Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo

Publication: Genome
25 September 2008

Abstract

The first SSR-based genetic linkage map of Cucurbita moschata was created by integrating the maps of two F2 populations with one common parent developed from the crosses Waltham Butternut (WB) × Nigerian Local (NL) and ZHOU (a hull-less type) × WB. The integrated C. moschata map comprises 205 SSR markers and two morphological traits (Gr and n). The map is composed of 27 linkage groups with a marker density of 7 cM. Comparing the C. moschata map with the published Cucurbita pepo map, we found a high level of macrosynteny. Seventy-two of 76 common SSR markers between C. moschata and C. pepo were located in homologous linkage groups. These markers in general have conserved orders and similar genetic distances; they represent orthologous loci. A reference map based on these SSRs was obtained. No major chromosomal rearrangement between the two species could be detected at present, although four SSR markers were mapped in nonhomologous linkage groups. The comparative alignment of SSR markers did not provide any indication of a possible ancient polyploid origin of the species. The comparative mapping of C. moschata and C. pepo reported here will be useful for further studies on Cucurbit evolution, gene isolation, and breeding work.

Résumé

Une première carte génétique à base de marqueurs SSR pour le Cucurbita moschata a été produite en intégrant les cartes issues de deux populations F2 partageant un parent commun : Waltham Butternut (WB) × Nigerian Local (NL) et ZHOU (un type à graines nues) × WB. La carte intégrée du C. moschata compte 205 marqueurs SSR et deux caractères morphologiques (Gr et n). La carte compte 27 groupes de liaison et présente une densité moyenne d’un marqueur aux 7 cM. En comparant la carte du C. moschata avec celle publiée pour le Cucurbita pepo, les auteurs ont observé beaucoup de micro-synténie. Soixante-douze des 76 marqueurs SSR communs entre le C. moschata et le C. pepo étaient situés sur des groupes homéologues. En général, ces marqueurs affichent une conservation de l’ordre et des distances semblables, ce qui suggère des locus orthologues. Une carte de référence a été obtenue à l’aide de ces marqueurs. Aucun réarrangement chromosomique majeur entre les deux espèces n’a été détecté pour le moment, bien que quatre marqueurs SSR aient été assignés à des groupes de liaison non-homologues. L’alignement comparé des marqueurs SSR n’a fourni aucun indice d’une possible distante origine polyploïde pour ces espèces. La cartographie comparée du C. moschata et du C. pepo rapportée ici sera utile pour d’autres études sur l’évolution des cucurbitacées, le clonage de gènes et le travail de sélection.

Get full access to this article

View all available purchase options and get full access to this article.

