Advertisement

Predicting extinction in a changing world

There is great interest in understanding how species might respond to our changing climate, but predictions have varied greatly. Urban looked at over 130 studies to identify the level of risk that climate change poses to species and the specific traits and characteristics that contribute to risk (see the Perspective by Hille Ris Lambers). If climate changes proceed as expected, one in six species could face extinction. Several regions, including South America, Australia, and New Zealand, face the greatest risk. Understanding these patterns will help us to prepare for, and hopefully prevent, climate-related loss of biodiversity.
Science, this issue p. 571; see also p. 501

Abstract

Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change–induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S5
Tables S1 to S4
References (28174)

Resources

File (urban-sm.pdf)

References and Notes

1
Malcolm J. R., Liu C., Neilson R. P., Hansen L., Hannah L., Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).
2
Thomas C. D., Cameron A., Green R. E., Bakkenes M., Beaumont L. J., Collingham Y. C., Erasmus B. F. N., de Siqueira M. F., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A. S., Midgley G. F., Miles L., Ortega-Huerta M. A., Townsend Peterson A., Phillips O. L., Williams S. E., Extinction risk from climate change. Nature 427, 145–148 (2004).
3
Warren R., VanDerWal J., Price J., Welbergen J. A., Atkinson I., Ramirez-Villegas J., Osborn T. J., Jarvis A., Shoo L. P., Williams S. E., Lowe J., Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Clim. Change 3, 678–682 (2013).
4
Foden W. B., Butchart S. H., Stuart S. N., Vié J. C., Akçakaya H. R., Angulo A., DeVantier L. M., Gutsche A., Turak E., Cao L., Donner S. D., Katariya V., Bernard R., Holland R. A., Hughes A. F., O’Hanlon S. E., Garnett S. T., Sekercioğlu C. H., Mace G. M., Identifying the world’s most climate change vulnerable species: A systematic trait-based assessment of all birds, amphibians and corals. PLOS ONE 8, e65427 (2013).
5
Nakagawa S., Santos E. S., Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).
6
Materials and methods are available as supplementary materials on Science Online.
7
Maclean I. M., Wilson R. J., Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl. Acad. Sci. U.S.A. 108, 12337–12342 (2011).
8
Fuss S., Canadell J. G., Peters G. P., Tavoni M., Andrew R. M., Ciais P., Jackson R. B., Jones C. D., Kraxner F., Nakicenovic N., Le Quéré C., Raupach M. R., Sharifi A., Smith P., Yamagata Y., Betting on negative emissions. Nature Clim. Change 4, 850–853 (2014).
9
Williams J. W., Jackson S. T., Kutzbach J. E., Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U.S.A. 104, 5738–5742 (2007).
10
Williams S. E., Bolitho E. E., Fox S., Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc. Biol. Sci. 270, 1887–1892 (2003).
11
Sinervo B., Méndez-de-la-Cruz F., Miles D. B., Heulin B., Bastiaans E., Villagrán-Santa Cruz M., Lara-Resendiz R., Martínez-Méndez N., Calderón-Espinosa M. L., Meza-Lázaro R. N., Gadsden H., Avila L. J., Morando M., De la Riva I. J., Victoriano Sepulveda P., Rocha C. F., Ibargüengoytía N., Aguilar Puntriano C., Massot M., Lepetz V., Oksanen T. A., Chapple D. G., Bauer A. M., Branch W. R., Clobert J., Sites J. W., Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).
12
Gibbon J. W., Scott D., Ryan T. J., Buhlmann K. A., Tuberville T. D., Metts B. S., Greene J. L., Mills T., Leiden Y., Poppy S., Winne C. T., The global decline of reptiles, deja vu amphibians. Bioscience 50, 653–666 (2000).
13
Angert A. L., Crozier L. G., Rissler L. J., Gilman S. E., Tewksbury J. J., Chunco A. J., Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).
14
Jackson S. T., Sax D. F., Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
15
Stanton J. C., Shoemaker K. T., Pearson R. G., Akcakaya H. R., Warning times for species extinctions due to climate change. Glob. Change Biol. 21, 1066–1077 (2015).
16
Schloss C. A., Nuñez T. A., Lawler J. J., Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. U.S.A. 109, 8606–8611 (2012).
17
Loarie S. R., Duffy P. B., Hamilton H., Asner G. P., Field C. B., Ackerly D. D., The velocity of climate change. Nature 462, 1052–1055 (2009).
18
He F., Hubbell S. P., Species-area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).
19
Lawler J. J., Shafer S. L., White D., Kareiva P., Maurer E. P., Blaustein A. R., Bartlein P. J., Projected climate-induced faunal change in the Western Hemisphere. Ecology 90, 588–597 (2009).
