Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Thiamin deficiency on fetal brain development with and without prenatal alcohol exposure

Publication: Biochemistry and Cell Biology
15 September 2017

Abstract

Adequate thiamin levels are crucial for optimal health through maintenance of homeostasis and viability of metabolic enzymes, which require thiamine as a co-factor. Thiamin deficiency occurs during pregnancy when the dietary intake is inadequate or excessive alcohol is consumed. Thiamin deficiency leads to brain dysfunction because thiamin is involved in the synthesis of myelin and neurotransmitters (e.g., acetylcholine, γ-aminobutyric acid, glutamate), and its deficiency increases oxidative stress by decreasing the production of reducing agents. Thiamin deficiency also leads to neural membrane dysfunction, because thiamin is a structural component of mitochondrial and synaptosomal membranes. Similarly, in-utero exposure to alcohol leads to fetal brain dysfunction, resulting in negative effects such as fetal alcohol spectrum disorder (FASD). Thiamin deficiency and prenatal exposure to alcohol could act synergistically to produce negative effects on fetal development; however, this area of research is currently under-studied. This minireview summarizes the evidence for the potential role of thiamin deficiency in fetal brain development, with or without prenatal exposure to alcohol. Such evidence may influence the development of new nutritional strategies for preventing or mitigating the symptoms of FASD.

