of the residual velocities in the Perseus, Sagittarius, and Carina regions. The kinematics of the Sagittarius region accurately defines the solar position angle with respect to the bar elongation, θ b = 45° ± 5°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Athanassoula, Mon. Not. R. Astron. Soc. 259, 328 (1992).

    ADS  Google Scholar 

  2. V. S. Avedisova and J. Palous, BAICz 40, 42 (1989).

    ADS  Google Scholar 

  3. R. A. Benjamin, E. Churchwell, B. L. Babler, et al., Astrophys. J. 630, L149 (2005).

    Article  ADS  Google Scholar 

  4. L. N. Berdnikov, A. K. Dambis, and O. V. Vozyakova, Astron. Astrophys., Suppl. Ser. 143, 211 (2000).

    Article  ADS  Google Scholar 

  5. J. Binney and S. Tremaine, Galactic Dynamics, (Princeton Univ. Press, Princeton, NJ, 2008).

    MATH  Google Scholar 

  6. C. Blaha and R. M. Humphreys, Astron. J. 98, 1598 (1989).

    Article  ADS  Google Scholar 

  7. J. Brand and L. Blitz, Astron. Astrophys. 275, 67 (1993).

    ADS  Google Scholar 

  8. W. B. Burton, Astron. Astrophys. 10, 76 (1971).

    ADS  Google Scholar 

  9. W. B. Burton and T.M. Bania, Astron. Astrophys. 33, 425 (1974).

    ADS  Google Scholar 

  10. W. B. Burton and M. A. Gordon, Astron. Astrophys. 63, 7 (1978).

    ADS  Google Scholar 

  11. R. Buta, Astrophys. J, Suppl. Ser. 96, 39 (1995).

    Article  ADS  Google Scholar 

  12. R. Buta and F. Combes, Fund. Cosmic Physics 17, 95 (1996).

    ADS  Google Scholar 

  13. R. Buta, H. G. Corwin, and S. C. Odewahn, The de Vaucouleurs Atlas of Galaxies (Cambridge Univ. Press, 2007).

  14. R. Buta and D. A. Crocker, Astron. J. 102, 1715 (1991).

    Article  ADS  Google Scholar 

  15. G. Byrd, P. Rautiainen, H. Salo, R. Buta, and D. A. Crocker, Astron. J. 108, 476 (1994).

    Article  ADS  Google Scholar 

  16. A. Cabrera-Lavers, P. L. Hammersley, C. Gonzalez-Fernandez, et al. Astron. Astrophys. 465, 825 (2007).

    Article  ADS  Google Scholar 

  17. G. Contopoulos and Th. Papayannopoulos, Astron. Astrophys. 92, 33 (1980).

    ADS  MathSciNet  Google Scholar 

  18. A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Pis’ma Astron. Zh. 21, 331 (1995) [Astron. Lett. 21, 291 (1995)].

    ADS  Google Scholar 

  19. A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Pis’ma Astron. Zh. 27, 68 (2001) [Astron. Lett. 27, 58 (2001)].

    Google Scholar 

  20. Y. N. Efremov and T. G. Sitnik, Pis’ma Astron. Zh. 14, 817 (1988) [Astron. Lett. 14, 347 (1988)].

    ADS  Google Scholar 

  21. Y. N. Efremov, Astron. Astrophys. Trans. 15, 3 (1998).

    Article  ADS  Google Scholar 

  22. P. Englmaier and O. Gerhard, Celestial Mechanics and Dynamical Astronomy, 94, 369 (2006).

    Article  MATH  ADS  Google Scholar 

  23. C. D. Garmany and R. E. Stencel, Astron.Astrophys., Suppl. Ser. 94, 211 (1992).

    ADS  Google Scholar 

  24. Y. M. Georgelin and Y. P. Georgelin, Astron. Astrophys. 49, 57 (1976).

    ADS  Google Scholar 

  25. E. V. Glushkova, A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Astron. Astrophys. 329, 514 (1998).

    ADS  Google Scholar 

  26. H. J. Habing, M. N. Sevenster, M. Messineo, G. van de Ven, and K. Kuijken, Astron. Astrophys. 458, 151 (2006).

    Article  ADS  Google Scholar 

  27. R. M. Humphreys, Astrophys. J. 206, 114 (1976).

    Article  ADS  Google Scholar 

  28. R. M. Humphreys, in IAU Symp. No. 84: The Large-Scale Characteristics of the Galaxy, Ed. by W. B. Burton (Reidel, Dordrecht, 1979) p. 93.

