Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Key characters uniting hemichordates and chordates: homologies or homoplasies?

Publication: Canadian Journal of Zoology
January 2005

Abstract

Four chordate characters — dorsal hollow nerve cord, notochord, gill slits, and endostyle — are compared morphologically, molecularly, and functionally with similar structures in hemichordates to assess their putative homologies. The dorsal hollow nerve cord and enteropneust neurocord are probably homoplasies. The neurocord (= collar cord) may be an autapomorphy of Enteropneusta that innervates a unique pair of muscles, the perihemal coelomic muscles. Despite the apparent lack of organ-level homology, chordates and enteropneusts share a common pattern of neurulation that preserves a "contact innervation" between neuro- and myo-epithelia, which may be the primitive deuterostome pattern of neuromuscular innervation. The chordate notochord and hemichordate stomochord are probably homoplasies. Other potential notochord antecedents in hemichordates are examined, but no clear homolog is identified. The comparative morphology of notochords suggests that the "stack-of-coins" developmental stage, retained into adulthood only by cephalochordates, is the plesiomorphic notochord form. Hemichordate and chordate gill slits are probably homologs, but only at the level of simple ciliated circular or oval pores, lacking a skeleton, as occur in adults of Cephalodiscus spp., developmentally in some enteropneusts, and in many urochordates. Functional morphology, I125-binding experiments, and genetic data suggest that endostylar function may reside in the entire pharyngeal lining of Enteropneusta and is not restricted to a specialized midline structure as in chordates. A cladistic analysis of Deuterostomia, based partly on homologs discussed in this paper, indicates a sister-taxon relationship between Urochordata and Vertebrata, with Cephalochordata as the plesiomorphic clade.

Résumé

Nous comparons quatre caractères des chordés — la corde nerveuse dorsale creuse, la notochorde, les fentes branchiales, l'endostyle — des points de vue morphologique, moléculaire et fonctionnel aux structures similaires chez les hémichordés afin d'évaluer les homologies putatives. La corde nerveuse dorsale creuse et la neurocorde des entéropneustes sont probablement des homoplasies. La neurocorde (= corde du collier) peut être une autapomorphie des entéropneustes qui innerve une paire spéciale de muscles, les muscles du coelome périhémal. Malgré l'absence apparente d'homologies entre les organes, les chordés et les entéropneustes possèdent en commun un même système de neurulation qui conserve une « innervation par contact » entre les épithéliums nerveux et musculaires, ce qui peut être un arrangement primitif de l'innervation neuromusculaire chez les deutérostomiens. La notochorde des chordés et la stomochorde des hémichordés sont probablement des homoplasies. Nous avons examiné d'autres antécédents potentiels de la notochorde chez les hémichordés, sans toutefois trouver d'homologie claire. La morphologie comparée des notochordes laisse croire que le stade de développement « en empilement de pièces de monnaie », retenu à l'état adulte seulement chez les céphalochordés, est l'état plésiomorphe de la notochorde. Les fentes branchiales des hémichordés et des chordés sont probablement homologues, mais seulement au stade de simples pores ciliés de forme ronde ou ovale et dépourvus de squelette que l'on retrouve chez les adultes de Cepahalodiscus spp. et au cours du développement chez quelques entéropneustes et plusieurs urochordés. La morphologie fonctionnelle, les expériences de liaison d'I125 et les données génétiques laissent croire que la fonction d'endostyle peut être dévolue à tout le tissu qui tapisse le pharynx chez les entéropneustes, plutôt qu'être restreinte à une structure spécialisée de la ligne médiane comme chez les chordés. Une analyse cladistique des deutérostomiens, basée en partie sur les homologies discutées dans notre travail, indique que les urochordés et les vertébrés sont des taxons-soeurs et que les céphalochordés sont le clade plésiomorphe correspondant.[Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

cover image Canadian Journal of Zoology
Canadian Journal of Zoology
Volume 83Number 1January 2005
Pages: 8 - 23