20
Parmesan C., Yohe G., A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
21
Walther G. R., Post E., Convey P., Menzel A., Parmesan C., Beebee T. J., Fromentin J. M., Hoegh-Guldberg O., Bairlein F., Ecological responses to recent climate change. Nature 416, 389–395 (2002).
22
Cahill A. E., Aiello-Lammens M. E., Fisher-Reid M. C., Hua X., Karanewsky C. J., Ryu H. Y., Sbeglia G. C., Spagnolo F., Waldron J. B., Warsi O., Wiens J. J., How does climate change cause extinction? Proc. Biol. Sci. 280, 20121890 (2013).
23
Buckley L. B., Urban M. C., Angilletta M. J., Crozier L. G., Rissler L. J., Sears M. W., Can mechanism inform species’ distribution models?. Ecol. Lett. 13, 1041–1054 (2010).
24
Hoffmann A. A., Sgrò C. M., Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
25
Opdam P., Wascher D., Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biodivers. Conserv. 117, 285–297 (2004).
26
Hansen J., Johnson D., Lacis A., Lebedeff S., Lee P., Rind D., Russell G., Climate impact of increasing atmospheric carbon dioxide. Science 213, 957–966 (1981).
27
Warren R., Price J., Fischlin A., de la Nava Santos S., Midgley G., Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Clim. Change 106, 141–177 (2011).
28
Urban M. C., Zarnetske P. L., Skelly D. K., Moving forward: Dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297, 44–60 (2013).
29
A. Cameron, in Saving a Million Species, L. Hannah, Ed. (Island Press/Center for Resource Economics, Washington, DC, 2012), chap. 4, pp. 41–71.
30
J. Settele et al., in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change, C. B. Field et al., Eds. (Cambridge Univ.Press, Cambridge, UK, 2014), chap. 4, pp. 1–153.
31
Beaumont L. J., Pitman A. J., Poulsen M., Hughes L., Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob. Change Biol. 13, 1368–1385 (2007).
32
Tilman D., May R. M., Lehman C. L., Nowak M. A., Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).
33
Diamond J. M., Biogeographic kinetics: Estimation of relaxation times for avifaunas of southwest pacific islands. Proc. Natl. Acad. Sci. U.S.A. 69, 3199–3203 (1972).
34
Guisan A., Thuiller W., Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
35
Araujo M. B., Pearson R. G., Thuiller W., Erhard M., Validation of species-climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).
36
Elith J., H. Graham C., P. Anderson R., Dudík M., Ferrier S., Guisan A., J. Hijmans R., Huettmann F., R. Leathwick J., Lehmann A., Li J., G. Lohmann L., A. Loiselle B., Manion G., Moritz C., Nakamura M., Nakazawa Y., McC. M. Overton J., Townsend Peterson A., J. Phillips S., Richardson K., Scachetti-Pereira R., E. Schapire R., Soberón J., Williams S., S. Wisz M., E. Zimmermann N., Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
37
R. H. MacArthur, E. O. Wilson, The Theory of Island Biogeography (Princeton Univ. Press, Princeton, NJ, 1967).
38
Kuussaari M., Bommarco R., Heikkinen R. K., Helm A., Krauss J., Lindborg R., Ockinger E., Pärtel M., Pino J., Rodà F., Stefanescu C., Teder T., Zobel M., Steffan-Dewenter I., Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
39
Kearney M., Porter W. P., Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard. Ecology 85, 3119–3131 (2004).
40
Kearney M., Porter W., Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
41
Bocedi G., Palmer S. C. F., Pe’er G., Heikkinen R. K., Matsinos Y. G., Watts K., Travis J. M. J., RangeShifter: A platform for modelling spatial eco-evolutionary dynamics and species' responses to environmental changes. Methods Ecol. Evol. 5, 388–396 (2014).
42
Dullinger S., Gattringer A., Thuiller W., Moser D., Zimmermann N. E., Guisan A., Willner W., Plutzar C., Leitner M., Mang T., Caccianiga M., Dirnböck T., Ertl S., Fischer A., Lenoir J., Svenning J.-C., Psomas A., Schmatz D. R., Silc U., Vittoz P., Hülber K., Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Clim. Change 2, 619–622 (2012).
43
Fordham D. A., Mellin C., Russell B. D., Akçakaya R. H., Bradshaw C. J., Aiello-Lammens M. E., Caley J. M., Connell S. D., Mayfield S., Shepherd S. A., Brook B. W., Population dynamics can be more important than physiological limits for determining range shifts under climate change. Glob. Change Biol. 19, 3224–3237 (2013).
44
Moyle P. B., Kiernan J. D., Crain P. K., Quiñones R. M., Climate change vulnerability of native and alien freshwater fishes of California: A systematic assessment approach. PLOS ONE 8, e63883 (2013).
