MR Imaging of Pediatric Bone Marrow

Published Online:https://doi.org/10.1148/rg.2016160056

This article reviews normal pediatric bone marrow (histologic composition, MR imaging appearance, normal marrow conversion), mimics of disease (heterogeneous red marrow, red marrow hyperplasia), and abnormal marrow (neoplastic replacement, treatment-related changes, edema-like marrow alterations).

The bone marrow is one of the largest organs in the body and is visible in every magnetic resonance (MR) imaging study. It is composed of a combination of hematopoietic red marrow and fatty yellow marrow, and its composition changes throughout life in response to normal maturation (red to yellow conversion) and stress (yellow to red reconversion). MR imaging is highly sensitive for detection of altered marrow signal intensity, and the T1-weighted spin-echo sequence provides the most robust contrast between yellow marrow and disease. Heterogeneous red marrow and red marrow hyperplasia can mimic marrow disease, but should be distinguished from neoplastic replacement (leukemia, lymphoma, primary bone sarcomas, hematogenous metastases) and expected posttreatment changes (radiation therapy, chemotherapy, colony-stimulating factor, bone marrow transplant). Nonneoplastic edema-like processes can also alter marrow signal intensity, including trauma, infection, inflammation (chronic recurrent multifocal osteomyelitis, juvenile inflammatory arthritis), altered biomechanics, and chronic regional pain syndrome. Unfortunately, MR imaging findings are often nonspecific and overlap among many of these vastly different causes. Therefore, a definitive diagnosis is reliant on a combination of imaging findings, clinical evaluation, laboratory assessment, and occasionally tissue analysis.

©RSNA, 2016

References

  • 1. Steiner RM, Mitchell DG, Rao VM, Schweitzer ME. Magnetic resonance imaging of diffuse bone marrow disease. Radiol Clin North Am 1993;31(2):383–409. MedlineGoogle Scholar
  • 2. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol 1998;27(9):471–483. Crossref, MedlineGoogle Scholar
  • 3. Dwek JR, Shapiro F, Laor T, Barnewolt CE, Jaramillo D. Normal gadolinium-enhanced MR images of the developing appendicular skeleton. II. Epiphyseal and metaphyseal marrow. AJR Am J Roentgenol 1997;169(1):191–196. Crossref, MedlineGoogle Scholar
  • 4. Burdiles A, Babyn PS. Pediatric bone marrow MR imaging. Magn Reson Imaging Clin N Am 2009;17(3):391–409, v. Crossref, MedlineGoogle Scholar
  • 5. Cohen MD, Klatte EC, Baehner R, et al. Magnetic resonance imaging of bone marrow disease in children. Radiology 1984;151(3):715–718. LinkGoogle Scholar
  • 6. Meyer JS, Siegel MJ, Farooqui SO, Jaramillo D, Fletcher BD, Hoffer FA. Which MRI sequence of the spine best reveals bone-marrow metastases of neuroblastoma? Pediatr Radiol 2005;35(8):778–785. Crossref, MedlineGoogle Scholar
  • 7. Subhawong TK, Wilky BA. Value added: functional MR imaging in management of bone and soft tissue sarcomas. Curr Opin Oncol 2015;27(4):323–331. Crossref, MedlineGoogle Scholar
  • 8. Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 2012;265(2):340–356. LinkGoogle Scholar
  • 9. Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine 2012;37(12):E736–E744. Crossref, MedlineGoogle Scholar
  • 10. Del Grande F, Tatizawa-Shiga N, Jalali Farahani S, Chalian M, Fayad LM. Chemical shift imaging: preliminary experience as an alternative sequence for defining the extent of a bone tumor. Quant Imaging Med Surg 2014;4(3):173–180. MedlineGoogle Scholar