References

Barreneche, T., Casasoli, M., Russell, K., Akkak, A., Meddour, H., Plomion, C., et al. 2004. Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor. Appl. Genet. 108: 558–566.
Baudracco-Arnas, S., and Pitrat, M. 1996. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor. Appl. Genet. 93: 57–64.
Bradeen, J.M., Staub, J.E., Wye, C., Antonise, R., and Peleman, J. 2001. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L). Genome, 44: 111–119.
Brown, R.N., and Myers, J.R. 2002. A genetic map of squash (Cucurbita ssp.) with randomly amplified polymorphic DNA markers and morphological markers. J. Am. Soc. Hortic. Sci. 127: 568–575.
Burke, J.M., Lai, Z., Salmaso, M., Nakazato, T., Tang, S., Heesacker, A., et al. 2004. Comparative mapping and rapid karyotypic evolution in the genus Helianthus. Genetics, 167: 449–457.
Cervera, M.T., Storme, V., Ivens, B., Gusmao, J., Liu, B.H., Hostyn, V., et al. 2001. Dense genetic linkage maps of three populus species (Populus deltoides, P. nigra and P.trichocarpa) based on AFLP and microsatellite markers. Genetics, 158: 787–809.
Chakravarti, A., Lasher, L.K., and Reefer, J.E. 1991. A maximum-likelihood method for estimating genome length using genetic linkage data. Genetics, 128: 175–182.
Choi, H.K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J.H., et al. 2004. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics, 166: 1463–1502.
Devey, M.E., Sewell, M.M., Uren, T.L., and Neale, D.B. 1999. Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor. Appl. Genet. 99: 656–662.
Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Caldere, F., Cosson, P., Howad, W., and Arus, P. 2004. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc. Natl. Acad. Sci. U.S.A. 101: 9891–9896.
Doganlar, S., Frary, A., Daunay, M.C., Lester, R.N., and Tanksley, S.D. 2002. A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the solanaceae. Genetics, 161: 1697–1711.
Doligez, A., Adam-Blondon, A.F., Cipriani, G., Di Gaspero, G., Laucou, V., Merdinoglu, D., et al. 2006. An integrated SSR map of grapevine based on five mapping populations. Theor. Appl. Genet. 113: 369–382.
Fazio, G., Staub, J.E., and Chung, S.M. 2002. Development and characterization of PCR markers in cucumber (Cucumis sativus L.). J. Am. Soc. Hortic. Sci. 127: 545–557.
Feuillet, C., and Keller, B. 2002. Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann. Bot. (Lond.), 89: 3–10.
Gerber, S., and Rodolphe, F. 1994. An estimation of the genome length of maritime pine (Pinus pinaster Ati). Theor. Appl. Genet. 88: 289–292.
Gong, L., Stift, G., Kofler, R., Pachner, M., and Lelley, T. 2008. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor. Appl. Genet. 117: 37–48.
Gonzalo, M.J., Oliver, M., Garcia-Mas, J., Monfort, A., Dolcet-Sanjuan, R., Katzir, N., et al. 2005. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor. Appl. Genet. 110: 802–811.
Hulbert, S.H., Ilott, T.W., Legg, E.J., Lincoln, S.E., Lander, E.S., and Michelmore, R.W. 1988. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics, 120: 947–958.
Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12: 172–175.
Lagercrantz, U. 1998. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 150: 1217–1228.
Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., and Newburg, L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1: 174–181.
Lee, Y.H., Jeon, H.J., Hong, K.H., and Kim, B.D. 1995. Use of random amplified polymorphic DNA for linkage group analysis in an interspecific cross hybrid F2 generation of Cucurbita. J. Korean Soc. Hortic. Sci. 36: 323–330.
Lincoln, S.E., Daly, M.J., and Lander, E.S. 1992. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report. 3rd ed. Whitehead Institute for Biomedical Research, Cambridge, Mass.
Loy, J.B. 2004. Morpho-Physiological aspects of productivity and quality in squash and pumpkins (Cucurbita ssp.). Crit. Rev. Plant Sci. 23: 337–363.
Myburg, A.A., Griffin, A.R., Sederoff, R.R., and Whetten, R.W. 2003. Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor. Appl. Genet. 107: 1028–1042.
Nishida, I., Sugiura, M., Enju, A., and Nakamura, M. 2000. A second gene for acyl-(acyl-carrier-protein):glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza, codes for an oleate-selective isozyme: molecular cloning and protein purification studies. Plant Cell Physiol. 41: 1381–1391.
Oliver, M., Garcia-Mas, J., Cardús, M., Pueyo, N., López-Sesé, A.I., Arroyo, M., et al. 2001. Construction of a reference linkage map of melon. Genome, 44: 836–845.
Paris, H.H. 2000. Quiescent intense (qi): a gene that affects young but not mature color intensity in Cucurbita pepo. J. Hered. 91: 333–339.
Paris, H.S., and Brown, R.N. 2005. The genes of pumpkin and squash. HortScience, 40: 1620–1630.
Phan, H.T.T., Ellwood, S.R., Hane, J.K., Ford, J.R., Materne, M., and Oliver, R.P. 2007. Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor. Appl. Genet. 114: 549–558.
Piquemal, J., Cinquin, E., Couton, F., Rondeau, C., Seignoret, E., Doucet, I., et al. 2005. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor. Appl. Genet. 111: 1514–1523.
Rieseberg, L.H. 2001. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16: 351–358.
Robinson, R.W. 1987. Inheritance of fruit skin color in Cucurbita moschata. Cucurbit Genet. Coop. Rep. 10: 84.
Robinson, R.W., and Decker-Walters, D.S. 1997. Cucurbits. CABI International, New York.
Sanjur, O.I., Piperno, D.R., Andres, T.C., and Wessel-Beaver, L. 2002. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from mitochondrial gene: implications for crop plant evolution and areas of origin. Proc. Natl. Acad. Sci. U.S.A. 99: 535–540.
Serquen, F.C., Bacher, J., and Staub, J.E. 1997. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol. Breed. 3: 257–268.
Sisko, M., Ivancic, A., and Bohanec, B. 2003. Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo-rescue technique. Plant Sci. 165: 663–669.
Stam, P. 1993. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J. 3: 739–744.
Van Ooijen, J.W., and Voorrips, R.E. 2001. Joinmap 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands.
Voorrips, R.E. 2002. Mapchart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77–78.
Wang, Y.H., Thomas, C.E., and Dean, R.A. 1997. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor. Appl. Genet. 95: 791–798.
Weeden, N.F. 1984. Isozyme studies indicate that the genus Cucurbita is an ancient tetraploid. Cucurbit Genet. Coop. Rep. 7: 84–85.
Weeden, N.F., and Robinson, R.W. 1986. Allozyme segregation ratios in the interspecific cross Cucurbita maxima × C. equadorensis suggest that hybrid breakdown is not caused by minor alterations in chromosome structure. Genetics, 114: 593–609.
Zhou, X.L. 1987. A study on the breeding of naked kernel pumpkin and its genetic behavior. Acta Hortic. Sin. 14: 114–118. [In Chinese with English abstract.]
Zhu, H., Choi, H.-K., Cook, D.R., and Shoemaker, R.C. 2005. Bridging model and crop legumes through comparative genomics. Plant Physiol. 137: 1189–1196.
Zraidi, A., Obermayer, R., Pachner, M., and Lelley, T. 2003. On the genetics and histology of the hull-less character of Styrian oil-pumpkin (Cucurbita pepo L.). Cucurbit Genet. Coop. Rep. 26: 57–61.
Zraidi, A., Stift, G., Pachner, M., Shojaeiyan, A., Gong, L., and Lelley, T. 2007. A consensus map for Cucurbita pepo. Mol. Breed. 20: 375–388.

