Advertisement

Measuring mitigation and adaptation

As more and more carbon dioxide is emitted into the atmosphere, humans and the natural world are beset by the damaging consequences of a rapidly changing climate. Natural and seminatural ecosystems are likely to be the best starting place for immediate adaptation and mitigation solutions. First, though, many natural environments need restoration to maximize their own resilience to climate change. In reviewing our options, Morecroft et al. point out that we can directly observe the success of mitigation strategies by quantifying atmospheric carbon dioxide. Successful adaptation is more challenging because it involves a range of social and biodiversity measures. However, we could make matters worse if we do not constantly monitor the effects of the interventions we devise and react flexibly as changing conditions unfold.
Science, this issue p. eaaw9256

Structured Abstract

BACKGROUND

Responding effectively to climate change requires urgent action to halt net greenhouse gas (GHG) emissions and to adapt to changes that cannot be prevented. The Paris Agreement of the United Nations Framework Convention on Climate Change has committed governments to the following: keeping global temperature rise below 2°C, pursuing efforts to limit it to 1.5°C, and adapting to reduce the vulnerability of people and ecosystems to the damaging consequences of a changing climate.
When protected, restored, or managed appropriately, natural and seminatural ecosystems make critical contributions to climate change mitigation and to helping people adapt to climate change. Ecosystems themselves are vulnerable to climate change, but by restoring natural ecosystem processes, resilience can be built, and a wide range of adaptation strategies can ameliorate the impacts.
Both synergies and conflicts between different objectives can arise, and it is essential to have clarity about what constitutes success across the range of adaptation and mitigation outcomes and to track progress. The success of ecosystem-based mitigation can be measured in terms of falling net emissions and stabilization of atmospheric CO2 concentration. Although this is conceptually straightforward, it can be difficult to measure ecosystem fluxes accurately. Adaptation is more complicated because it encompasses a wide range of objectives, with respect to people and biodiversity, including both reducing vulnerability and managing unavoidable change.

ADVANCES

Many studies have investigated how nature-based solutions can contribute to climate change mitigation and adaptation. The evidence is now clear that protecting and restoring ecosystems is essential to holding global temperature rise to between 1.5° and 2°C. The value of different interventions for reducing GHG emissions and promoting carbon sequestration can be quantified with varying degrees of confidence. The evidence for the effectiveness, opportunities, and limitations of ecosystem-based adaptation in enabling people to cope with climate change is also growing, and these approaches are starting to be implemented. Adaptation to reduce the vulnerability of biodiversity and ecosystems themselves to climate change has been discussed over many years but proposed measures remain largely untested. This is starting to change, with recent studies gathering empirical evidence of the factors that influence the vulnerability of ecosystems and biodiversity. Nevertheless, evaluation and reporting of adaptation is currently focused on planning and implementation of actions rather than on assessment of whether these programs have successfully reduced vulnerability.

OUTLOOK

A picture is emerging of what successful adaptation and mitigation in terrestrial ecosystems looks like when it is built around protecting and restoring natural ecosystem processes. To realize the potential of ecosystems to ameliorate climate change requires integrated actions that are consistent with wider biodiversity and sustainable development goals. High-carbon ecosystems, particularly forests and peatlands, are essential, but other ecosystems, such as savannas, are also important elements of wider nature-based solutions and should be protected and restored. Pursuing mitigation objectives alone risks perverse outcomes that increase rather than reduce vulnerability. Further work is required to test the effectiveness of specific ecosystem-based mitigation and adaptation measures and what works best to support biodiversity in a changing climate. More-robust monitoring and evaluation are needed to drive progress. Measuring adaptation for biodiversity is particularly challenging, and monitoring and management will need to develop together as we learn from experience.
The role of natural and seminatural ecosystems in adaptation to and mitigation of climate change.
The flow diagram shows the relationships between adaptation for biodiversity, ecosystem-based adaptation for people, and ecosystem-based mitigation. Negative impacts of climate change are shown in dark gray, and positive responses are shown in green. Successful ecosystem response to climate change depends on an integrated approach to ensure that synergistic effects are maximized and harms are avoided.