  • 11. Ahlawat S, Khandheria P, Subhawong TK, Fayad LM. Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T. Eur J Radiol 2015;84(6):1091–1097. Crossref, MedlineGoogle Scholar
  • 12. Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. RadioGraphics 2014;34(5):1163–1177. LinkGoogle Scholar
  • 13. Chavhan GB, Alsabban Z, Babyn PS. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications. RadioGraphics 2014;34(3):E73–E88. LinkGoogle Scholar
  • 14. Herrmann J, Krstin N, Schoennagel BP, et al. Age-related distribution of vertebral bone-marrow diffusivity. Eur J Radiol 2012;81(12):4046–4049. Crossref, MedlineGoogle Scholar
  • 15. Zhang J, Cheng K, Ding Y, et al. Study of single voxel 1H MR spectroscopy of bone tumors: differentiation of benign from malignant tumors. Eur J Radiol 2013;82(12):2124–2128. Crossref, MedlineGoogle Scholar
  • 16. Fayad LM, Bluemke DA, McCarthy EF, Weber KL, Barker PB, Jacobs MA. Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization. J Magn Reson Imaging 2006;23(1):23–28. Crossref, MedlineGoogle Scholar
  • 17. Fukuda Y, Ando K, Ishikura R, et al. Superparamagnetic iron oxide (SPIO) MRI contrast agent for bone marrow imaging: differentiating bone metastasis and osteomyelitis. Magn Reson Med Sci 2006;5(4):191–196. Crossref, MedlineGoogle Scholar
  • 18. Atkin KL, Ditchfield MR. The role of whole-body MRI in pediatric oncology. J Pediatr Hematol Oncol 2014; 36(5):342–352. Crossref, MedlineGoogle Scholar
  • 19. Darge K, Jaramillo D, Siegel MJ. Whole-body MRI in children: current status and future applications. Eur J Radiol 2008;68(2):289–298. Crossref, MedlineGoogle Scholar
  • 20. Goo HW. Regional and whole-body imaging in pediatric oncology. Pediatr Radiol 2011;41(suppl 1):S186–S194. Crossref, MedlineGoogle Scholar
  • 21. Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 2011;261(3):700–718. LinkGoogle Scholar
  • 22. Kumar J, Seith A, Kumar A, et al. Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 2008;38(9):953–962. Crossref, MedlineGoogle Scholar
  • 23. Bracken J, Nandurkar D, Radhakrishnan K, Ditchfield M. Normal paediatric bone marrow: magnetic resonance imaging appearances from birth to 5 years. J Med Imaging Radiat Oncol 2013;57(3):283–291. Crossref, MedlineGoogle Scholar
  • 24. Laor T, Jaramillo D. MR imaging insights into skeletal maturation: what is normal? Radiology 2009;250(1):28–38. LinkGoogle Scholar
  • 25. Jaramillo D, Laor T, Hoffer FA, et al. Epiphyseal marrow in infancy: MR imaging. Radiology 1991;180(3):809–812. LinkGoogle Scholar
  • 26. Emery JL, Follett GF. Regression of bone-marrow haemopoiesis from the terminal digits in the fœtus and infant. Br J Haematol 1964;10(4):485–489. Crossref, MedlineGoogle Scholar
  • 27. Waitches G, Zawin JK, Poznanski AK. Sequence and rate of bone marrow conversion in the femora of children as seen on MR imaging: are accepted standards accurate? AJR Am J Roentgenol 1994;162(6):1399–1406. Crossref, MedlineGoogle Scholar
  • 28. Moore SG, Dawson KL. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 1990;175(1):219–223. LinkGoogle Scholar
  • 29. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol 1967;94(2):275–291. Crossref, MedlineGoogle Scholar
  • 30. Byrd SE, Comiskey EM. Postnatal maturation and radiology of the growing spine. Neurosurg Clin N Am 2007;18(3):431–461. Crossref, MedlineGoogle Scholar
