The Wayback Machine - https://web.archive.org/web/20070930043742/http://jcs.biologists.org/cgi/content/full/113/19/3353
spacer gif spacer gif spacer gif spacer gif Online submission spacer gif
 QUICK SEARCH:   [advanced]


spacer gif
     Home     Help     Feedback     Subscriptions     Archive     Search     Table of Contents    


This Article
Right arrow Figures Only
Right arrow Full Text (PDF)
Right arrow Poster Insert
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Email this article to a friend
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrow Cited by other online articles
Google Scholar
Right arrow Articles by Hodge, T.
Right arrow Articles by Cope, M. J.
Right arrow Articles citing this Article
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Hodge, T.
Right arrow Articles by Cope, M. J.
Journal of Cell Science 113, 3353-3354 (2000)
© 2000 The Company of Biologists Limited


CELL SCIENCE AT A GLANCE

A myosin family tree

Tony Hodge1 and M. Jamie T. V. Cope2

1 Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK (tph{at}mrc-lmb.cam.ac.uk)
2 Drubin/Barnes Lab, 401 Barker Hall, University of California, Berkeley CA 94720, USA (jcope{at}mac.com)

This unrooted phylogenetic tree of the myosin superfamily (see insert) is derived from an alignment of 139 members of the myosin superfamily. The alignment compared the core motor domains (equivalent to residues 88-780 of chicken skeletal myosin II) of each myosin, using distance matrix analysis performed with the Clustal-W package. The exceptions, shown with a dotted line, are SsVIIa, which is a partial sequence as reported in the databases, and Hs MysPDZ. The latter is reported as a complete coding sequence but has a truncated N terminus starting some 52 residues into the core motor region (i.e. residue 140 of chicken skeletal myosin II). These shorter sequences have no significant effect on the branching order of the rest of the tree.

Optimally, when one produces a phylogenetic tree from such an alignment, any positions in the alignment with gaps are excluded. Such a strategy would have excluded a large proportion of the data because of the large number of sequences. Positions with gaps were therefore included in the tree shown here. Comparison with a tree derived while excluding gaps showed some differences in branching order but only within classes. The reliability of the tree structure was tested by several methods: (1) bootstrapping (repeated redrawing of the tree structure, 1000 trials in this case) gave confidence levels for branching order (see below); (2) alignments were re-ordered randomly and alphabetically by species or by taxa, these treatments giving trees with identical branching order within the classes. (3) Analysis of the alignment using protpars from the Phylip package (a maximum parsimony method) produced a tree with a similar branching order for most classes, the main exceptions being the single sequence classes.

The tree being unrooted, the relationships between classes as shown by the branching order at the centre of the tree is unreliable, but evolutionary information can be derived within a class. Each class is defined by the first node represented in >90% of bootstrap trials starting from the centre of the tree. The inclusion of myosin sequence data recently added to the public databases has resulted in the clustering together at such a node of some of the more disparate examples based on their motor domains (Classes III, XII, XVI and the chitin synthase containing myosins). While this would normally be taken to define a class, the low sequence similarity (long branches), lack of significance for this grouping obtained by maximum parsimony algorithms and general dissimilarity between complete molecules argue against such a classification. Analysis of the sequence identity of the two chitin synthase myosins (Pg csm1 and En csmA) shows they are orthologues; they also group together by distance matrix analysis with >90% confidence. This evidence allows us to define a new class (XVII), and the branches have been coloured accordingly.

The molecular cartoons serve to indicate possible molecular structure, especially the expected single- or double-headed nature of the myosins. Regarding the myosin XIII cartoon, the ‘?’ denotes one of the sequences (Acl myo1) having a surprisingly short tail, which may reflect a sequence truncation.

The complete alignment, the bootstrapping data, references and links for the software packages and hyperlinks to database entries for all the myosins included in the analysis, along with other myosin-related information, can be found at the Myosin Homepage: www.mrc-lmb.cam.ac.uk/myosin/

Go



View larger version (46K):
[in this window]
[in a new window]
 
 




This article has been cited by other articles: (Search Google Scholar for Other Citing Articles)


Home page
Eukaryot CellHome page
G. Steinberg
Hyphal Growth: a Tale of Motors, Lipids, and the Spitzenkorper
Eukaryot. Cell, March 1, 2007; 6(3): 351 - 360.
[Full Text] [PDF]


Home page
Ann. N. Y. Acad. Sci.Home page
J. A DANTZIG, T. Y LIU, and Y. E GOLDMAN
Functional Studies of Individual Myosin Molecules
Ann. N.Y. Acad. Sci., October 1, 2006; 1080(1): 1 - 18.
[Abstract] [Full Text] [PDF]