Abstract

Natural and seminatural ecosystems must be at the forefront of efforts to mitigate and adapt to climate change. In the urgency of current circumstances, ecosystem restoration represents a range of available, efficient, and effective solutions to cut net greenhouse gas emissions and adapt to climate change. Although mitigation success can be measured by monitoring changing fluxes of greenhouse gases, adaptation is more complicated to measure, and reductions in a wide range of risks for biodiversity and people must be evaluated. Progress has been made in the monitoring and evaluation of adaptation and mitigation measures, but more emphasis on testing the effectiveness of proposed strategies is necessary. It is essential to take an integrated view of mitigation, adaptation, biodiversity, and the needs of people, to realize potential synergies and avoid conflict between different objectives.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, Eds., Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).
2
B. W. Griscom, J. Adams, P. W. Ellis, R. A. Houghton, G. Lomax, D. A. Miteva, W. H. Schlesinger, D. Shoch, J. V. Siikamäki, P. Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R. T. Conant, C. Delgado, P. Elias, T. Gopalakrishna, M. R. Hamsik, M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S. M. Leavitt, S. Minnemeyer, S. Polasky, P. Potapov, F. E. Putz, J. Sanderman, M. Silvius, E. Wollenberg, J. Fargione, Natural climate solutions. Proc. Natl. Acad. Sci. U.S.A. 114, 11645–11650 (2017). 10.1073/pnas.1710465114
3
C. Le Quéré, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P. A. Pickers, J. I. Korsbakken, G. P. Peters, J. G. Canadell, A. Arneth, V. K. Arora, L. Barbero, A. Bastos, L. Bopp, F. Chevallier, L. P. Chini, P. Ciais, S. C. Doney, T. Gkritzalis, D. S. Goll, I. Harris, V. Haverd, F. M. Hoffman, M. Hoppema, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, T. Johannessen, C. D. Jones, E. Kato, R. F. Keeling, K. K. Goldewijk, P. Landschützer, N. Lefèvre, S. Lienert, Z. Liu, D. Lombardozzi, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S. Nakaoka, C. Neill, A. Olsen, T. Ono, P. Patra, A. Peregon, W. Peters, P. Peylin, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, M. Rocher, C. Rödenbeck, U. Schuster, J. Schwinger, R. Séférian, I. Skjelvan, T. Steinhoff, A. Sutton, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, I. T. van der Laan-Luijkx, G. R. van der Werf, N. Viovy, A. P. Walker, A. J. Wiltshire, R. Wright, S. Zaehle, B. Zheng, Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018). 10.5194/essd-10-2141-2018
4
R. Munang, I. Thiaw, K. Alverson, M. Mumba, J. Liu, M. Rivington, Climate change and Ecosystem-based Adaptation: A new pragmatic approach to buffering climate change impacts. Curr. Opin. Environ. Sustain. 5, 67–71 (2013). 10.1016/j.cosust.2012.12.001
5
S. Naumann, G. Anzaldua, P. Berry, S. Burch, M. Davis, A. Frelih-Larsen, H. Gerdes, M. Sanders, “Assessment of the potential of ecosystem-based approaches to climate change adaptation and mitigation in Europe. Final report to the European Commission, DG Environment,” (Contract no. 070307/2010/580412/SER/B2, Ecologic Institute and Environmental Change Institute, Oxford University Centre for the Environment, 2011).