  • 31. Taccone A, Oddone M, Occhi M, Dell’Acqua AD, Ciccone MA. MRI “road-map” of normal age-related bone marrow. I. Cranial bone and spine. Pediatr Radiol 1995;25(8):588–595. Crossref, MedlineGoogle Scholar
  • 32. Sebag GH, Dubois J, Tabet M, Bonato A, Lallemand D. Pediatric spinal bone marrow: assessment of normal age-related changes in the MRI appearance. Pediatr Radiol 1993;23(7):515–518. Crossref, MedlineGoogle Scholar
  • 33. Ricci C, Cova M, Kang YS, et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 1990;177(1):83–88. LinkGoogle Scholar
  • 34. Sze G, Bravo S, Baierl P, Shimkin PM. Developing spinal column: gadolinium-enhanced MR imaging. Radiology 1991;180(2):497–502. LinkGoogle Scholar
  • 35. Dawson KL, Moore SG, Rowland JM. Age-related marrow changes in the pelvis: MR and anatomic findings. Radiology 1992;183(1):47–51. LinkGoogle Scholar
  • 36. Levine CD, Schweitzer ME, Ehrlich SM. Pelvic marrow in adults. Skeletal Radiol 1994;23(5):343–347. Crossref, MedlineGoogle Scholar
  • 37. Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull’s-eyes and halos: useful MR discriminators of osseous metastases. Radiology 1993;188(1):249–252. LinkGoogle Scholar
  • 38. Babyn PS, Ranson M, McCarville ME. Normal bone marrow: signal characteristics and fatty conversion. Magn Reson Imaging Clin N Am 1998;6(3):473–495. Crossref, MedlineGoogle Scholar
  • 39. Foster K, Chapman S, Johnson K. MRI of the marrow in the paediatric skeleton. Clin Radiol 2004;59(8):651–673. Crossref, MedlineGoogle Scholar
  • 40. Richardson ML, Lough LR, Shuman WP, Lazerte GD, Conrad EU. MR appearance of skeletal neoplasms following cryotherapy. Skeletal Radiol 1994;23(2):121–125. Crossref, MedlineGoogle Scholar
  • 41. Lonergan GJ, Cline DB, Abbondanzo SL. Sickle cell anemia. RadioGraphics 2001;21(4):971–994. LinkGoogle Scholar
  • 42. Vogler JB III, Murphy WA. Bone marrow imaging. Radiology 1988;168(3):679–693. LinkGoogle Scholar
  • 43. Pathria MN, Issacs P. Magnetic resonance imaging of bone marrow. Curr Opin Radiol 1992;4(6):21–31. MedlineGoogle Scholar
  • 44. Gongidi P, Johnson C, Dinan D. Scurvy in an autistic child: MRI findings. Pediatr Radiol 2013;43(10):1396–1399. Crossref, MedlineGoogle Scholar
  • 45. Bowden DJ, Kilburn-Toppin F, Scoffings DJ. Radiology of eating disorders: a pictorial review. RadioGraphics 2013;33(4):1171–1193. LinkGoogle Scholar
  • 46. Guillerman RP. Marrow: red, yellow and bad. Pediatr Radiol 2013;43(suppl 1):S181–S192. Crossref, MedlineGoogle Scholar
  • 47. Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging 1997;7(2):394–398. Crossref, MedlineGoogle Scholar
  • 48. Ruzal-Shapiro C, Berdon WE, Cohen MD, Abramson SJ. MR imaging of diffuse bone marrow replacement in pediatric patients with cancer. Radiology 1991;181(2):587–589. LinkGoogle Scholar
  • 49. Vesterby A, Myhre Jensen O. Aseptic bone/bone marrow necrosis in leukaemia. Scand J Haematol 1985;35(3):354–357. Crossref, MedlineGoogle Scholar
  • 50. Nies BA, Kundel DW, Thomas LB, Freireich EJ. Leukopenia, bone pain, and bone necrosis in patients with acute leukemia: a clinicopathologic complex. Ann Intern Med 1965;62:698–705. Crossref, MedlineGoogle Scholar
  • 51. Mitchell DG, Rao VM, Dalinka MK, et al. Femoral head avascular necrosis: correlation of MR imaging, radiographic staging, radionuclide imaging, and clinical findings. Radiology 1987;162(3):709–715. LinkGoogle Scholar
  • 52. Saini A, Saifuddin A. MRI of osteonecrosis. Clin Radiol 2004;59(12):1079–1093. Crossref, MedlineGoogle Scholar
