Skip to main content

Advertisement

Log in

Do Molecular Clocks Run at All? A Critique of Molecular Systematics

  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Although molecular systematists may use the terminology of cladism, claiming that the reconstruction of phylogenetic relationships is based on shared derived states (synapomorphies), the latter is not the case. Rather, molecular systematics is (largely) based on the assumption, first clearly articulated by Zuckerkandl and Pauling (1962), that degree of overall similarity reflects degree of relatedness. This assumption derives from interpreting molecular similarity (or dissimilarity) between taxa in the context of a Darwinian model of continual and gradual change. Review of the history of molecular systematics and its claims in the context of molecular biology reveals that there is no basis for the “molecular assumption.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews P, Tekkaya I (1980) A revision of the Turkish Miocene hominoid Sivapithecus meteai. Paleontology 23: 86–95.

    Google Scholar 

  • Andrews PJ (2000) Conflicts between molecular and morphological evidence. In: Encyclopaedia of Human Evolution and Prehistory (Tattersall I, Delson E, Van Couvering J, Brooks AS, eds), 446–448. New York: Garland.

    Google Scholar 

  • Andrews PJ, Cronin JE (1982) The relationships of Sivapithecus and Ramapithecus and the evolution of the orang-utan. Nature 297: 541–546.

    Article  Google Scholar 

  • Awadella P, Eyre-Walker A, Maynard Smith J (1999) Linkage disequilibrum and recombination in hominid mitochondrial DNA. Science 286: 2545–2525.

    Google Scholar 

  • Bashford D, Chothia C, Lesk AM (1987) Determinants of a protein fold: Unique features of the globin amino acid sequences. Journal of Molecular Biology 196: 199–216.

    Article  Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161: 529–540.

    Article  Google Scholar 

  • Brown WM, George MJ, Wilson AC (1979) Rapid evolution of mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA 76: 1967–1971.

    Article  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: Tempo and mode of evolution. Journal of Molecular Evolution 18: 225–239.

    Article  Google Scholar 

  • Caccone A, Powell JR (1989) DNA divergence among hominoids. Evolution 43: 925–942.

    Article  Google Scholar 

  • Chen F-C, Li W-H (2001) Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. American Journal of Human Genetics 68: 444–456.

    Article  Google Scholar 

  • Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Molecular Biology and Evolution 21: 1146–1151.

    Article  Google Scholar 

  • Copley RR, Letunic I, Bork P (2001) Genome and protein evolution in eukaryotes. Current Option in Chemical Biology 6: 39–45.

    Article  Google Scholar 

  • Czelusniak J, Goodman M, Moncrief ND, Kehoe SM (1990) Maximum parsimony approach to construction of evolutionary trees from aligned homologous sequences. Methods in Enzymology 183: 601–615.

    Google Scholar 

  • Darwin C (1859) On The Origin of Species by Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Life. London: John Murray.

    Google Scholar 

  • Darwin C (1868) The Variation of Animals and Plants under Domestication. London: John Murray.

    Google Scholar 

  • Eisen JA (2000) Assessing evolutionary relationships among microbes from whole-genome analysis. Current Opinion in Microbiology 3: 475–180.

    Article  Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic Patterns and the Evolutionary Process: Method and Theory in Comparative Biology. New York: Columbia University Press.

    Google Scholar 

  • Ferris SD, Wilson AC, Brown WM (1981) Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA 78: 2431–2436.

    Google Scholar 

  • Gerhart J, Kirschner M (1997a) Cells, Embryos, and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability. Malden, MA: Blackwell.

    Google Scholar 

  • Gerhart J, Kirschner M (1997b) Embryos and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability. Malden, MA: Blackwell.

    Google Scholar 

  • Goldberg A, Wildman DE, Schmidt TR, Hüttemann M, Goodman M, Weiss ML, Grossman LI (2003) Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates. Proceedings of the National Academy of Science of the USA 100: 5873–5878.

    Article  Google Scholar 

  • Goodman M (1962) Immunochemistry of the primates and primate evolution. Annals of the New York Academy of Sciences 102: 219–234.

    Article  Google Scholar 

  • Goodman M (1981) Decoding the pattern of protein evolution. Progress in Biophysics and Molecular Biology 37: 105–164.

    Article  Google Scholar 

  • Goodman M, Braunitzer G, Stangl A, Schrank B (1983) Evidence on human origins from haemoglobins of African apes. Nature 303: 546–548.

    Article  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Molecular Phylogenetics and Evolution 9: 585–598.

    Article  Google Scholar 

  • Gould SJ (2002) The Structure of Evolutionary Theory. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gregory WK (1915) Is Sivapithecus Pilgrim an ancestor of man? Science 42: 239–355.

    Article  Google Scholar 

  • Gregory WK, Hellman M (1926) The dentition of Dryopithecus and the origin of man. Anthropological Papers of the American Museum of Natural History 28: 1–123.