6
S. C. Moser, M. T. Boykoff, in Successful Adaptation to Climate Change: Linking Science and Policy in a Rapidly Changing World, S. C. Moser, M. T. Boykoff, Eds. (Routledge, 2013), pp. 25–58.
7
L. Dilling, A. Prakash, Z. Zommers, F. Ahmad, N. Singh, S. de Wit, J. Nalau, M. Daly, K. Bowman, Is adaptation success a flawed concept? Nat. Clim. Chang. 9, 572–574 (2019). 10.1038/s41558-019-0539-0
8
L. Berrang-Ford, R. Biesbroek, J. D. Ford, A. Lesnikowski, A. Tanabe, F. M. Wang, C. Chen, A. Hsu, J. J. Hellmann, P. Pringle, M. Grecequet, J.-C. Amado, S. Huq, S. Lwasa, S. J. Heymann, Tracking global climate change adaptation among governments. Nat. Clim. Chang. 9, 440–449 (2019). 10.1038/s41558-019-0490-0
9
S. Federici, F. N. Tubiello, M. Salvatore, H. Jacobs, J. Schmidhuber, New estimates of CO2 forest emissions and removals: 1990–2015. For. Ecol. Manage. 352, 89–98 (2015). 10.1016/j.foreco.2015.04.022
10
S. Rossi, F. N. Tubiello, P. Prosperi, M. Salvatore, H. Jacobs, R. Biancalani, J. I. House, L. Boschetti, FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Clim. Change 135, 699–711 (2016). 10.1007/s10584-015-1584-y
11
V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield, Eds., “Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty” (Intergovernmental Panel on Climate Change, 2018).
12
S. Roe, C. Streck, M. Obersteiner, S. Frank, B. Griscom, L. Drouet, O. Fricko, M. Gusti, N. Harris, T. Hasegawa, Z. Hausfather, P. Havlík, J. House, G.-J. Nabuurs, A. Popp, M. J. S. Sánchez, J. Sanderman, P. Smith, E. Stehfest, D. Lawrence, Contribution of the land sector to a 1.5° C world. Nat. Clim. Chang. 9, 817–828 (2019). 10.1038/s41558-019-0591-9
13
T. A. M. Pugh, M. Lindeskog, B. Smith, B. Poulter, A. Arneth, V. Haverd, L. Calle, Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. U.S.A. 116, 4382–4387 (2019). 10.1073/pnas.1810512116
14
S. L. Lewis, C. E. Wheeler, E. T. A. Mitchard, A. Koch, Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019). 10.1038/d41586-019-01026-8
15
D. Wilson, D. Blain, J. Couwenberg, C. D. Evans, D. Murdiyarso, S. E. Page, F. Renou-Wilson, J. O. Rieley, A. Sirin, M. Strack, E.-S. Tuittila, Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 1–28 (2016).
16
J. Leifeld, L. Menichetti, The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018). 10.1038/s41467-018-03406-6
17
K. Schaefer, H. Lantuit, V. E. Romanovsky, E. A. Schuur, R. Witt, The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014). 10.1088/1748-9326/9/8/085003
18
W. N. Adger, N. W. Arnell, E. L. Tompkins, Successful adaptation to climate change across scales. Glob. Environ. Change 15, 77–86 (2005). 10.1016/j.gloenvcha.2004.12.005
19
N. E. Heller, E. S. Zavaleta, Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol. Conserv. 142, 14–32 (2009). 10.1016/j.biocon.2008.10.006
20
S. M. Prober, V. A. Doerr, L. M. Broadhurst, K. J. Williams, F. Dickson, Shifting the conservation paradigm: A synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019). 10.1002/ecm.1333
21
O. Greenwood, H. L. Mossman, A. J. Suggitt, R. J. Curtis, I. M. D. Maclean, Using in situ management to conserve biodiversity under climate change. J. Appl. Ecol. 53, 885–894 (2016). 10.1111/1365-2664.12602
22