Information & Authors

Information

Published In

cover image Genome
Genome
Volume 51Number 11November 2008
Pages: 878 - 887
Editor: Perry Gustafson

History

Received: 8 April 2008
Accepted: 28 June 2008
Version of record online: 25 September 2008

Permissions

Request permissions for this article.

Key Words

  1. microsatellite
  2. molecular mapping
  3. Cucurbita
  4. hull-less seed
  5. green rind

Mots-clés

  1. microsatellite
  2. cartographie moléculaire
  3. Cucurbita
  4. graines nues
  5. peau verte

Authors

Affiliations

L. Gong
University of Natural Resources and Applied Life Sciences, Vienna, Austria.
Department of Agrobiotechnology, IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
M. Pachner
University of Natural Resources and Applied Life Sciences, Vienna, Austria.
Department of Agrobiotechnology, IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
K. Kalai
University of Natural Resources and Applied Life Sciences, Vienna, Austria.
Department of Agrobiotechnology, IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
University of Natural Resources and Applied Life Sciences, Vienna, Austria.
Department of Agrobiotechnology, IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Identification of a Major-Effect Quantitative Trait Loci Associated with Begomovirus Resistance in Cucurbita moschata
2. Recent advances in genetics and breeding of pumpkin ( Cucurbita moschata Duch.)
3. Eco-friendly Synthesis of 2-Amino-4H-Chromene Catalysed by HRSPLAE and Anti-cancer Activity Studies
4. Omics in vegetable crops: Cucurbitaceae and Amaryllidaceae
5. The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative
6. Quantitative Trait Locus Analysis in Squash (Cucurbita moschata) Based on Simple Sequence Repeat Markers and Restriction Site-Associated DNA Sequencing Analysis
7. Construction of a High-Density Genetic Map and Analysis of Seed-Related Traits Using Specific Length Amplified Fragment Sequencing for Cucurbita maxima
8. Advances in Improvement of Pumpkin and Squashes
9. A High-Density EST-SSR-Based Genetic Map and QTL Analysis of Dwarf Trait in Cucurbita pepo L.
10. Population genetics of traditional landraces of Cucurbita pepo L., 1753 in the cloud forest in Baja Verapaz, Guatemala
11. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing
12. A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.)
13. Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo
14. Construction of a genetic linkage map of rootstock-used pumpkin using SSR markers and QTL analysis for cold tolerance
15. Cultivar-Based Introgression Mapping Reveals Wild Species-Derived Pm-0, the Major Powdery Mildew Resistance Locus in Squash
16. Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges
17. Genetic Resources of Pumpkins and Squash, Cucurbita spp.
18. Genetics and Genomics of Cucurbita spp.
19. Genetic Mapping of Complex Traits in Cucurbits
20. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.)
21. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita
22. Genetic Map Construction and Quantitative Trait Locus (QTL) Detection of Six Economic Traits Using an F2 Population of the Hybrid from Saccharina longissima and Saccharina japonica
23. Phenotypic and marker‐assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin ( Cucurbita pepo )
24. Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers
25. Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis
26. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping
27. Characterization of the small RNA component of leaves and fruits from four different cucurbit species
28. A genetic map of pineapple (Ananas comosus (L.) Merr.) including SCAR, CAPS, SSR and EST-SSR markers
29. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae)
30. Genetic Diversity Studies in Cucurbits Using Molecular Tools
31. Minor Cucurbits
32. Genome Mapping and QTL Analysis in Cucurbits
33. Molecular Genetic Mapping and Map-based Cloning
34. Breeding Squash and Pumpkins

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Genome

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media