    Google Scholar 

  • Gregory WK, Lewis GE (1938) Fossil anthropoids of the Yale-Cambridge Indian expedition of 1935. Carnegie Institution 495: 1–27.

    Google Scholar 

  • Grzeschik KH (2002) Human limb malformations: An approach to the molecular basis of development. International Journal of Developmental Biology 40: 983–991.

    Google Scholar 

  • Gu W, Roeder RG (1997) Activation of p53 sequence specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  Google Scholar 

  • Hagelberg E (2003) Recombination or mutation rate heterogeneity? Implications for mitochondrial Eve. Trends in Genetics 19: 84–90.

    Article  Google Scholar 

  • Halder G, Callaerts P, Gehring W (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267: 1788–1792.

    Article  Google Scholar 

  • Hennig W (1966) Phylogenetic Systematics. Chicago: University of Chicago Press.

    Google Scholar 

  • Holland PW, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Development Supplement 125: 125–133.

    Google Scholar 

  • Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science 276: 227–232.

    Article  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624–626.

    Article  Google Scholar 

  • Kimura M (1985) Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107–116.

    Article  Google Scholar 

  • Lake JA (1991) The order of sequence alignment can bias the selection of tree topology. Molecular Biology and Evolution 8: 378–385.

    Google Scholar 

  • Lander ES (2001) International human genome sequencing consortium. Initial sequencing and analysis of the human genome. Nature 409: 860–925.

    Article  Google Scholar 

  • Latchman DS (1998) Eukaryotic Transcription Factors. San Diego: Academic Press.

    Google Scholar 

  • Lemon B, Tijian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes and Development 14: 2551–2569.

    Article  Google Scholar 

  • Levine M, Tijian R (2003) Transcription regulation and animal diversity. Nature 424: 147–151.

    Article  Google Scholar 

  • Lewis G (1937) Taxonomic syllabus of Siwalik fossil anthropoids. American Journal of Science 5: 34.

    Google Scholar 

  • Lewis GE (1934) Preliminary notice of new manlike apes from India: Scientific research of the Yale India expedition. American Journal of Science 27: 161–181.

    Article  Google Scholar 

  • Li W-H (1997) Molecular Evolution. Sunderland, MA: Sinauer.

    Google Scholar 

  • Maresca B, Schwartz JH (2006) Sudden origins: A general mechanism of evolution based on stress protein concentration and rapid environmental change. Anatomical Record (Part B: New Anatomist) 289B: 38–46.

    Article  Google Scholar 

  • Marks J (2003) What it Means to be 98% Chimpanzee. Berkeley: University of California Press.

    Google Scholar 

  • Morgan TH (1916) A Critique of the Theory of Evolution. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Murray A, Hunt T (1993) The Cell Cycle: An Introduction. New York: Oxford University Press.

    Google Scholar 

  • Nuttall GHF (1904) Blood Immunity and Blood Relationship. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ohno S (1970) Evolution by Gene Duplication. New York: Springer.

    Book  Google Scholar 

  • Patterson C (1978) Verifiability in systematics. Systematic Zoology 27: 218–222.

    Article  Google Scholar 

  • Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441: 1103–1108.

    Article  Google Scholar 

  • Pilbeam D (1982) New hominoid skull material from the Miocene of Pakistan. Nature 295: 232–234.

    Article  Google Scholar 

  • Pilbeam D (1986) Hominoid evolution and hominoid origins. Scientific American 250 (3): 295–312.

    Google Scholar 

  • Pilgrim GE (1915) New Siwalik primates and their bearing on the question of the evolution of man and the Anthropoidea. Record of the Geological Survey of India 45: 1–74.

    Google Scholar 

  • Popper KR (1962) Conjectures and Refutations: The Growth of Scientific Knowledge. London: Routledge and Kegan Paul.

    Google Scholar 

  • Popper KR (1968) The Logic of Scientific Discovery. New York: Harper Torchbooks.

    Google Scholar 

  • Popper KR (1976) Unended Quest: An Intellectual Autobiography. London: Fontana.

    Google Scholar 

  • Protein Database (2004) http://www.rcsb.org/pdb/index.html

  • Rockman MV, Wray GA (2002) Abundant raw material for cis-regulatory evolution in humans. Molecular Biology and Evolution 19: 1991–2004.

    Article  Google Scholar 

  • Romero-Herrera AE, Lehmann H, Castillo O, Joysey KA, Friday AE (1976) Myoglobin of the orangutan as a phylogenetic enigma. Nature 261: 162–164.

    Article  Google Scholar 

  • Ruvolo M (1997) Molecular phylogeny of the hominoids: Inferences from multiple independent DNA sequence data sets. Molecular Biology and Evolution 14: 248–265.

