The role of mid-palaeozoic mesofossils in the detection of early bryophytes

Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):733-54; discussion 754-5. doi: 10.1098/rstb.2000.0613.

Abstract

Recently discovered Silurian and Devonian coalified mesofossils provide an additional source of data on early embryophytes. Those reviewed in this paper are considered of some relevance to understanding the early history of bryophytes while highlighting the difficulties of recognizing bryophytes in often very fragmentary fossils. The first group comprises sporophytes in which terminal sporangia contain permanent dyads and tetrads. Such spores (cryptospores) are similar to those found dispersed in older Ordovician and Silurian strata, when they are considered evidence for a land vegetation of embryophytes at a bryophyte grade. The phylogenetic significance of plants, where the axes associated with both dyad- and tetrad-containing sporangia are branching, a character state not found in extant bryophytes, is discussed. The second group comprises axial fossils, many with occasional stomata, in which central conducting strands include G-type tracheids and a number of novel types of elongate elements not readily compared with those of any tracheophyte. They include smooth-walled, evenly thickened elongate elements as well as those with numerous branching +/- anastomosing projections into the lumen. Some of the latter bear an additional microporate layer, but the homogenized lateral walls between adjacent cells are never perforate. Such cells, which occur in various combinations in central strands, are compared with the leptoids and hydroids of mosses, hydroids of liverworts and presumed water-conducting cells in coeval Lower Devonian plants such as Aglaophyton. It is concluded that lack of information on the chemistry of their walls hampers sensible assessment of their functions and the affinities of the plants. Finally, a minute fossil, comprising an elongate sporangium in which a central cylindrical cavity containing spores and possible elaters terminates in a complex poral dehiscence apparatus, is used to exemplify problems of identifying early bryophytes. It is concluded that further progress necessitates the discovery of pre-Upper Silurian fossils with well-preserved anatomy, as well as a re-evaluation of criteria used to assess existing and new Devonian fossils for bryophyte affinity.

Publication types

  • Review

MeSH terms

  • Biological Evolution*
  • Fossils*
  • Plants*