TOPICS
Search

Catalan Number


CatalanPolygons

The Catalan numbers on nonnegative integers n are a set of numbers that arise in tree enumeration problems of the type, "In how many ways can a regular n-gon be divided into n-2 triangles if different orientations are counted separately?" (Euler's polygon division problem). The solution is the Catalan number C_(n-2) (Pólya 1956; Dörrie 1965; Honsberger 1973; Borwein and Bailey 2003, pp. 21-22), as graphically illustrated above (Dickau).

Catalan numbers are commonly denoted C_n (Graham et al. 1994; Stanley 1999b, p. 219; Pemmaraju and Skiena 2003, p. 169; this work) or c(n) (Goulden and Jackson 1983, p. 111), and less commonly u_n (van Lint and Wilson 1992, p. 136).

Catalan numbers are implemented in the Wolfram Language as CatalanNumber[n].

The first few Catalan numbers for n=1, 2, ... are 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ... (OEIS A000108).

CatalanNumber

Explicit formulas for C_n include

C_n = 1/(n+1)(2n; n)
(1)
= ((2n)!)/((n+1)!n!)
(2)
= (2^n(2n-1)!!)/((n+1)!)
(3)
= (4^nGamma(n+1/2))/(sqrt(pi)Gamma(n+2))
(4)
= (-1)^n2^(2n+1)(1/2; n+1)
(5)
= 1/n(2n; n-1)
(6)
= _2F_1(1-n,-n;2;1),
(7)

where (n; k) is a binomial coefficient, n! is a factorial, n!! is a double factorial, Gamma(z) is the gamma function, and _2F_1(a,b;c;z) is a hypergeometric function.

CatalanNumberReImCatalanNumberContours

The Catalan numbers may be generalized to the complex plane, as illustrated above.

Sums giving C_n include

C_n = sum_(k=0)^(n-1)C_kC_(n-k-1)
(8)
= sum_(k=0)^(n-1)C_k2^(n-2k-1)(n-1; 2k)
(9)
= 1/nsum_(k=0)^(n-1)C_(n-k+1)(2k+1; k+1)
(10)
= sum_(k=0)^(n)(-1)^k2^(n-k)(n; k)(k; |_k/2_|)
(11)
= sum_(k=0)^(|_n/2_|)[(n-2k+1)/(n-k+1)(n; n-k)]^2,
(12)

where |_x_| is the floor function, and a product for C_n is given by

 C_n=1/((n+1)!)product_(k=1)^n(4k-2).
(13)

Sums involving C_n include the generating function

2/(1+sqrt(1-4x)) = sum_(n=0)^(infty)C_nx^n
(14)
= 1+x+2x^2+5x^3+14x^4+...
(15)

(OEIS A000108), exponential generating function

e^(2x)[I_0(2x)-I_1(2x)] = sum_(n=0)^(infty)C_n(x^n)/(n!)
(16)
= 1+x+x^2+5/6x^3+7/(12)x^4+7/(20)x^5+...
(17)

(OEIS A144186 and A144187), where I_n(x) is a modified Bessel function of the first kind, as well as

sum_(n=1)^(infty)(C_n)/(4^n) = 1
(18)
sum_(n=0)^(infty)(C_nx^(2n))/((2n)!) = (I_1(2x))/x.
(19)

The asymptotic form for the Catalan numbers is

 C_x∼(4^x)/(sqrt(pi))(x^(-3/2)-9/8x^(-5/2)+(145)/(128)x^(-7/2)+...)
(20)

(Vardi 1991, Graham et al. 1994).

The numbers of decimal digits in C_(10^n) for n=0, 1, ... are 1, 5, 57, 598, 6015, 60199, 602051, 6020590, ... (OEIS A114466). The digits converge to the digits in the decimal expansion of log_(10)4=0.602059991... (OEIS A114493).

A recurrence relation for C_n is obtained from

 (C_(n+1))/(C_n)=(2(2n+1))/(n+2),
(21)

so

 C_(n+1)=(2(2n+1))/(n+2)C_n.
(22)

Segner's recurrence formula, given by Segner in 1758, gives the solution to Euler's polygon division problem

 E_n=E_2E_(n-1)+E_3E_(n-2)+...+E_(n-1)E_2.
(23)

With E_1=E_2=1, the above recurrence relation gives the Catalan number C_(n-2)=E_n.