  • 53. Janssens AM, Offner FC, Van Hove WZ. Bone marrow necrosis. Cancer 2000;88(8):1769–1780. Crossref, MedlineGoogle Scholar
  • 54. Tang YM, Jeavons S, Stuckey S, Middleton H, Gill D. MRI features of bone marrow necrosis. AJR Am J Roentgenol 2007;188(2):509–514. Crossref, MedlineGoogle Scholar
  • 55. Paydas S, Ergin M, Baslamisli F, et al. Bone marrow necrosis: clinicopathologic analysis of 20 cases and review of the literature. Am J Hematol 2002;70(4):300–305. Crossref, MedlineGoogle Scholar
  • 56. Macfarlane SD, Tauro GP. Acute lymphocytic leukemia in children presenting with bone marrow necrosis. Am J Hematol 1986;22(4):341–346. Crossref, MedlineGoogle Scholar
  • 57. Brown CH 3rd. Bone marrow necrosis: a study of seventy cases. Johns Hopkins Med J 1972;131(3):189–203. MedlineGoogle Scholar
  • 58. Krishnan A, Shirkhoda A, Tehranzadeh J, Armin AR, Irwin R, Les K. Primary bone lymphoma: radiographic–MR imaging correlation. RadioGraphics 2003;23(6):1371–1383;discussion 1384–1387. LinkGoogle Scholar
  • 59. Linden A, Zankovich R, Theissen P, Diehl V, Schicha H. Malignant lymphoma: bone marrow imaging versus biopsy. Radiology 1989;173(2):335–339. LinkGoogle Scholar
  • 60. Kricun ME. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol 1985;14(1):10–19. Crossref, MedlineGoogle Scholar
  • 61. Algra PR, Bloem JL, Tissing H, Falke TH, Arndt JW, Verboom LJ. Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. RadioGraphics 1991;11(2):219–232. LinkGoogle Scholar
  • 62. Yankelevitz DF, Henschke CI, Knapp PH, Nisce L, Yi Y, Cahill P. Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. AJR Am J Roentgenol 1991;157(1):87–92. Crossref, MedlineGoogle Scholar
  • 63. Stevens SK, Moore SG, Kaplan ID. Early and late bone-marrow changes after irradiation: MR evaluation. AJR Am J Roentgenol 1990;154(4):745–750. Crossref, MedlineGoogle Scholar
  • 64. Sacks EL, Goris ML, Glatstein E, Gilbert E, Kaplan HS. Bone marrow regeneration following large field radiation: influence of volume, age, dose, and time. Cancer 1978;42(3):1057–1065. Crossref, MedlineGoogle Scholar
  • 65. Cavenagh EC, Weinberger E, Shaw DW, White KS, Geyer JR. Hematopoietic marrow regeneration in pediatric patients undergoing spinal irradiation: MR depiction. AJNR Am J Neuroradiol 1995;16(3):461–467. MedlineGoogle Scholar
  • 66. Otake S, Mayr NA, Ueda T, Magnotta VA, Yuh WT. Radiation-induced changes in MR signal intensity and contrast enhancement of lumbosacral vertebrae: do changes occur only inside the radiation therapy field? Radiology 2002;222(1):179–183. LinkGoogle Scholar
  • 67. Blomlie V, Rofstad EK, Skjønsberg A, Tverå K, Lien HH. Female pelvic bone marrow: serial MR imaging before, during, and after radiation therapy. Radiology 1995;194(2):537–543. LinkGoogle Scholar
  • 68. Libshitz HI, Cohen MA. Radiation-induced osteochondromas. Radiology 1982;142(3):643–647. LinkGoogle Scholar
  • 69. Roebuck DJ. Skeletal complications in pediatric oncology patients. RadioGraphics 1999;19(4):873–885. LinkGoogle Scholar
  • 70. Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol 2007;17(3):743–761. Crossref, MedlineGoogle Scholar
  • 71. Ecklund K, Laor T, Goorin AM, Connolly LP, Jaramillo D. Methotrexate osteopathy in patients with osteosarcoma. Radiology 1997;202(2):543–547. LinkGoogle Scholar
  • 72. Schwartz AM, Leonidas JC. Methotrexate osteopathy. Skeletal Radiol 1984;11(1):13–16. Crossref, MedlineGoogle Scholar