45
M. W. Lipsey, D. B. Wilson, Practical Meta-Analysis (Sage Publications, Thousand Oaks, CA, 2000).
46
Viechtbauer W., Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
47
Tang J.-L., Weighting bias in meta-analysis of binary outcomes. J. Clin. Epidemiol. 53, 1130–1136 (2000).
48
Hadfield J. D., MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
49
Kamiya T., O’Dwyer K., Westerdahl H., Senior A., Nakagawa S., A quantitative review of MHC-based mating preference: The role of diversity and dissimilarity. Mol. Ecol. 23, 5151–5163 (2014).
50
K. P. Burnham, D. R. Anderson, Model selection and multimodel inference: a practical information-theoretic approach. (Springer, New York, ed. 2nd, 2002).
51
H. R. Rothstein, A. J. Sutton, M. Borenstein, Publication bias in meta-analysis. (Wiley, Chichester, 2005).
52
Egger M., Smith G. D., Schneider M., Minder C., Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).
53
Begg C. B., Mazumdar M., Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101 (1994).
54
Rücker G., Schwarzer G., Carpenter J., Arcsine test for publication bias in meta-analyses with binary outcomes. Stat. Med. 27, 746–763 (2008).
55
Hunter J. P., Saratzis A., Sutton A. J., Boucher R. H., Sayers R. D., Bown M. J., In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J. Clin. Epidemiol. 67, 897–903 (2014).
56
McDonald K. A., Brown J. H., Using montane mammals to model extinctions due to global change. Conserv. Biol. 6, 409–415 (1992).
57
D. D. Murphy, S. B. Weiss, in Global Warming And Biological Diversity, R. L. Peters, T. E. Lovejoy, Eds. (Hamilton Printing, New York, 1992).
58
Brereton R., Bennett S., Mansergh I., Enhanced greenhouse climate change and its potential effect on selected fauna of south-eastern Australia: A trend analysis. Biodivers. Conserv. 72, 339–354 (1995).
59
Huntley B., Berry P. M., Cramer W., McDonald A. P., Special paper: Modelling present and potential future ranges of some European higher plants using climate response surfaces. J. Biogeogr. 22, 967–1001 (1995).
60
Eaton J. G., Scheller R. M., Effects of climate warming on fish thermal habitat in streams of the United States. Limnol. Oceanogr. 41, 1109–1115 (1996).
61
Hughes L., Cawsey E. M., Westoby M., Climatic range sizes of Eucalyptus species in relation to future climate change. Global Ecol. Biogeogr. Lett. 5, 23–29 (1996).
62
Johnston K., Schmitz O., Wildlife and climate change: Assessing the sensitivity of selected species to simulated doubling of atmospheric CO2. Glob. Change Biol. 3, 531–544 (1997).
63
Iverson L. R., Prasad A. M., Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol. Monogr. 68, 465–485 (1998).
64
Sætersdal M., Birks H. J. B., Peglar S., Predicting changes in Fennoscandian vascular-plant species richness as a result of future climatic change. J. Biogeogr. 25, 111–112 (1998).
65
Box E., Crumpacker D., Hardin E. D., Predicted effects of climatic change on distribution of ecologically important native tree and shrub species in Florida. Clim. Change 41, 213–248 (1999).
66
Guisan A., Theurillat J.-P., Equilibrium modeling of alpine plant distribution: How far can we go? Phytocoenologia 30, 353–384 (2000).
67
C. Zockler, I. Lysenko, Waterbirds on the edge—first circumpolar assessment of climate change impact on Arctic breeding water birds. (World Conservation Press, Cambridge, UK, 2000).
68
Peterson A. T., Vieglais D. A., Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. Bioscience 51, 363–371 (2001).
69
Roy D. B., Rothery P., Moss D., Pollard E., Thomas J. A., Butterfly numbers and weather: Predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2001).
70
Beaumont L. J., Hughes L., Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Glob. Change Biol. 8, 954–971 (2002).
71
Erasmus B. F., Van Jaarsveld A. S., Chown S. L., Kshatriya M., Wessels K. J., Vulnerability of South African animal taxa to climate change. Glob. Change Biol. 8, 679–693 (2002).
72
Hill J. K., Thomas C. D., Fox R., Telfer M. G., Willis S. G., Asher J., Huntley B., Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proc. Biol. Sci. 269, 2163–2171 (2002).
73
Midgley G. F., Hannah L., Millar D., Rutherford M. C., Powrie L. W., Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob. Ecol. Biogeogr. 11, 445–451 (2002).
74
Peterson A. T., Ortega-Huerta M. A., Bartley J., Sánchez-Cordero V., Soberón J., Buddemeier R. H., Stockwell D. R., Future projections for Mexican faunas under global climate change scenarios. Nature 416, 626–629 (2002).