W. R. Moomaw, G. L. Chmura, G. T. Davies, C. M. Finlayson, B. A. Middleton, S. M. Natali, J. E. Perry, N. Roulet, A. E. Sutton-Grier, Wetlands in a changing climate: Science, policy and management. Wetlands 38, 183–205 (2018). 10.1007/s13157-018-1023-8
23
B. L. Timpane-Padgham, T. Beechie, T. Klinger, A systematic review of ecological attributes that confer resilience to climate change in environmental restoration. PLOS ONE 12, e0173812 (2017). 10.1371/journal.pone.0173812
24
J. S. Halofsky, D. C. Donato, J. F. Franklin, J. E. Halofsky, D. L. Peterson, B. J. Harvey, The nature of the beast: Examining climate adaptation options in forests with stand‐replacing fire regimes. Ecosphere 9, e02140 (2018). 10.1002/ecs2.2140
25
P. F. Hessburg, D. J. Churchill, A. J. Larson, R. D. Haugo, C. Miller, T. A. Spies, M. P. North, N. A. Povak, R. T. Belote, P. H. Singleton, W. L. Gaines, R. E. Keane, G. H. Aplet, S. L. Stephens, P. Morgan, P. A. Bisson, B. E. Rieman, R. B. Salter, G. H. Reeves, Restoring fire-prone Inland Pacific landscapes: Seven core principles. Landsc. Ecol. 30, 1805–1835 (2015). 10.1007/s10980-015-0218-0
26
T. H. Oliver, H. H. Marshall, M. D. Morecroft, T. Brereton, C. Prudhomme, C. Huntingford, Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 5, 941–945 (2015). 10.1038/nclimate2746
27
A. T. Keeley, D. D. Ackerly, D. R. Cameron, N. E. Heller, P. R. Huber, C. A. Schloss, J. H. Thorne, A. M. Merenlender, New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018). 10.1088/1748-9326/aacb85
28
J. W. Pearce-Higgins, P. J. Lindley, I. G. Johnstone, R. I. Thorpe, D. J. T. Douglas, M. C. Grant, Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019). 10.1007/s10584-019-02372-2
29
R. W. Brooker, M. J. Brewer, A. J. Britton, A. Eastwood, C. Ellis, A. Gimona, L. Poggio, D. R. Genney, Tiny niches and translocations: The challenge of identifying suitable recipient sites for small and immobile species. J. Appl. Ecol. 55, 621–630 (2018). 10.1111/1365-2664.13008
30
S. G. Willis, J. K. Hill, C. D. Thomas, D. B. Roy, R. Fox, D. S. Blakeley, B. Huntley, Assisted colonization in a changing climate: A test‐study using two UK butterflies. Conserv. Lett. 2, 46–52 (2009). 10.1111/j.1755-263X.2008.00043.x
31
S. M. Thomas, S. W. Griffiths, S. J. Ormerod, Beyond cool: Adapting upland streams for climate change using riparian woodlands. Glob. Change Biol. 22, 310–324 (2016). 10.1111/gcb.13103
32
S. Broadmeadow, J. Jones, T. Langford, P. Shaw, T. Nisbet, The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout. River Res. Appl. 27, 226–237 (2011). 10.1002/rra.1354
33
P. Glick, H. Chmura, B. A. Stein, “Moving the conservation goalposts: A review of climate change adaptation literature” (National Wildlife Federation, 2011).
34
R. L. Pressey, M. Cabeza, M. E. Watts, R. M. Cowling, K. A. Wilson, Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592 (2007). 10.1016/j.tree.2007.10.001
35
B. A. Stein, M. R. Shaw, in Successful Adaptation to Climate Change: Linking Science and Policy in a Rapidly Changing World, S. C. Moser, M. T. Boykoff, Eds. (Routledge, 2013), pp. 74–90.
36
M. D. Morecroft, H. Q. Crick, S. J. Duffield, N. A. Macgregor, Resilience to climate change: Translating principles into practice. J. Appl. Ecol. 49, 547–551 (2012). 10.1111/j.1365-2664.2012.02136.x