History

Version of record online: 15 February 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. The Cambrian fossil Pikaia, and the origin of chordate somites
2. Glide-reflection symmetry in deuterostomes: an evolutionary perspective
3. Evolutionary origin of the neural tube in basal deuterostomes
4. Body Plan Identity: A Mechanistic Model
5. Heterochrony and parallel evolution of echinoderm, hemichordate and cephalochordate internal bars
6. Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues
7. Lack of support for Deuterostomia prompts reinterpretation of the first Bilateria
8. Molecular insights into deuterostome evolution from hemichordate developmental biology
9. Development of the lamprey velum and implications for the evolution of the vertebrate jaw
10. Cambrian Tentaculate Worms and the Origin of the Hemichordate Body Plan
11. Is the Gill Skeleton of Acorn Worms (Enteropneusta) Similar to the Gill Skeleton of Amphioxus (Cephalochordata)?
12. Cardiogenesis with a focus on vasculogenesis and angiogenesis
13. The hemichordate pharynx and gill pores impose functional constraints at small and large body sizes
14. Ambulacrarians and the Ancestry of Deuterostome Nervous Systems
15. References
16. References
17. The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas
18. The eyes of Tullimonstrum reveal a vertebrate affinity
19. Xenacoelomorpha: a case of independent nervous system centralization?
20. References
21. Paedomorphosis and heterochrony in the origin and evolution of the class holothuroidea
22. Development of somites and their derivatives in amphioxus, and implications for the evolution of vertebrate somites
23. Evolution of the notochord
24. The deuterostome context of chordate origins
25. Hemichordates: Development
26. Genomic and Evolutionary Insights into Chordate Origins
27. Hemichordata
28. A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group
29. On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates
30. Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum
31. Hemichordate neurulation and the origin of the neural tube
32. Comparative anatomy of the heart–glomerulus complex of Cephalodiscus gracilis (Pterobranchia): structure, function, and phylogenetic implications
33. Pikaia gracilens Walcott: Stem Chordate, or Already Specialized in the Cambrian?
34. Tubicolous enteropneusts from the Cambrian period
35. Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes
36. Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo
37. Interrelationship and modularity of notochord and somites: a comparative view on zebrafish and chicken vertebral body development
38. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network
39. The Middle Cambrian fossil Pikaia and the evolution of chordate swimming
40. Checklist das ascídias (Tunicata, Ascidiacea) do Estado de São Paulo, Brasil
41. Improving animal phylogenies with genomic data
42. Acoelomorph flatworms are deuterostomes related to Xenoturbella
43. Elucidating Animal Phylogeny
44. Ontogeny of the collar cord: Neurulation in the hemichordate Saccoglossus kowalevskii
45. The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: Palaeoecological and palaeogeographical implications
46. The ascidian mouth opening is derived from the anterior neuropore: Reassessing the mouth/neural tube relationship in chordate evolution
47. Nearly complete rRNA genes assembled from across the metazoan animals: Effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction
48. Evolutionary Origins of Hearts
49. Re‐evaluating the palaeobiology and affinities of the Ctenocystoidea (Echinodermata)
50. Ascidian follicle cells: Multifunctional adjuncts to maturation and development
51. Distinguishing heat from light in debate over controversial fossils
52. Evolution and Phylogeny of Chordates
53. The amphioxus genome enlightens the evolution of the thyroid hormone signaling pathway
54. The origins of graptolites and other pterobranchs: a journey from ‘Polyzoa’
55. Additional molecular support for the new chordate phylogeny
56. cDNA Sequences for Transcription Factors and Signaling Proteins of the Hemichordate Saccoglossus kowalevskii : Efficacy of the Expressed Sequence Tag (EST) Approach for Evolutionary and Developmental Studies of a New Organism
57. Embryology of a planktonic tunicate reveals traces of sessility
58. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives
59. Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii
60. Old and New Concepts in EvoDevo
61. E
62. Ontogeny of the appendicularian Oikopleura dioica (Tunicata, Chordata) reveals characters similar to ascidian larvae with sessile adults
63. Development of the enteropneust Ptychodera flava : Ciliary bands and nervous system
64. Organizing chordates with an organizer
65. Ribosomal RNA genes and deuterostome phylogeny revisited: More cyclostomes, elasmobranchs, reptiles, and a brittle star
66. Muscle development in Ciona intestinalis requires the b-HLH myogenic regulatory factor gene Ci-MRF
67. Metazoan Phylogeny
68. Origins of the Chordate Central Nervous System: Insights from Hemichordates
69. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida
70. Common and divergent pathways in alternative developmental processes of ascidians
71. Evolution and Development of the Chordates: Collagen and Pharyngeal Cartilage
72. Tunicates and not cephalochordates are the closest living relatives of vertebrates
73. Reply to Nielsen
74. Historical introduction, overview, and reproductive biology of the protochordates

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Zoology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media