From the definition of the Catalan number, every prime divisor of C_n is less than 2n. On the other hand, C_n>2n-1 for n>4. Therefore, C_3 is the largest Catalan prime, making C_2=2 and C_3=5 the only Catalan primes. (Of course, much more than this can be said about the factorization of C_n.)

The only odd Catalan numbers are those of the form C_(2^k-1). The first few are therefore 1, 5, 429, 9694845, 14544636039226909, ... (OEIS A038003).

The odd Catalan numbers C_n end in 5 unless the base-5 expansion of 2^n-1 uses only the digits 0, 1, 2, so it would be extremely rare for a long sequence of essentially random base-5 digits to contain only in 0, 1, and 2. In fact, the last digits of the odd Catalan numbers are 1, 5, 9, 5, 9, 5, 9, 7, 5, 5, 5, 5, 5, ... (OEIS A094389), so 5 is the last digit for all n up to at least n=10^5 with the exception of 1, 3, 5, 7, and 8.

CatalanTrees

The Catalan numbers turn up in many other related types of problems. The Catalan number C_(n-1) also gives the number of binary bracketings of n letters (Catalan's problem), the solution to the ballot problem, the number of trivalent planted planar trees (Dickau; illustrated above), the number of states possible in an n-flexagon, the number of different diagonals possible in a frieze pattern with n+1 rows, the number of Dyck paths with n strokes, the number of ways of forming an n-fold exponential, the number of rooted planar binary trees with n internal nodes, the number of rooted plane bushes with n graph edges, the number of extended binary trees with n internal nodes, and the number of mountains which can be drawn with n upstrokes and n downstrokes, the number of noncrossing handshakes possible across a round table between n pairs of people (Conway and Guy 1996)!

A generalization of the Catalan numbers is defined by

_pd_k = 1/k(pk; k-1)
(24)
= 1/((p-1)k+1)(pk; k)
(25)

for k>=1 (Klarner 1970, Hilton and Pedersen 1991). The usual Catalan numbers C_k=_2d_k are a special case with p=2. _pd_k gives the number of p-ary trees with k source-nodes, the number of ways of associating k applications of a given p-ary operator, the number of ways of dividing a convex polygon into k disjoint (p+1)-gons with nonintersecting polygon diagonals, and the number of p-good paths from (0, -1) to (k,(p-1)k-1) (Hilton and Pedersen 1991).

A further generalization is obtained as follows. Let p be an integer >1, let P_k=(k,(p-1)k-1) with k>=0, and q<=p-1. Then define _pd_(q0)=1 and let _pd_(qk) be the number of p-good paths from (1, q-1) to P_k (Hilton and Pedersen 1991). Formulas for _pd_(qi) include the generalized Jonah formula

 (n-q; k-1)=sum_(i=1)^k_pd_(qi)(n-pi; k-i)
(26)

and the explicit formula

 _pd_(qk)=(p-q)/(pk-q)(pk-q; k-1).
(27)

A recurrence relation is given by

 _pd_(qk)=sum_(i,j)_pd_(p-r,i)_pd_(q+r,j)
(28)

where i,j,r>=1, k>=1, q<p-r, and i+j=k+1 (Hilton and Pedersen 1991).


See also

Ballot Problem, Binary Bracketing, Binary Tree, Catalan's Problem, Catalan's Triangle, Central Binomial Coefficient, Delannoy Number, Dyck Path, Euler's Polygon Division Problem, Flexagon, Frieze Pattern, Motzkin Number, p-Good Path, Planted Planar Tree, Schröder Number, Staircase Polygon, Super Catalan Number

