Skip to main content
Log in

Materials Advances through Aberration-Corrected Electron Microscopy

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Over the last few years, the performance of electron microscopes has undergone a dramatic improvement, with achievable resolution having more than doubled. It is now possible to probe individual atomic sites in many materials and to determine atomic and electronic structure with single-atom sensitivity. This revolution has been enabled by the successful correction of the dominant aberrations present in electron lenses. In this review, the authors present a brief overview of these instrumental advances, emphasizing the new insights they provide to several areas of materials research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Feynman, http://www.zyvex.com/nanotech/feynman.html (accessed December 2005).

  2. H. Rose, Ultramicroscopy 56 (1994) p. 11.

    Google Scholar 

  3. Nion Co. Home Page, http://www.nion.com/ (accessed December 2005).

  4. CEOS–Corrected Electron Optical Systems GmbH Home Page, http://www.ceos-gmbh.de/ (accessed December 2005).

  5. J. Zach and M. Haider, Nucl. Inst. Meth. A363 (1995) p. 316.

    Google Scholar 

  6. C.L. Jia, M. Lentzen, and K. Urban, Science 299 (2003) p. 870.

    Google Scholar 

  7. J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, R.C. Doole, C.J.D. Hetherington, A.I. Kirkland, and H. Sawada, Ultramicroscopy 103 (2005) p. 7.

    Google Scholar 

  8. M. Lentzen, B. Jahnen, C.L. Jia, A. Thust, K. Tillmann, and K. Urban, Ultramicroscopy 92 (2002) p. 233.

    Google Scholar 

  9. A.I. Kirkland and R.R. Meyer, Microsc. Microanal. 10 (2004) p. 401.

    Google Scholar 

  10. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, and S.J. Pennycook, Phys. Rev. Lett. 92 095502 (2004).

    Google Scholar 

  11. N.D. Browning, J. Yuan, and L.M. Brown, Physica C 202 (1992) p. 12.

    Google Scholar 

  12. N.D. Browning, M.F. Chisholm, S.J. Pennycook, D.P. Norton, and D.H. Lowndes, Physica C 212 (1993) p. 185.

    Google Scholar 

  13. M. Varela, A.R. Lupini, V. Pena, Z. Sefrioui, I. Arslan, N.D. Browning, J. Santamaria, and S.J. Pennycook, “Direct measurement of charge transfer phenomena at ferromagnetic/superconducting oxide interfaces,” preprint, condmat/0508564 (accessed December 2005).

  14. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344 (2001) p. 1.

    Google Scholar 

  15. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, and L.H. Chen, Science 264 (1994) p. 413.

    Google Scholar 

  16. R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71 (1993) p. 2331.

    Google Scholar 

  17. H. Woo, T.A. Tyson, M. Croft, S.W. Cheong, and J.C. Woicik, Phys. Rev. B 63 134412 (2001).

    Google Scholar 

  18. M. Varela et al. (2005) unpublished.

  19. G.B. Winkelman, C. Dwyer, T.S. Hudson, D. Nguyen-Manh, M. Doeblinger, R.L. Satet, M.J. Hoffmann, and D.J.H. Cockayne, Appl. Phys. Lett. 87 061911 (2005).

    Google Scholar 

  20. N. Shibata, S.J. Pennycook, T.R. Gosnell, G.S. Painter, W.A. Shelton, and P.F. Becher, Nature 428 (2004) p. 730.

    Google Scholar 

  21. A. Ziegler, J.C. Idrobo, M.K. Cinibulk, C. Kisielowski, N.D. Browning, and R.O. Ritchie, Science 306 (2004) p. 1768.

    Google Scholar 

  22. L. Cervera Gontard, L-Y Chang, R.E. Dunin-Borkowski, A.I. Kirkland, C.J.D. Hetherington, and D. Ozkaya, Inst. Phys. Conf. Ser. EMAG 05 (2005) in press.

  23. S. Kudera, L. Carbone, M.F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W.J. Parak, and L. Manna, Nano Lett. 5 (2005) p. 445.

    Google Scholar 

  24. N. Tanaka, J. Yamasaki, and T. Kawai, Extended abstract of a paper presented at Microscopy and Microanalysis 2004 (Savannah, Georgia, August 1–5, 2004).

    Google Scholar 

  25. N. Tanaka, J. Yamasaki, K. Usuda, and N. Ikarashi, J. Electron Microsc. 52 (2003) p. 69.

    Google Scholar 

  26. J. Yamasaki, T. Kawai, and N. Tanaka, J. Electron Microsc. 53 (2004) p. 129.

    Google Scholar 

  27. K. Tillmann, A. Thust, and K. Urban, Microsc. Microanal. 10 (Cambridge UP, 2004) p. 185.

  28. S.J. Pennycook, A.R. Lupini, A. Borisevich, Y. Peng, and N. Shibata, Microsc. Microanal. 10 (Suppl. 1.2) (2004) p. 1172.

    Google Scholar 

  29. K. van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, and S.J. Pennycook, Appl. Phys. Lett. 87 034104 (2005).

    Google Scholar 

  30. H. Rose, Nucl. Instrum. Methods Phys. Res. A 519 (2004) p. 12.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennycook, S.J., Varela, M., Hetherington, C.J.D. et al. Materials Advances through Aberration-Corrected Electron Microscopy. MRS Bulletin 31, 36–43 (2006). https://doi.org/10.1557/mrs2006.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.4

Keywords

Navigation