    Google Scholar 

  29. A. J. Kalnajs, in Dynamics of Disc Galaxies, Ed. by B. Sundelius (Göteborgs Univ., Göteborg, 1991), p. 323.

    Google Scholar 

  30. J. Kovalevsky, Modern Astrometry (Berlin, New York: Springer, 2002).

    Google Scholar 

  31. C. C. Lin, in IAU Symp. No. 38: The Spiral Structure of our Galaxy, Ed. by W. Becker and G. Contopoulos (Reidel, Dordrecht, 1970) p. 377.

    Google Scholar 

  32. C. C. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155, 721 (1969).

    Article  ADS  Google Scholar 

  33. A. M. Mel’nik, Pis’ma Astron. Zh. 29, 349 (2003) [Astron. Lett. 29, 304 (2003)].

    Google Scholar 

  34. A. M. Mel’nik, Pis’ma Astron. Zh. 32, 9 (2006) [Astron. Lett. 32, 7 (2006)].

    Google Scholar 

  35. A. M. Mel’nik, A. K. Dambis, and A. S. Rastorguev, Pis’ma Astron. Zh. 27, 611 (2001) [Astron. Lett. 27, 521 (2001)].

    Google Scholar 

  36. P. Rautiainen and H. Salo, Astron. Astrophys. 348, 737 (1999).

    ADS  Google Scholar 

  37. P. Rautiainen and H. Salo, Astron. Astrophys. 362, 465 (2000).

    ADS  Google Scholar 

  38. P. Rautiainen, H. Salo, and E. Laurikainen, Astrophys. J. 631, L129 (2005).

    Article  ADS  Google Scholar 

  39. W. W. Roberts, Astrophys. J. 158, 123 (1969).

    Article  ADS  Google Scholar 

  40. M. Romero-Gómez, E. Athanassoula, J. J. Masdemont, and C. García-Gómez, Astron. Astrophys. 472, 63 (2007).

    Article  ADS  Google Scholar 

  41. D. Russeil, Astron. Astrophys. 397, 133 (2003).

    Article  ADS  Google Scholar 

  42. H. Salo, Astron. Astrophys. 243, 118 (1991).

    ADS  Google Scholar 

  43. M. P. Schwarz, Astrophys. J. 247, 77 (1981).

    Article  ADS  Google Scholar 

  44. M. P. Schwarz, Mon. Not. R. Astron. Soc. 209, 93 (1984).

    ADS  Google Scholar 

  45. T. G. Sitnik, Pis’ma Astron. Zh. 29, 356 (2003) [Astron. Lett. 29, 311 (2003)].

    Google Scholar 

  46. T. G. Sitnik and A. M. Mel’nik, Pis’ma Astron. Zh. 22, 471 (1996) [Astron. Lett. 22, 422 (1996)].

    ADS  Google Scholar 

  47. The Hipparcos and Tycho Catalogs, ESA SP-1200 (1997).

  48. J. P. Vallée, Astron. J. 130, 569 (2005).

    Article  ADS  Google Scholar 

  49. B. J. Weiner and J. A. Sellwood, Astrophys. J. 524, 112 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mel’nik.

Additional information

Published in Russian in Pis’ma v Astronomicheskiĭ Zhurnal, 2009, Vol. 35, No. 9, pp. 676–692.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mel’nik, A.M., Rautiainen, P. Kinematics of the outer pseudorings and the spiral structure of the Galaxy. Astron. Lett. 35, 609–624 (2009). https://doi.org/10.1134/S1063773709090047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773709090047

PACS numbers

Key words

Navigation