75
Berry P. M., Dawson T. P., Harrison P. A., Pearson R., Butt N., The sensitivity and vulnerability of terrestrial habitats and species in Britain and Ireland to climate change. J. Nat. Conserv. 11, 15–23 (2003).
76
Dirnböck T., Dullinger S., Grabherr G., A regional impact assessment of climate and land-use change on alpine vegetation. J. Biogeogr. 30, 401–417 (2003).
77
Halloy S. R. P., Mark A. F., Climate-change effects on alpine plant biodiversity: A New Zealand perspective on quantifying the threat. Arct. Antarct. Alp. Res. 35, 248–254 (2003).
78
Harrison P. A., Vanhinsbergh D. P., Fuller R. J., Berry P. M., Modelling climate change impacts on the distribution of breeding birds in Britain and Ireland. J. Nat. Conserv. 11, 31–42 (2003).
79
Midgley G. F., Hannah L., Millar D., Thuiller W., Booth A., Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biodivers. Conserv. 112, 87–97 (2003).
80
Mohseni O., Stefan H., Eaton J., Global Warming and Potential Changes in Fish Habitat in U.S. Streams. Clim. Change 59, 389–409 (2003).
81
Peterson A. T., Projected climate change effects on Rocky Mountain and Great Plains birds: Generalities of biodiversity consequences. Glob. Change Biol. 9, 647–655 (2003).
82
Siqueira M. F., Peterson A. T., Consequences of global climate change for geographic distributions of cerrado tree species. Biota Neotropica 3, 1–14 (2003).
83
Araújo M. B., Cabeza M., Thuiller W., Hannah L., Williams P. H., Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob. Change Biol. 10, 1618–1626 (2004).
84
Meynecke J.-O., Effects of global climate change on geographic distributions of vertebrates in North Queensland. Ecol. Modell. 174, 347–357 (2004).
85
Miles L., Grainger A., Phillips O., The impact of global climate change on tropical forest biodiversity in Amazonia. Glob. Ecol. Biogeogr. 13, 553–565 (2004).
86
Peck L. S., Webb K. E., Bailey D. M., Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).
87
Peterson A. T., Martínez-Meyer E., González-Salazar C., Hall P. W., Modeled climate change effects on distributions of Canadian butterfly species. Can. J. Zool. 82, 851–858 (2004).
88
Simmons R. E., Barnard P., Dean W. R. J., Midgley G. F., Thuiller W., Hughes G., Climate change and birds: Perspectives and prospects from southern Africa. Ostrich J. African Ornithol. 75, 295–308 (2004).
89
Skov F., Svenning J.-C., Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27, 366–380 (2004).
90
Beaumont L. J., Hughes L., Poulsen M., Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Modell. 186, 251–270 (2005).
91
Bomhard B., Richardson D. M., Donaldson J. S., Hughes G. O., Midgley G. F., Raimondo D. C., Rebelo A. G., Rouget M., Thuiller W., Potential impacts of future land use and climate change on the Red List status of the Proteaceae in the Cape Floristic Region, South Africa. Glob. Change Biol. 11, 1452–1468 (2005).
92
Chu C., Mandrak N. E., Minns C. K., Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers. Distrib. 11, 299–310 (2005).
93
Kueppers L. M., Snyder M. A., Sloan L. C., Zavaleta E. S., Fulfrost B., Modeled regional climate change and California endemic oak ranges. Proc. Natl. Acad. Sci. U.S.A. 102, 16281–16286 (2005).
94
McClean C. J., et al., African plant diversity and climate change. Ann. Mo. Bot. Gard. 92, 139–152 (2005).
95
Parra-Olea G., Martinez-Meyer E., De Leon G. P.-P., Forecasting Climate Change Effects on Salamander Distribution in the Highlands of Central Mexico. Biotropica 37, 202–208 (2005).
96
Shoo L. P., Williams S. E., Hero J.-M., Climate warming and the rainforest birds of the Australian Wet Tropics: Using abundance data as a sensitive predictor of change in total population size. Biodivers. Conserv. 125, 335–343 (2005).
97
Thuiller W., Lavorel S., Araújo M. B., Sykes M. T., Prentice I. C., Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. U.S.A. 102, 8245–8250 (2005).
98
Anciães M., Peterson A. T., Climate change effects on neotropical manakin diversity based on ecological niche modeling. Condor 108, 778–791 (2006).
99
Bakkenes M., Eickhout B., Alkemade R., Impacts of different climate stabilisation scenarios on plant species in Europe. Glob. Environ. Change 16, 19–28 (2006).
100
del Barrio G., Harrison P. A., Berry P. M., Butt N., Sanjuan M. E., Pearson R. G., Dawson T., Integrating multiple modelling approaches to predict the potential impacts of climate change on species’ distributions in contrasting regions: Comparison and implications for policy. Environ. Sci. Policy 9, 129–147 (2006).