37
A. J. Suggitt, R. J. Wilson, N. J. B. Isaac, C. M. Beale, A. G. Auffret, T. August, J. J. Bennie, H. Q. P. Crick, S. Duffield, R. Fox, J. J. Hopkins, N. A. Macgregor, M. D. Morecroft, K. J. Walker, I. M. D. Maclean, Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717 (2018). 10.1038/s41558-018-0231-9
38
T. L. Morelli, C. Daly, S. Z. Dobrowski, D. M. Dulen, J. L. Ebersole, S. T. Jackson, J. D. Lundquist, C. I. Millar, S. P. Maher, W. B. Monahan, K. R. Nydick, K. T. Redmond, S. C. Sawyer, S. Stock, S. R. Beissinger, Managing climate change refugia for climate adaptation. PLOS ONE 11, e0159909 (2016). 10.1371/journal.pone.0159909
39
H. P. Jones, D. G. Hole, E. S. Zavaleta, Harnessing nature to help people adapt to climate change. Nat. Clim. Chang. 2, 504–509 (2012). 10.1038/nclimate1463
40
J. Nalau, S. Becken, B. Mackey, Ecosystem-based Adaptation: A review of the constraints. Environ. Sci. Policy 89, 357–364 (2018). 10.1016/j.envsci.2018.08.014
41
S. Woroniecki, C. Wamsler, E. Boyd, The promises and pitfalls of ecosystem-based adaptation to climate change as a vehicle for social empowerment. Ecol. Soc. 24, 4 (2019). 10.5751/ES-10854-240204
42
A. McVittie, L. Cole, A. Wreford, A. Sgobbi, B. Yordi, Ecosystem-based solutions for disaster risk reduction: Lessons from European applications of ecosystem-based adaptation measures. Int. J. Disaster Risk Reduct. 32, 42–54 (2018). 10.1016/j.ijdrr.2017.12.014
43
J. E. M. Watson, T. Evans, O. Venter, B. Williams, A. Tulloch, C. Stewart, I. Thompson, J. C. Ray, K. Murray, A. Salazar, C. McAlpine, P. Potapov, J. Walston, J. G. Robinson, M. Painter, D. Wilkie, C. Filardi, W. F. Laurance, R. A. Houghton, S. Maxwell, H. Grantham, C. Samper, S. Wang, L. Laestadius, R. K. Runting, G. A. Silva-Chávez, J. Ervin, D. Lindenmayer, The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018). 10.1038/s41559-018-0490-x
44
S. J. Dixon, D. A. Sear, N. A. Odoni, T. Sykes, S. N. Lane, The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surf. Process. Landf. 41, 997–1008 (2016). 10.1002/esp.3919
45
Z. L. Carroll, S. B. Bird, B. A. Emmett, B. Reynolds, F. L. Sinclair, Can tree shelterbelts on agricultural land reduce flood risk? Soil Use Manage. 20, 357–359 (2004). 10.1079/SUM2004266
46
M. G. Anderson, C. E. Ferree, A. P. Olivero, F. Zhao, Assessing floodplain forests: Using flow modeling and remote sensing to determine the best places for conservation. Nat. Areas J. 30, 39–52 (2010). 10.3375/043.030.0105
47
E. Buisson, S. Le Stradic, F. A. O. Silveira, G. Durigan, G. E. Overbeck, A. Fidelis, G. W. Fernandes, W. J. Bond, J.-M. Hermann, G. Mahy, S. T. Alvarado, N. P. Zaloumis, J. W. Veldman, Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev. Camb. Philos. Soc. 94, 590–609 (2019). 10.1111/brv.12470
48
J. W. Veldman, J. C. Aleman, S. T. Alvarado, T. M. Anderson, S. Archibald, W. J. Bond, T. W. Boutton, N. Buchmann, E. Buisson, J. G. Canadell, M. S. Dechoum, M. H. Diaz-Toribio, G. Durigan, J. J. Ewel, G. W. Fernandes, A. Fidelis, F. Fleischman, S. P. Good, D. M. Griffith, J.-M. Hermann, W. A. Hoffmann, S. Le Stradic, C. E. R. Lehmann, G. Mahy, A. N. Nerlekar, J. B. Nippert, R. F. Noss, C. P. Osborne, G. E. Overbeck, C. L. Parr, J. G. Pausas, R. T. Pennington, M. P. Perring, F. E. Putz, J. Ratnam, M. Sankaran, I. B. Schmidt, C. B. Schmitt, F. A. O. Silveira, A. C. Staver, N. Stevens, C. J. Still, C. A. E. Strömberg, V. M. Temperton, J. M. Varner, N. P. Zaloumis, Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019). 10.1126/science.aay7976