    Article  Google Scholar 

  • Ruvolo M, Disotell TR, Allard MW, Brown WM, Honeycutt RL (1991) Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence. Proceedings of the National Academy of Sciences of the USA 88: 1570–1574.

    Article  Google Scholar 

  • Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J (2000) Operons in Escherichia coli: Genomic analyses and predictions. Proceedings of the National Academy of Sciences of the USA 97: 6652–6657.

    Article  Google Scholar 

  • Sarich V (1971) A molecular approach to the question of human origins. In: Background for Man (Dolhinow P, Sarich V, eds), 60–81. Boston: Little Brown.

    Google Scholar 

  • Sarich V, Wilson AC (1966) Quantitative immunochemistry and the evolution of primate albumins: Micro-complement fixation. Science 154: 1563–1566.

    Article  Google Scholar 

  • Sarich V, Wilson AC (1967a) Immunological time scale for hominid evolution. Science 158: 1200–1203.

    Article  Google Scholar 

  • Sarich VM, Wilson AC (1967b) Rates of albmin evolution in primates. Proceedings of the National Academy of Sciences of the USA 58: 142–148.

    Article  Google Scholar 

  • Schwartz JH (1987) The Red Ape. Boston: Houghton Mifflin.

    Google Scholar 

  • Schwartz JH (1999) Sudden Origins: Fossils, Genes, and the Emergence of Species. New York: Wiley.

    Google Scholar 

  • Schwartz JH (2005a) Molecular systematics and evolution. In: Encyclopedia of Molecular Cell Biology and Molecular Medicine (Meyer RA, ed), 515–540. Weinheim: Wiley-VCH.

    Google Scholar 

  • Schwartz JH (2005b) The Red Ape: Orangutans and Human Origins. Boulder, CO: Westview Press.

    Google Scholar 

  • Schwartz JH (in press) Decisions, decisions: Why Thomas Hunt Morgan was not the father of “evo-devo.” Philosophy of Science.

  • Schwartz JH (2006) “Race” and the odd history of paleoanthropology. Anatomical Record (Part B: New Anatomist) 289B: 225–240.

    Article  Google Scholar 

  • Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang JP, Widom J (2006) A genomic code for nucleosome positioning. Nature 442: 772–778.

    Article  Google Scholar 

  • Shapiro JA (2002) Genome organization and reorganization in evolution: Formatting for computation and function. Annals of the New York Academy of Science 981: 111–134.

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1983) Phylogeny and classification of birds based on the data of DNA-DNA hybridization. In: Current Ornithology (Johnston RF, ed), 245–292. New York: Plenum Press.

    Chapter  Google Scholar 

  • Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. Journal of Molecular Evolution 20: 2–15.

    Article  Google Scholar 

  • Simon J, Peifer M, Bender W, O’Connor M (1990) Regulatory elements of the bithorax complex that control expression along the anterior-posterior axis. EMBO 9: 3945–3956.

    Google Scholar 

  • Simons EL (1964) On the mandible of Ramapithecus. Proceedings of the National Academy of Sciences of the USA 51: 528–535.

    Article  Google Scholar 

  • Sucena E, Stern DL (2000) Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shavenbaby. Proceedings of the National Academy of Sciences of the USA 97: 4530–4534.

    Article  Google Scholar 

  • Taatjes DJ, Marr MT, Tjian R (2004) Regulatory diversity among metazoan co-activator complexes. Nature Reviews Molecular and Cell Biology 5: 403–410.

    Article  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Research 13: 382–390.

    Article  Google Scholar 

  • Walsh MM (1992) Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Research 54: 271–293.

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171: 737–738.

    Article  Google Scholar 

  • Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M (2003) Implications of natural selection shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: Enlarging genus Homo. Proceedings of the National Academy of Science of the USA 100: 7181–7188.

    Article  Google Scholar 

  • Wiley EO (1975) Karl R. Popper, systematics, and classification: A reply to Walter Bock and other evolutionary taxonomists. Systematic Zoology 24: 233–243.

    Article  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Molecular Biology and Evolution 20: 1377–1419.

    Article  Google Scholar 

  • Wyrick JJ, Young RA (2002) Deciphering gene expression regulatory networks. Current Opinion in Genetics and Development 12: 130–136.

    Article  Google Scholar 

  • Yi S, Ellsworth DL, Li W-H (2002) Slow molecular clocks in Old World monkeys, apes, and humans. Molecular Biology and Evolution 19: 2191–2198.

    Article  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: A chromosomal pictorial legacy. Science 215: 1525–1530.

    Article  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Horizons in Biochemistry (Kasha M, Pullman B, eds), 189–225. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, J.H., Maresca, B. Do Molecular Clocks Run at All? A Critique of Molecular Systematics. Biol Theory 1, 357–371 (2006). https://doi.org/10.1162/biot.2006.1.4.357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/biot.2006.1.4.357

Keywords

Navigation