101
Harrison P., Berry P., Butt N., New M., Modelling climate change impacts on species’ distributions at the European scale: Implications for conservation policy. Environ. Sci. Policy 9, 116–128 (2006).
102
Huntley B., Collingham Y. C., Green R., Hilton G. M., Rahbek C., Willis S. G., Potential impacts of climatic change upon geographical distributions of birds. Ibis 148, 8–28 (2006).
103
Lawler J. J., White D., Neilson R. P., Blaustein A. R., Predicting climate-induced range shifts: Model differences and model reliability. Glob. Change Biol. 12, 1568–1584 (2006).
104
Midgley G. F., Hughes G. O., Thuiller W., Rebelo A. G., Migration rate limitations on climate change-induced range shifts in Cape Proteaceae. Divers. Distrib. 12, 555–562 (2006).
105
Ohlemuller R., Gritti E. S., Sykes M. T., Thomas C. D., Quantifying components of risk for European woody species under climate change. Glob. Change Biol. 12, 1788–1799 (2006).
106
Preston B., Risk-based reanalysis of the effects of climate change on U.S. cold-water habitat. Clim. Change 76, 91–119 (2006).
107
Schwartz M. W., Iverson L. R., Prasad A. M., Matthews S. N., O’Connor R. J., Predicting extinctions as a result of climate change. Ecology 87, 1611–1615 (2006).
108
Svenning J.-C., Skov F., Potential Impact of Climate Change on the Northern Nemoral Forest Herb Flora of Europe. Biodivers. Conserv. 15, 3341–3356 (2006).
109
Thuiller W., Lavorel S., Sykes M. T., Araujo M. B., Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers. Distrib. 12, 49–60 (2006).
110
Thuiller W., Broennimann O., Hughes G., Alkemade J. R. M., Midgley G. F., Corsi F., Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Change Biol. 12, 424–440 (2006).
111
van Vuuren D. P., Sala O. E., Pereira H. M., The future of vascular plant diversity under four global scenarios. Ecol. Soc. 11, 25 (2006).
112
Carroll C., Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and lynx in the northern Appalachians. Conserv. Biol. 21, 1092–1104 (2007).
113
Gómez-Mendoza L., Arriaga L., Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conserv. Biol. 21, 1545–1555 (2007).
114
Jetz W., Wilcove D. S., Dobson A. P., Projected impacts of climate and land-use change on the global diversity of birds. PLOS Biol. 5, e157 (2007).
115
Levinsky I., Skov F., Svenning J.-C., Rahbek C., Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers. Conserv. 16, 3803–3816 (2007).
116
Normand S., Svenning J.-C., Skov F., National and European perspectives on climate change sensitivity of the habitats directive characteristic plant species. J. Nat. Conserv. 15, 41–53 (2007).
117
Peterson A. T., Martínez-Meyer E., Geographic evaluation of conservation status of African forest squirrels (Sciuridae) considering land use change and climate change: The importance of point data. Biodivers. Conserv. 16, 3939–3950 (2007).
118
Buckley L. B., Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171, E1–E19 (2008).
119
Colwell R. K., Brehm G., Cardelús C. L., Gilman A. C., Longino J. T., Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
120
Fitzpatrick M. C., Gove A. D., Sanders N. J., Dunn R. R., Climate change, plant migration, and range collapse in a global biodiversity hotspot: The Banksia (Proteaceae) of Western Australia. Glob. Change Biol. 14, 1337–1352 (2008).
121
Benito Garzón M., Sánchez de Dios R., Sainz Ollero H., Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 11, 169–178 (2008).
122
Huntley B., Collingham Y. C., Willis S. G., Green R. E., Potential impacts of climatic change on European breeding birds. PLOS ONE 3, e1439 (2008).
123
Iverson L. R., Prasad A. M., Matthews S. N., Peters M., Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For. Ecol. Manage. 254, 390–406 (2008).
124
Jarvis A., Lane A., Hijmans R. J., The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 126, 13–23 (2008).
125
Laidre K. L., Stirling I., Lowry L. F., Wiig O., Heide-Jørgensen M. P., Ferguson S. H., Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18 (Suppl), S97–S125 (2008).
126
Loarie S. R., Carter B. E., Hayhoe K., McMahon S., Moe R., Knight C. A., Ackerly D. D., Climate change and the future of California’s endemic flora. PLOS ONE 3, e2502 (2008).
127
Luoto M., Heikkinen R. K., Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob. Change Biol. 14, 483–494 (2008).
128
Morin X., Viner D., Chuine I., Tree species range shifts at a continental scale: New predictive insights from a process-based model. J. Ecol. 96, 784–794 (2008).