Résumé

Des niveaux adéquats de thiamine sont essentiels à une santé optimale en maintenant l’homéostasie et la viabilité des enzymes métaboliques qui utilisent la thiamine comme cofacteur. La déficience en thiamine durant la grossesse survient lorsque l’apport par la diète est insuffisant ou qu’une quantité excessive d’alcool est consommée. La déficience en thiamine mène à une dysfonction cérébrale à cause de son implication dans la synthèse de la myéline et des neurotransmetteurs (p.ex. l’acétylcholine, l’acide 32 γ-aminobutyrique, le glutamate) et elle accroit le stress oxydant en diminuant la production d’agents réducteurs. La déficience mène aussi au dysfonctionnement de la membrane neurale car la thiamine est une composante structurale des membranes mitochondriales et synaptiques. De la même façon, l’exposition à l’alcool in utero provoque une dysfonction du cerveau fœtal qui résulte en des effets indésirables tels les troubles du spectre de l’alcoolisation fœtale (TSAF). Les conséquences indésirables de la déficience en thiamine et de l’exposition prénatale à l’alcool pourraient résulter de leur action synergique sur le développement fœtal, mais ce domaine de recherche est sous-étudié. Cette synthèse résume les preuves du rôle potentiel de la déficience en thiamine dans le développement du cerveau fœtal avec ou sans exposition prénatale à l’alcool. De telles preuves pourraient influencer le développement de nouvelles stratégies nutritionnelles pour prévenir ou atténuer les symptômes des TSAF. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Amos W.H. Jr and Neal R.A. 1970. Isolation and identification of 3-(2′-methyl-4′-amino spyrimidylmethyl)-4-methylthiazole-sacetic acid (thiamine acetic acid) and 2-methyl-40 amino-5-formylaminomethylpyrimidine as metabolites of thiamine in the rat. J. Biol. Chem. 245: 5643–5648.
Bâ A. 2005. Functional vulnerability of developing central nervous system to maternal thiamine deficiencies in the rat. Dev. Psychobiol. 47: 408–414.
Bâ A. 2009. Alcohol and B1 vitamin deficiency-related stillbirths. J. Matern. Fetal Neonatal Med. 22: 452–457.
Bâ A. 2011. Comparative effects of alcohol and thiamine deficiency on the developing central nervous system. Behav. Brain Res. 225: 235–242.
Bâ A. 2013. Perinatal thiamine deficiency-induced spontaneous abortion and pup-killing responses in rat dams. Nutr. Neurosci. 16: 69–77.
Bâ A., Seri B.V., Aka A.J., Glin L., and Tako A. 1999. Comparative effects of developmental thiamine deficiencies and ethanol exposure on the morphometry of the CA3 pyramidal cells. Neurotoxicol. Teratol. 21: 579–586.
Bell J.M. and Stewart C.N. 2000. Effects of fetal and early postnatal thiamin deficiency on avoidance learning in rats. J. Nutr. 109: 1577–1583.
Black R.E. 2001. Micronutrients in pregnancy. Br. J. Nutr. 85: 193–197.
Buerstatte C.R., Behar K.L., Novotny E.J., and Lai J.C. 2000. Brain regional development of the activity of α-ketoglutarate dehydrogenase complex in the rat. Brain Res. Dev. Brain Res. 125: 139–145.
Butterworth R.F. 1993. Maternal thiamine deficiency a factor in intrauterine growth retardation. Ann. N.Y. Acad. Sci. 678: 325–329.
Butterworth R.F. 1995. Pathophysiology of alcoholic brain damage: Synergistic effects of ethanol, thiamine deficiency and alcoholic liver disease. Metab. Brain Dis. 10: 1–8.
Carpenter, K.J. 2000. Beriberi, white rice, and vitamin B: A disease, a cause, and a cure. University of California Press, Berkeley, Calif.
Cederbaum A.I. 2012. Alcohol metabolism. Clin. Liver Dis. 4: 667–685.
Chang N., Kim E., Kim S.Y., Jeong B.S., and Chang N. 2001. Study of the relation between proton magnetic resonance spectroscopy metabolites in the brain regions and the B vitamin status in alcoholics. Nutr. Res. 21: 811–820.
de Freitas-Silva D.M., de Souza Resende L., Pereira S.R.C., Franco G.C., and Ribeiro A.M. 2010. Maternal thiamine restriction during lactation induces cognitive impairments and changes in glutamate and GABA concentrations in brain of rat offspring. Behav. Brain Res. 211: 33–40.
Dias F.M.V., de Freitas Silva D.M., Costa de Proença Doyle F., and Ribeiro A.M. 2013. The connection between maternal thiamine shortcoming and offspring cognitive damage and poverty perpetuation in underprivileged communities across the world. Med. Hypotheses, 80: 13–16.
Dutta B., Huang W., Molero M., Kekuda R., Leibach F.H., Devoe L.D., et al. 1999. Cloning of the human thiamine transporter, a member of the folate transporter family. J. Biol. Chem. 274: 31925–31929.
Esper L.H. and Furtado E.F. 2014. Identifying maternal risk factors associated with Fetal Alcohol Spectrum Disorders: a systematic review. Eur. Child Adolesc. Psychiatry, 23: 877–889.
Fattal I., Friedmann N., and Fattal-Valevski A. 2011. The crucial role of thiamine in the development of syntax and lexical retrieval: A study of infantile thiamine deficiency. Brain, 6: 1720–1739.
Fattal-Valevski A., Kesler A., Sela B., Nitzan-Kaluski D., Rotstein M., Mesterman R., et al. 2005. Outbreak of life-threatening thiamine deficiency in infants in Israel caused by a defective soy-based formula. Pediatrics, 115: e233–e238.
Fattal-Valevski A., Azouri-Fattal I., Greenstein Y.J., Guindy M., Blau A., and Zelnik N. 2009. Delayed language development due to infantile thiamine deficiency. Dev. Med. Child Neurol. 51: 629–634.
Fournier H. and Butterworth R.F. 1989. Effects of maternal thiamine deficiency on the development of thiamine-dependent enzymes in regions of the rat brain. Neurochem. Int. 15: 439–444.
Ganapathy V., Smith S.B., and Prasad P.D. 2004. SLC19: the folate/thiamine transporter family. Pflugers Arch. 447: 641–646.
Geel S.E. and Dreyfus P.M. 1974. Thiamine deficiency encephalopathy in the developing rat. Brain Res. 76: 435–445.
Guerrini I., Thomson A.D., and Gurling H.D. 2007. The importance of alcohol misuse, malnutrition and genetic susceptibility on brain growth and plasticity. Neurosci. Biobehav. Rev. 31: 212–220.