49
E. A. Honda, G. Durigan, Woody encroachment and its consequences on hydrological processes in the savannah. Philos. Trans. R. Soc. London Ser. B 371, 20150313 (2016). 10.1098/rstb.2015.0313
50
S. Archibald, C. E. Lehmann, J. L. Gómez-Dans, R. A. Bradstock, Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. U.S.A. 110, 6442–6447 (2013). 10.1073/pnas.1211466110
51
B. P. Murphy, A. N. Andersen, C. L. Parr, The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. London Ser. B 371, 20150319 (2016). 10.1098/rstb.2015.0319
52
C. E. Lehmann, T. M. Anderson, M. Sankaran, S. I. Higgins, S. Archibald, W. A. Hoffmann, N. P. Hanan, R. J. Williams, R. J. Fensham, J. Felfili, L. B. Hutley, J. Ratnam, J. San Jose, R. Montes, D. Franklin, J. Russell-Smith, C. M. Ryan, G. Durigan, P. Hiernaux, R. Haidar, D. M. J. S. Bowman, W. J. Bond, Savanna vegetation-fire-climate relationships differ among continents. Science 343, 548–552 (2014). 10.1126/science.1247355
53
J.-F. Bastin, Y. Finegold, C. Garcia, D. Mollicone, M. Rezende, D. Routh, C. M. Zohner, T. W. Crowther, The global tree restoration potential. Science 365, 76–79 (2019). 10.1126/science.aax0848
54
H. Simola, A. Pitkänen, J. Turunen, Carbon loss in drained forestry peatlands in Finland, estimated by re‐sampling peatlands surveyed in the 1980s. Eur. J. Soil Sci. 63, 798–807 (2012). 10.1111/j.1365-2389.2012.01499.x
55
J. D. Wilson, R. Anderson, S. Bailey, J. Chetcuti, N. R. Cowie, M. H. Hancock, C. P. Quine, N. Russell, L. Stephen, D. B. A. Thompson, Modelling edge effects of mature forest plantations on peatland waders informs landscape‐scale conservation. J. Appl. Ecol. 51, 204–213 (2014). 10.1111/1365-2664.12173
56
C. E. LaCanne, J. G. Lundgren, Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ 6, e4428 (2018). 10.7717/peerj.4428
57
H. Muri, The role of large—scale BECCS in the pursuit of the 1.5° C target: An Earth system model perspective. Environ. Res. Lett. 13, 044010 (2018). 10.1088/1748-9326/aab324
58
P. A. Turner, K. J. Mach, D. B. Lobell, S. M. Benson, E. Baik, D. L. Sanchez, C. B. Field, The global overlap of bioenergy and carbon sequestration potential. Clim. Change 148, 1–10 (2018). 10.1007/s10584-018-2189-z
59
Least Developed Countries Expert Group, “National Adaptation Plans: Technical guidelines for the national adaptation plan process” (United Nations Framework Convention on Climate Change, 2012).
60
H. Price-Kelly, A. Hammill, J. Dekens, T. Leiter, J. Olivier, “Developing national adaptation monitoring and evaluation systems: A guidebook” (Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2015).
61
O. Iacob, J. S. Rowan, I. Brown, C. Ellis, Evaluating wider benefits of natural flood management strategies: An ecosystem-based adaptation perspective. Hydrol. Res. 45, 774–787 (2014). 10.2166/nh.2014.184
62