129
Pompe S., Hanspach J., Badeck F., Klotz S., Thuiller W., Kühn I., Climate and land use change impacts on plant distributions in Germany. Biol. Lett. 4, 564–567 (2008).
130
Raxworthy C. J., Pearson R. G., Rabibisoa N., Rakotondrazafy A. M., Ramanamanjato J.-B., Raselimanana A. P., Wu S., Nussbaum R. A., Stone D. A., Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).
131
Ritchie E. G., Bolitho E. E., Australia’s savanna herbivores: Bioclimatic distributions and an assessment of the potential impact of regional climate change. Physiol. Biochem. Zool. 81, 880–890 (2008).
132
Schweiger O., Settele J., Kudrna O., Klotz S., Kühn I., Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).
133
Sekercioglu C. H., Schneider S. H., Fay J. P., Loarie S. R., Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150 (2008).
134
Settele J., Kudrna O., Harpke A., Kühn I., van Swaay C., Verovnik R., Warren M., Wiemers M., Hanspach J., Hickler T., Kühn E., van Halder I., Veling K., Vliegenthart A., Wynhoff I., Schweiger O., Climatic risk atlas of European butterflies. BioRisk 1, 1–712 (2008).
135
Trivedi M. R., Berry P. M., Morecroft M. D., Dawson T. P., Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Change Biol. 14, 1089–1103 (2008).
136
Virkkala R., Heikkinen R. K., Leikola N., Luoto M., Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biodivers. Conserv. 141, 1343–1353 (2008).
137
Anderson B. J., Akçakaya H. R., Araújo M. B., Fordham D. A., Martinez-Meyer E., Thuiller W., Brook B. W., Dynamics of range margins for metapopulations under climate change. Proc. Biol. Sci. 276, 1415–1420 (2009).
138
Engler R., Randin C. F., Vittoz P., Czáka T., Beniston M., Zimmermann N. E., Guisan A., Predicting future distributions of mountain plants under climate change: Does dispersal capacity matter? Ecography 32, 34–45 (2009).
139
Hering D., Schmidt-Kloiber A., Murphy J., Lücke S., Zamora-Muñoz C., López-Rodríguez M. J., Huber T., Graf W., Potential impact of climate change on aquatic insects: A sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat. Sci. 71, 3–14 (2009).
140
Morin X., Thuiller W., Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90, 1301–1313 (2009).
141
Randin C. F., Engler R., Normand S., Zappa M., Zimmermann N., Pearman P. B., Vittoz P., Thuiller W., Guisan A., Climate change and plant distribution: Local models predict highelevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).
142
Heikkinen R., Luoto M., Leikola N., Pöyry J., Settele J., Kudrna O., Marmion M., Fronzek S., Thuiller W., Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers. Conserv. 19, 695–723 (2010).
143
Ben Rais Lasram F., Guilhaumon F., Albouy C., Somot S., Thuiller W., Mouillot D., The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. Change Biol. 16, 3233–3245 (2010).
144
Li R., Tian H., Li X., Climate change induced range shifts of Galliformes in China. Integr. Zool. 5, 154–163 (2010).
145
Rebelo H., Tarroso P., Jones G., Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob. Change Biol. 16, 561–576 (2010).
146
Yates C. J., McNeill A., Elith J., Midgley G. F., Assessing the impacts of climate change and land transformation on Banksia in the South West Australian Floristic Region. Divers. Distrib. 16, 187–201 (2010).
147
Bálint M., Domisch S., Engelhardt C. H. M., Haase P., Lehrian S., Sauer J., Theissinger K., Pauls S. U., Nowak C., Cryptic biodiversity loss linked to global climate change. Nature Clim. Change 1, 313–318 (2011).
148
Bond N., Thomson J., Reich P., Stein J., Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Mar. Freshw. Res. 62, 1043–1061 (2011).
149
Domisch S., Jähnig S. C., Haase P., Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshw. Biol. 56, 2009–2020 (2011).
150
Early R., Sax D. F., Analysis of climate paths reveals potential limitations on species range shifts. Ecol. Lett. 14, 1125–1133 (2011).
151
Engler R., Randin C. F., Thuiller W., Dullinger S., Zimmermann N., Araújo M. B., Pearman P. B., Le Lay G., Piedallu C., Albert C. H., Choler P., Coldea G., De LAMO X. A. V. I. E. R., Dirnböck T., Gégout J.-C., Gómez-García D., Grytnes J.-A., Heegaard E., Høistad F., Nogués-Bravo D., Normand S., Puşcaş M., Sebastià M.-T., Stanisci A., Theurillat J.-P., Trivedi M. R., Vittoz P., Guisan A., 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).
152
Evangelista P. H., Kumar S., Stohlgren T. J., Young N. E., Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. For. Ecol. Manage. 262, 307–316 (2011).