Portions of this entry contributed by Richard Stanley

Explore with Wolfram|Alpha

References

Alter, R. "Some Remarks and Results on Catalan Numbers." Proc. 2nd Louisiana Conf. Comb., Graph Th., and Comput., 109-132, 1971.Alter, R. and Kubota, K. K. "Prime and Prime Power Divisibility of Catalan Numbers." J. Combin. Th. A 15, 243-256, 1973.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.Brualdi, R. A. Introductory Combinatorics, 4th ed. New York: Elsevier, 1997.Campbell, D. "The Computation of Catalan Numbers." Math. Mag. 57, 195-208, 1984.Chorneyko, I. Z. and Mohanty, S. G. "On the Enumeration of Certain Sets of Planted Trees." J. Combin. Th. Ser. B 18, 209-221, 1975.Chu, W. "A New Combinatorial Interpretation for Generalized Catalan Numbers." Disc. Math. 65, 91-94, 1987.Conway, J. H. and Guy, R. K. In The Book of Numbers. New York: Springer-Verlag, pp. 96-106, 1996.Dershowitz, N. and Zaks, S. "Enumeration of Ordered Trees." Disc. Math. 31, 9-28, 1980.Dickau, R. M. "Catalan Numbers." http://mathforum.org/advanced/robertd/catalan.html.Dörrie, H. "Euler's Problem of Polygon Division." §7 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 21-27, 1965.Eggleton, R. B. and Guy, R. K. "Catalan Strikes Again! How Likely is a Function to be Convex?" Math. Mag. 61, 211-219, 1988.Gardner, M. "Catalan Numbers." Ch. 20 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 253-266, 1988.Gardner, M. "Catalan Numbers: An Integer Sequence that Materializes in Unexpected Places." Sci. Amer. 234, 120-125, June 1976.Gould, H. W. Bell & Catalan Numbers: Research Bibliography of Two Special Number Sequences, 6th ed. Morgantown, WV: Math Monongliae, 1985.Goulden, I. P. and Jackson, D. M. Combinatorial Enumeration. New York: Wiley, 1983.Graham, R. L.; Knuth, D. E.; and Patashnik, O. Exercise 9.8 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.Guy, R. K. "Dissecting a Polygon Into Triangles." Bull. Malayan Math. Soc. 5, 57-60, 1958.Hilton, P. and Pedersen, J. "Catalan Numbers, Their Generalization, and Their Uses." Math. Int. 13, 64-75, 1991.Honsberger, R. Mathematical Gems I. Washington, DC: Math. Assoc. Amer., pp. 130-134, 1973.Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., pp. 146-150, 1985.Klarner, D. A. "Correspondences Between Plane Trees and Binary Sequences." J. Comb. Th. 9, 401-411, 1970.Mays, M. E. and Wojciechowski, J. "A Determinant Property of Catalan Numbers." Disc. Math. 211, 125-133, 2000.Pemmaraju, S. and Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge, England: Cambridge University Press, 2003.Pólya, G. "On Picture-Writing." Amer. Math. Monthly 63, 689-697, 1956.Rogers, D. G. "Pascal Triangles, Catalan Numbers and Renewal Arrays." Disc. Math. 22, 301-310, 1978.Sands, A. D. "On Generalized Catalan Numbers." Disc. Math. 21, 218-221, 1978.Singmaster, D. "An Elementary Evaluation of the Catalan Numbers." Amer. Math. Monthly 85, 366-368, 1978.Sloane, N. J. A. A Handbook of Integer Sequences. Boston, MA: Academic Press, pp. 18-20, 1973.Sloane, N. J. A. Sequences A000108/M1459, A038003, A094389, A114466, A114493, A144186, and A144187 in "The On-Line Encyclopedia of Integer Sequences."Sloane, N. J. A. and Plouffe, S. Figure M1459 in The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, 1999a.Stanley, R. P. Enumerative Combinatorics, Vol. 2. Cambridge, England: Cambridge University Press, pp. 219-229, 1999b.Stanley, R. P. "Catalan Addendum." 19 Nov. 2003. http://www-math.mit.edu/~rstan/ec/catadd.ps.gz.van Lint, J. H. and Wilson, R. M. A Course in Combinatorics. New York: Cambridge University Press, 1992.Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 187-188 and 198-199, 1991.Wells, D. G. The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin, pp. 121-122, 1986.

Referenced on Wolfram|Alpha

Catalan Number

Cite this as:

Stanley, Richard and Weisstein, Eric W. "Catalan Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CatalanNumber.html

Subject classifications