  • 73. Fletcher BD. Effects of pediatric cancer therapy on the musculoskeletal system. Pediatr Radiol 1997;27(8):623–636. Crossref, MedlineGoogle Scholar
  • 74. Fletcher BD, Wall JE, Hanna SL. Effect of hematopoietic growth factors on MR images of bone marrow in children undergoing chemotherapy. Radiology 1993;189(3):745–751. LinkGoogle Scholar
  • 75. Tanner SF, Clarke J, Leach MO, et al. MRI in the evaluation of late bone marrow changes following bone marrow transplantation. Br J Radiol 1996;69(828):1145–1151. Crossref, MedlineGoogle Scholar
  • 76. Rios AM, Rosenberg ZS, Bencardino JT, Rodrigo SP, Theran SG. Bone marrow edema patterns in the ankle and hindfoot: distinguishing MRI features. AJR Am J Roentgenol 2011;197(4):W720–W729. Crossref, MedlineGoogle Scholar
  • 77. Mizuta T, Benson WM, Foster BK, Paterson DC, Morris LL. Statistical analysis of the incidence of physeal injuries. J Pediatr Orthop 1987;7(5):518–523. Crossref, MedlineGoogle Scholar
  • 78. Jaramillo D, Shapiro F. Musculoskeletal trauma in children. Magn Reson Imaging Clin N Am 1998;6(3):521–536. Crossref, MedlineGoogle Scholar
  • 79. Lazzarini KM, Troiano RN, Smith RC. Can running cause the appearance of marrow edema on MR images of the foot and ankle? Radiology 1997;202(2):540–542. LinkGoogle Scholar
  • 80. Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR Am J Roentgenol 2002;179(3):641–644. Crossref, MedlineGoogle Scholar
  • 81. Grampp S, Henk CB, Mostbeck GH. Overuse edema in the bone marrow of the hand: demonstration with MRI. J Comput Assist Tomogr 1998;22(1):25–27. Crossref, MedlineGoogle Scholar
  • 82. Barnett LS. Little League shoulder syndrome: proximal humeral epiphyseolysis in adolescent baseball pitchers—a case report. J Bone Joint Surg Am 1985;67(3):495–496. Crossref, MedlineGoogle Scholar
  • 83. Dwek JR, Cardoso F, Chung CB. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist. Pediatr Radiol 2009;39(12):1310–1316. Crossref, MedlineGoogle Scholar
  • 84. Laor T, Wall EJ, Vu LP. Physeal widening in the knee due to stress injury in child athletes. AJR Am J Roentgenol 2006;186(5):1260–1264. Crossref, MedlineGoogle Scholar
  • 85. Rogers LF. The radiography of epiphyseal injuries. Radiology 1970;96(2):289–299. LinkGoogle Scholar
  • 86. Zbojniewicz AM, Laor T. Focal periphyseal edema (FOPE) zone on MRI of the adolescent knee: a potentially painful manifestation of physiologic physeal fusion? AJR Am J Roentgenol 2011;197(4):998–1004. Crossref, MedlineGoogle Scholar
  • 87. Scott RJ, Christofersen MR, Robertson WW Jr, Davidson RS, Rankin L, Drummond DS. Acute osteomyelitis in children: a review of 116 cases. J Pediatr Orthop 1990;10(5):649–652. Crossref, MedlineGoogle Scholar
  • 88. Dartnell J, Ramachandran M, Katchburian M. Haematogenous acute and subacute paediatric osteomyelitis: a systematic review of the literature. J Bone Joint Surg Br 2012;94(5):584–595. Crossref, MedlineGoogle Scholar
  • 89. Browne LP, Mason EO, Kaplan SL, Cassady CI, Krishnamurthy R, Guillerman RP. Optimal imaging strategy for community-acquired Staphylococcus aureus musculoskeletal infections in children. Pediatr Radiol 2008;38(8):841–847. Crossref, MedlineGoogle Scholar
  • 90. Jaramillo D. Infection: musculoskeletal. Pediatr Radiol 2011;41(suppl 1):S127–S134. Crossref, MedlineGoogle Scholar
  • 91. Averill LW, Hernandez A, Gonzalez L, Peña AH, Jaramillo D. Diagnosis of osteomyelitis in children: utility of fat-suppressed contrast-enhanced MRI. AJR Am J Roentgenol 2009;192(5):1232–1238. Crossref, MedlineGoogle Scholar