153
Benito Garzón M., Alía R., Robson T. M., Zavala M. A., Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20, 766–778 (2011).
154
Sauer J., Domisch S., Nowak C., Haase P., Low mountain ranges: Summit traps for montane freshwater species under climate change. Biodivers. Conserv. 20, 3133–3146 (2011).
155
Sheldon K. S., Yang S., Tewksbury J. J., Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).
156
Wenger S. J., Isaak D. J., Luce C. H., Neville H. M., Fausch K. D., Dunham J. B., Dauwalter D. C., Young M. K., Elsner M. M., Rieman B. E., Hamlet A. F., Williams J. E., Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc. Natl. Acad. Sci. U.S.A. 108, 14175–14180 (2011).
157
Fordham D. A., Resit Akçakaya H., Araújo M. B., Elith J., Keith D. A., Pearson R., Auld T. D., Mellin C., Morgan J. W., Regan T. J., Tozer M., Watts M. J., White M., Wintle B. A., Yates C., Brook B. W., Plant extinction risk under climate change: Are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob. Change Biol. 18, 1357–1371 (2012).
158
Gardali T., Seavy N. E., DiGaudio R. T., Comrack L. A., A climate change vulnerability assessment of California’s at-risk birds. PLOS ONE 7, e29507 (2012).
159
Hof A. R., Jansson R., Nilsson C., Future climate change will favour non-specialist mammals in the (sub)arctics. PLOS ONE 7, e52574 (2012).
160
Hughes A. C., Satasook C., Bates P. J. J., Bumrungsri S., Jones G., The projected effects of climatic and vegetation changes on the distribution and diversity of Southeast Asian bats. Glob. Change Biol. 18, 1854–1865 (2012).
161
Ihlow F., Dambach J., Engler J. O., Flecks M., Hartmann T., Nekum S., Rajaei H., Rödder D., On the brink of extinction? How climate change may affect global chelonian species richness and distribution. Glob. Change Biol. 18, 1520–1530 (2012).
162
Renwick A. R., Massimino D., Newson S. E., Chamberlain D. E., Pearce-Higgins J. W., Johnston A., Modelling changes in species’ abundance in response to projected climate change. Divers. Distrib. 18, 121–132 (2012).
163
Romo H., Sanabria P., García-Barros E., Predicción de los impactos del cambio climático en la distribución de lepidópteros del género Boloria Moore, 1900 en la Península Ibérica (Lepidoptera: Nymphalidae). SHILAP Rev. Lepidopterol. 40, 1–20 (2012).
164
Albouy C., Guilhaumon F., Leprieur F., Lasram F. B. R., Somot S., Aznar R., Velez L., Le Loc’h F., Mouillot D., Projected climate change and the changing biogeography of coastal Mediterranean fishes. J. Biogeogr. 40, 534–547 (2013).
165
Bambach N., Meza F., Gilabert H., Miranda M., Impacts of climate change on the distribution of species and communities in the Chilean Mediterranean ecosystem. Reg. Environ. Change 13, 1245–1257 (2013).
166
Sarmento Cabral J., Jeltsch F., Thuiller W., Higgins S., Midgley G. F., Rebelo A. G., Rouget M., Schurr F. M., Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae. Divers. Distrib. 19, 363–376 (2013).
167
Domisch S., Araújo M. B., Bonada N., Pauls S. U., Jähnig S. C., Haase P., Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 19, 752–762 (2013).
168
Gallardo B., Aldridge D. C., Evaluating the combined threat of climate change and biological invasions on endangered species. Biodivers. Conserv. 160, 225–233 (2013).
169
Jones M. C., Dye S. R., Fernandes J. A., Frölicher T. L., Pinnegar J. K., Warren R., Cheung W. W., Predicting the impact of climate change on threatened species in UK waters. PLOS ONE 8, e54216 (2013).
170
Khanum R., Mumtaz A. S., Kumar S., Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol. 49, 23–31 (2013).
171
Li X., Tian H., Wang Y., Li R., Song Z., Zhang F., Xu M., Li D., Vulnerability of 208 endemic or endangered species in China to the effects of climate change. Reg. Environ. Change 13, 843–852 (2013).
172
Martínez-Freiría F., Argaz H., Fahd S., Brito J. C., Climate change is predicted to negatively influence Moroccan endemic reptile richness. Implications for conservation in protected areas. Naturwissenschaften 100, 877–889 (2013).
173
Sánchez-Guillén R. A., Muñoz J., Rodríguez-Tapia G., Feria Arroyo T. P., Córdoba-Aguilar A., Climate-induced range shifts and possible hybridisation consequences in insects. PLOS ONE 8, e80531 (2013).
174
Saupe E. E., Hendricks J. R., Townsend Peterson A., Lieberman B. S., Climate change and marine molluscs of the western North Atlantic: Future prospects and perils. J. Biogeogr. 41, 1352–1366 (2014).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 348 | Issue 6234
1 May 2015