J. W. Pearce-Higgins, C. M. Beale, T. H. Oliver, T. A. August, M. Carroll, D. Massimino, N. Ockendon, J. Savage, C. J. Wheatley, M. A. Ausden, R. B. Bradbury, S. J. Duffield, N. A. Macgregor, C. J. McClean, M. D. Morecroft, C. D. Thomas, O. Watts, B. C. Beckmann, R. Fox, H. E. Roy, P. G. Sutton, K. J. Walker, H. Q. P. Crick, A national-scale assessment of climate change impacts on species: Assessing the balance of risks and opportunities for multiple taxa. Biol. Conserv. 213, 124–134 (2017). 10.1016/j.biocon.2017.06.035
63
C. J. Wheatley, C. M. Beale, R. B. Bradbury, J. W. Pearce-Higgins, R. Critchlow, C. D. Thomas, Climate change vulnerability for species—Assessing the assessments. Glob. Change Biol. 23, 3704–3715 (2017). 10.1111/gcb.13759
64
W. B. Foden, B. E. Young, H. R. Akçakaya, R. A. Garcia, A. A. Hoffmann, B. A. Stein, C. D. Thomas, C. J. Wheatley, D. Bickford, J. A. Carr, D. G. Hole, T. G. Martin, M. Pacifici, J. W. Pearce-Higgins, P. J. Platts, P. Visconti, J. E. M. Watson, B. Huntley, Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Change 10, e551 (2019). 10.1002/wcc.551
65
D. B. Lindenmayer, G. E. Likens, Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 14, 47–59 (2011). 10.1007/s10021-010-9394-6
66
R. D. Gregory, A. van Strien, P. Vorisek, A. W. Gmelig Meyling, D. G. Noble, R. P. B. Foppen, D. W. Gibbons, Developing indicators for European birds. Philos. Trans. R. Soc. London Ser. B 360, 269–288 (2005). 10.1098/rstb.2004.1602
67
M. Diekmann, Species indicator values as an important tool in applied plant ecology–A review. Basic Appl. Ecol. 4, 493–506 (2003). 10.1078/1439-1791-00185
68
G. M. Siriwardena, I. G. Henderson, D. G. Noble, R. J. Fuller, How can assemblage structure indices improve monitoring of change in bird communities using ongoing survey data? Ecol. Indic. 104, 669–685 (2019). 10.1016/j.ecolind.2019.05.046
69
V. Devictor, C. van Swaay, T. Brereton, L. Brotons, D. Chamberlain, J. Heliölä, S. Herrando, R. Julliard, M. Kuussaari, Å. Lindström, J. Reif, D. B. Roy, O. Schweiger, J. Settele, C. Stefanescu, A. Van Strien, C. Van Turnhout, Z. Vermouzek, M. WallisDeVries, I. Wynhoff, F. Jiguet, Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2, 121–124 (2012). 10.1038/nclimate1347
70
B. Martay, D. T. Monteith, M. J. Brewer, T. Brereton, C. R. Shortall, J. W. Pearce-Higgins, An indicator highlights seasonal variation in the response of Lepidoptera communities to warming. Ecol. Indic. 68, 126–133 (2016). 10.1016/j.ecolind.2016.01.057
71
P. A. Stephens, L. R. Mason, R. E. Green, R. D. Gregory, J. R. Sauer, J. Alison, A. Aunins, L. Brotons, S. H. M. Butchart, T. Campedelli, T. Chodkiewicz, P. Chylarecki, O. Crowe, J. Elts, V. Escandell, R. P. B. Foppen, H. Heldbjerg, S. Herrando, M. Husby, F. Jiguet, A. Lehikoinen, Å. Lindström, D. G. Noble, J.-Y. Paquet, J. Reif, T. Sattler, T. Szép, N. Teufelbauer, S. Trautmann, A. J. van Strien, C. A. M. van Turnhout, P. Vorisek, S. G. Willis, Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016). 10.1126/science.aac4858
72
D. B. Lindenmayer, G. E. Likens, A. Haywood, L. Miezis, Adaptive monitoring in the real world: Proof of concept. Trends Ecol. Evol. 26, 641–646 (2011). 10.1016/j.tree.2011.08.002
73
R. A. Ims, N. G. Yoccoz, Ecosystem-based monitoring in the age of rapid climate change and new technologies. Curr. Opin. Environ. Sustain. 29, 170–176 (2017). 10.1016/j.cosust.2018.01.003