Heinze T. and Weber W. 1990. Determination of thiamine (vitamin B1) in maternal blood during normal pregnancies and pregnancies with intrauterine growth retardation. Z. Ernährungswiss. 29: 39–46.
Homewood J.B. and Bond N.W. 1999. Thiamin deficiency and Korsakoff’s syndrome: failure to find memory impairments following nonalcoholic Wernicke’s encephalopathy. Alcohol, 19: 75–84.
Homewood J., Bond N.W., and MacKenzie A. 1997. The effects of single and repeated episodes of thiamin deficiency on memory in alcohol-consuming rats. Alcohol, 14: 81–91.
Institute of Medicine (IOM). 2014. Dietary reference intakes (DRIs).
Jeffrey H.E., McCleary B.V., Hensley W.J., and Read D.J. 1985. Thiamine deficiency — a neglected problem of infants and mothers — possible relationships to sudden infant death syndrome. Aust. N.Z. J. Obstet. Gynaecol. 25: 198–202.
Kril J. and Harper C. 2012. Neuroanatomy and neuropathology associated with Korsakoff’s syndrome. Neuropsychol. Rev. 22: 72–80.
Kulkarni A.B. and Gaitonde B.B. 1983. Effects of early thiamin deficiency and subsequent rehabilitation on the cholinergic system in developing rat brain. J. Nutr. Sci. Vitaminol. (Tokyo), 29: 217–225.
Langlais P., Zhang S., and Savage L. 1996. Neuropathology of thiamine deficiency: an update on the comparative analysis of human disorders and experimental models. Metab. Brain Dis. 11: 39–54.
Leevy C.M. 1982. Thiamin deficiency and alcoholism. Ann. N.Y. Acad. Sci. 378: 316–326.
Levin S., Roecklein B., and Mukherjee A. 1985. Intrauterine growth retardation caused by dietary biotin and thiamine deficiency in the rat. Res. Exp. Med. (Berl.), 185: 375–381.
Lewohl J.M., Crane D.I., and Dodd P.R. 1996. Alcohol, alcoholic brain damage, and GABAA receptor isoform gene expression. Neurochem. Int. 29: 677–684.
Lieber C.S. 2000. Alcohol: its metabolism and interaction with nutrients. Ann. Nutr. Rev. 20: 295–430.
Martin P., Levin S., Impeduglia G., Choe Y., Karanian J., and Mukherjee A. 1989. Thiamine deficiency in utero alters response to ethanol in adulthood. Psychopharmacology, 97: 253–256.
Martin P.R., Mccool B.A., and Singleton C.K. 1993. Genetic sensitivity to thiamine deficiency and development of alcoholic organic brain disease. Alcohol. Clin. Exp. Res. 17: 31–37.
Martin P.R., Singleton C.K., and Hiller-Sturmhofel S. 2003. The role of thiamine deficiency in alcoholic brain disease. Alcohol Res. Health, 27: 134–139.
Mayordomo F., Renau-Piqueras J., Megias L., Guerri C., Iborra F.J., Azorin L., and Ledig M. 1992. Cytochemical and stereological analysis of rat cortical astrocytes during development in primary culture. effect of prenatal exposure to ethanol. Int. J. Dev. Biol. 36: 311–321.
McLaren D.S., Docherty M.A., and Boyd D.H. 1981. Plasma thiamin pyrophosphate and erythrocyte transketolase in chronic alcoholism. Am. J. Clin. Nutr. 34: 1031–1033.
Miyazaki A., Sano M., Fukuwatari T., and Shibata K. 2012. Effects of ethanol consumption on the B-group vitamin contents of liver, blood and urine in rats. Br. J. Nutr. 108: 1034–1041.
Munujos P., Coll-Cantí J., Beleta J., González-Sastre F., and Gella F.J. 1996. Brain pyruvate oxidation in experimental thiamin-deficiency encephalopathy. Clin. Chim. Acta, 255: 13–25.
Nixon P.F. 2008. Glutamate export at the choroid plexus in health, thiamin deficiency, and ethanol intoxication: Review and hypothesis, (report). Alcohol. Clin. Exp. 32: 1339–1349.
Oliveira F.A., Galan T.D., Ribeiro A.M., and Cruz J.S. 2007. Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels. Brain Res. 1134: 79–86.
Rajgopal A., Edmondnson A., Goldman I.D., and Zhao R. 2001. SLC19A3 encodes a second thiamine transporter ThTr2. Biochim. Biophys. Acta, 1537: 175–178.
Reddy T.S. and Ramakrishnan C.V. 1982. Effects of maternal thiamine deficiency on the lipid composition of rat whole brain, gray matter and white matter. Neurochem. Int. 6: 495–499.
Sechi G. and Serra A. 2007. Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol. 6: 442–455.
Sheu K.F. and Blass J.P. 1999. The α-ketoglutarate dehydrogenase complex. Ann. N.Y. Acad. Sci. 893: 61–78.
Tallaksen C.M.E., Bohmer T., and Bell H. 1992. Blood and serum thiamin and thiamin phosphate esters concentrations in patients with alcohol dependence syndrome before and after thiamin treatment. Alcohol. Clin. Exp. Res. 16: 320–325.
The Human Protein Atlas. 2017. SciLifeLab. Available from http://www.proteinatlas.org/ENSG00000135917-SLC19A3/cancer.
Vaswani K K. 1985. Effect of neonatal thiamine and vitamin a deficiency on rat brain gangliosides. Life Sci. 37: 1107–1115.
Young J.K., Giesbrecht H.E., Eskin M.N., Aliani M., and Suh M. 2014. Nutrition implications for fetal alcohol spectrum disorder. Adv. Nutr. 5: 675–692.
Zhao R., Gao F., Wang Y., Diaz G.A., Gelb B.D., and Goldman I.D. 2001. Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells. J. Biol. Chem. 276: 1114–1118.

Information & Authors

Information

Published In

cover image Biochemistry and Cell Biology
Biochemistry and Cell Biology
Volume 96Number 2April 2018
Pages: 169 - 177

History

Received: 14 April 2017
Accepted: 29 August 2017
Accepted manuscript online: 15 September 2017
Version of record online: 15 September 2017

Notes

This Minireview is one of a selection of papers covering various aspects of fetal alcohol spectrum disorder (FASD).

Permissions

Request permissions for this article.

Key Words

  1. thiamin
  2. brain
  3. fetus
  4. alcohol
  5. fetal alcohol spectrum disorder

Mots-clés

  1. thiamine
  2. cerveau
  3. fœtus
  4. alcool
  5. troubles du spectre de l’alcoolisation fœtale

Authors

Affiliations

Olena Kloss
Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
N.A. Michael Eskin*
Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Miyoung Suh* [email protected]
Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

Notes

*
N.A. Michael Eskin and Miyoung Suh currently serve as Guest Editors; peer review and editorial decisions regarding this manuscript were handled by James Davie and Abraham Fainsod.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Biochemistry and Cell Biology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media