Submission history

Received: 16 December 2014
Accepted: 17 March 2015
Published in print: 1 May 2015

Permissions

Request permissions for this article.

Acknowledgments

The data reported in this paper are tabulated in the supplementary materials. Research was supported by NSF DEB-1119877 and PLR-1417754 and the James S. McDonnell Foundation. I thank M. Tingley, J. Urban, and all the authors of the studies who made this meta-analysis possible.

Authors

Affiliations

Mark C. Urban* [email protected]
Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA.

Notes

*
Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion, Biogeosciences, 20, 1, (121-139), (2023).https://doi.org/10.5194/bg-20-121-2023
    Crossref
  2. The Trees of the Pisa Botanic Garden under Climate Change Scenarios: What Are We Walking into?, Sustainability, 15, 5, (4585), (2023).https://doi.org/10.3390/su15054585
    Crossref
  3. Facilitated Adaptation as A Conservation Tool in the Present Climate Change Context: A Methodological Guide, Plants, 12, 6, (1258), (2023).https://doi.org/10.3390/plants12061258
    Crossref
  4. The Impacts of Road Traffic on Urban Carbon Emissions and the Corresponding Planning Strategies, Land, 12, 4, (800), (2023).https://doi.org/10.3390/land12040800
    Crossref
  5. Optimized Plant Diversity and Carbon Storage for Priority Protection Areas in China, Forests, 14, 3, (621), (2023).https://doi.org/10.3390/f14030621
    Crossref
  6. Potential Geographic Range of the Endangered Reed Parrotbill Paradoxornis heudei under Climate Change, Biology, 12, 4, (560), (2023).https://doi.org/10.3390/biology12040560
    Crossref
  7. Admittance to Wildlife Rehabilitation Centres Points to Adverse Effects of Climate Change on Insectivorous Bats, Biology, 12, 4, (543), (2023).https://doi.org/10.3390/biology12040543
    Crossref
  8. How Should We Help Wild Animals Cope with Climate Change? The Case of the Iberian Lynx, Animals, 13, 3, (453), (2023).https://doi.org/10.3390/ani13030453
    Crossref
  9. Year-round foraging across large spatial scales suggest that bowhead whales have the potential to adapt to climate change, Frontiers in Marine Science, 9, (2023).https://doi.org/10.3389/fmars.2022.853525
    Crossref
  10. Evolutionary rescue and geographic range shifts under climate change for global amphibians, Frontiers in Ecology and Evolution, 11, (2023).https://doi.org/10.3389/fevo.2023.1038018
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media