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 366 | Issue 6471
13 December 2019

Submission history

Published in print: 13 December 2019

Permissions

Request permissions for this article.

Acknowledgments

Funding: M.D.M. and S.D. were funded by Natural England; M.H. was funded by Climate Resilience Ltd.; J.W.P.-H. was funded by the British Trust for Ornithology; N.S. was funded by National Research Foundation, Alliance for Collaboration on Climate and Earth Systems Science (ACCESS) grant 114695; O.W. was funded by the Royal Society for the Protection of Birds; and J.W. was funded by the Natural Environment Research Council grant Locked Up (NE/S005137/1). Competing interests: The authors are not aware of any conflicts of interest.

Authors

Affiliations

Natural England, York YO1 7PX, UK.
Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK.
Natural England, York YO1 7PX, UK.
Mike Harley
Climate Resilience Ltd., Stamford PE9 4AU, UK.
James W. Pearce-Higgins https://orcid.org/0000-0003-1341-5080
British Trust for Ornithology, Thetford, Norfolk IP24 2PU, UK.
Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge CB2 3QZ, UK.
Department of Zoology and Botany, Stellenbosch University, Stellenbosch 7600, South Africa.
Olly Watts
Royal Society for the Protection of Birds, Sandy SG19 2DL, UK.
UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster LA1 4AP, UK.

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Land Take and Landslide Hazard: Spatial Assessment and Policy Implications from a Study Concerning Sardinia, Land, 12, 2, (359), (2023).https://doi.org/10.3390/land12020359
    Crossref
  2. Overcoming the coupled climate and biodiversity crises and their societal impacts, Science, 380, 6642, (2023)./doi/10.1126/science.abl4881
    Abstract
  3. Hyposensitive canopy conductance renders ecosystems vulnerable to meteorological droughts, Global Change Biology, 29, 7, (1890-1904), (2023).https://doi.org/10.1111/gcb.16607
    Crossref
  4. The impact of climate change on the future distribution of priority crop wild relatives in Indonesia and implications for conservation planning, Journal for Nature Conservation, 73, (126368), (2023).https://doi.org/10.1016/j.jnc.2023.126368
    Crossref
  5. What happens after climate change adaptation projects end: A community-based approach to ex-post assessment of adaptation projects, Global Environmental Change, 80, (102655), (2023).https://doi.org/10.1016/j.gloenvcha.2023.102655
    Crossref
  6. Performance of urban climate-responsive design interventions in combining climate adaptation and mitigation, Building and Environment, (110227), (2023).https://doi.org/10.1016/j.buildenv.2023.110227
    Crossref
  7. Biodiversität, und die Nutzung des Waldes, Waldbewirtschaftung in der Klimakrise, (91-105), (2023).https://doi.org/10.1007/978-3-658-39054-9_7
    Crossref
  8. Identifying and prioritising climate change adaptation actions for greater one-horned rhinoceros ( Rhinoceros unicornis ) conservation in Nepal , PeerJ, 10, (e12795), (2022).https://doi.org/10.7717/peerj.12795
    Crossref
  9. Relative Contributions of Climate Change and Human Activities on Vegetation Productivity Variation in National Nature Reserves on the Qinghai–Tibetan Plateau, Remote Sensing, 14, 18, (4626), (2022).https://doi.org/10.3390/rs14184626
    Crossref
  10. Key Strategies Underlying the Adaptation of Mongolian Scots Pine (Pinussylvestris var. mongolica) in Sandy Land under Climate Change: A Review, Forests, 13, 6, (846), (2022).https://doi.org/10.3390/f13060846
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media