  • 92. Pugmire BS, Shailam R, Gee MS. Role of MRI in the diagnosis and treatment of osteomyelitis in pediatric patients. World J Radiol 2014;6(8):530–537. Crossref, MedlineGoogle Scholar
  • 93. Cohen MD, Cory DA, Kleiman M, Smith JA, Broderick NJ. Magnetic resonance differentiation of acute and chronic osteomyelitis in children. Clin Radiol 1990;41(1):53–56. Crossref, MedlineGoogle Scholar
  • 94. Falip C, Alison M, Boutry N, et al. Chronic recurrent multifocal osteomyelitis (CRMO): a longitudinal case series review. Pediatr Radiol 2013;43(3):355–375. Crossref, MedlineGoogle Scholar
  • 95. Manson D, Wilmot DM, King S, Laxer RM. Physeal involvement in chronic recurrent multifocal osteomyelitis. Pediatr Radiol 1989;20(1-2):76–79. Crossref, MedlineGoogle Scholar
  • 96. Fritz J, Tzaribatchev N, Claussen CD, Carrino JA, Horger MS. Chronic recurrent multifocal osteomyelitis: comparison of whole-body MR imaging with radiography and correlation with clinical and laboratory data. Radiology 2009;252(3):842–851. LinkGoogle Scholar
  • 97. Duffy CM, Lam PY, Ditchfield M, Allen R, Graham HK. Chronic recurrent multifocal osteomyelitis: review of orthopaedic complications at maturity. J Pediatr Orthop 2002;22(4):501–505. Crossref, MedlineGoogle Scholar
  • 98. Martel W, Holt JF, Cassidy JT. Roentgenologic manifestations of juvenile rheumatoid arthritis. Am J Roentgenol Radium Ther Nucl Med 1962;88:400–423. MedlineGoogle Scholar
  • 99. Williams RA, Ansell BM. Radiological findings in seropositive juvenile chronic arthritis (juvenile rheumatoid arthritis) with particular reference to progression. Ann Rheum Dis 1985;44(10):685–693. Crossref, MedlineGoogle Scholar
  • 100. Schweitzer ME, White LM. Does altered biomechanics cause marrow edema? Radiology 1996;198(3):851–853. LinkGoogle Scholar
  • 101. Elias I, Zoga AC, Schweitzer ME, Ballehr L, Morrison WB, Raikin SM. A specific bone marrow edema around the foot and ankle following trauma and immobilization therapy: pattern description and potential clinical relevance. Foot Ankle Int 2007;28(4):463–471. Crossref, MedlineGoogle Scholar
  • 102. Pal CR, Tasker AD, Ostlere SJ, Watson MS. Heterogeneous signal in bone marrow on MRI of children’s feet: a normal finding? Skeletal Radiol 1999;28(5):274–278. Crossref, MedlineGoogle Scholar
  • 103. Shabshin N, Schweitzer ME, Morrison WB, Carrino JA, Keller MS, Grissom LE. High-signal T2 changes of the bone marrow of the foot and ankle in children: red marrow or traumatic changes? Pediatr Radiol 2006;36(7):670–676. Crossref, MedlineGoogle Scholar
  • 104. Santori FS, Calvisi V, Manili M, Gambini A. Regional migratory osteoporosis. Ital J Orthop Traumatol 1985;11(3):371–380. MedlineGoogle Scholar
  • 105. Tan EC, van de Sandt-Renkema N, Krabbe PF, Aronson DC, Severijnen RS. Quality of life in adults with childhood-onset of complex regional pain syndrome type I. Injury 2009;40(8):901–904. Crossref, MedlineGoogle Scholar
  • 106. Bruehl S. Complex regional pain syndrome. BMJ 2015;351:h2730. Crossref, MedlineGoogle Scholar
  • 107. Albazaz R, Wong YT, Homer-Vanniasinkam S. Complex regional pain syndrome: a review. Ann Vasc Surg 2008;22(2):297–306. Crossref, MedlineGoogle Scholar

Article History

Received: Mar 11 2016
Revision requested: Apr 19 2016
Revision received: May 9 2016
Accepted: June 1 2016
Published online: Oct 11 2016
Published in print: Oct 2016