Home page
Nucleic Acids ResHome page
A. Flaus, D. M. A. Martin, G. J. Barton, and T. Owen-Hughes
Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
Nucleic Acids Res., May 31, 2006; 34(10): 2887 - 2905.
[Abstract] [Full Text] [PDF]


Home page
Biophys. JHome page
M. Iwaki, H. Tanaka, A. H. Iwane, E. Katayama, M. Ikebe, and T. Yanagida
Cargo-Binding Makes a Wild-Type Single-Headed Myosin-VI Move Processively
Biophys. J., May 15, 2006; 90(10): 3643 - 3652.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
S. Watanabe, R. Ikebe, and M. Ikebe
Drosophila Myosin VIIA Is a High Duty Ratio Motor with a Unique Kinetic Mechanism
J. Biol. Chem., March 17, 2006; 281(11): 7151 - 7160.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
B. J. Foth, M. C. Goedecke, and D. Soldati
From the Cover: New insights into myosin evolution and classification
PNAS, March 7, 2006; 103(10): 3681 - 3686.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
H. V. Goodson and S. C. Dawson
Multiplying myosins.
PNAS, March 7, 2006; 103(10): 3498 - 3499.
[Full Text] [PDF]


Home page
J. Biol. Chem.Home page
V. Nalavadi, M. Nyitrai, C. Bertolini, N. Adamek, M. A. Geeves, and M. Bahler
Kinetic Mechanism of Myosin IXB and the Contributions of Two Class IX-specific Regions
J. Biol. Chem., November 25, 2005; 280(47): 38957 - 38968.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
I. Schuchardt, D. Assmann, E. Thines, C. Schuberth, and G. Steinberg
Myosin-V, Kinesin-1, and Kinesin-3 Cooperate in Hyphal Growth of the Fungus Ustilago maydis
Mol. Biol. Cell, November 1, 2005; 16(11): 5191 - 5201.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
P. J. Knight, K. Thirumurugan, Y. Xu, F. Wang, A. P. Kalverda, W. F. Stafford III, J. R. Sellers, and M. Peckham
The Predicted Coiled-coil Domain of Myosin 10 Forms a Novel Elongated Domain That Lengthens the Head
J. Biol. Chem., October 14, 2005; 280(41): 34702 - 34708.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
K. Homma and M. Ikebe
Myosin X Is a High Duty Ratio Motor
J. Biol. Chem., August 12, 2005; 280(32): 29381 - 29391.
[Abstract] [Full Text] [PDF]


Home page
Physiol. Rev.Home page
S. L. Hooper and J. B. Thuma
Invertebrate Muscles: Muscle Specific Genes and Proteins
Physiol Rev, July 1, 2005; 85(3): 1001 - 1060.
[Abstract] [Full Text] [PDF]


Home page
DevelopmentHome page
S. J. Dixon and P. J. Roy
Muscle arm development in Caenorhabditis elegans
Development, July 1, 2005; 132(13): 3079 - 3092.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Biol.Home page
D. A. Sahlender, R. C. Roberts, S. D. Arden, G. Spudich, M. J. Taylor, J. P. Luzio, J. Kendrick-Jones, and F. Buss
Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis
J. Cell Biol., April 25, 2005; 169(2): 285 - 295.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
N. Takeshita, A. Ohta, and H. Horiuchi
CsmA, a Class V Chitin Synthase with a Myosin Motor-like Domain, Is Localized through Direct Interaction with the Actin Cytoskeleton in Aspergillus nidulans
Mol. Biol. Cell, April 1, 2005; 16(4): 1961 - 1970.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
S. J. Winder and K. R. Ayscough
Actin-binding proteins
J. Cell Sci., February 15, 2005; 118(4): 651 - 654.
[Full Text] [PDF]


Home page
Mol. Biol. CellHome page
H. N. Higgs and K. J. Peterson
Phylogenetic Analysis of the Formin Homology 2 Domain
Mol. Biol. Cell, January 1, 2005; 16(1): 1 - 13.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
D. P. Kiehart, J. D. Franke, M. K. Chee, R. A. Montague, T.-l. Chen, J. Roote, and M. Ashburner
Drosophila crinkled, Mutations of Which Disrupt Morphogenesis and Cause Lethality, Encodes Fly Myosin VIIA
Genetics, November 1, 2004; 168(3): 1337 - 1352.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
C. Holweg and P. Nick
Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport
PNAS, July 13, 2004; 101(28): 10488 - 10493.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
O. Sato, H. D. White, A. Inoue, B. Belknap, R. Ikebe, and M. Ikebe
Human Deafness Mutation of Myosin VI (C442Y) Accelerates the ADP Dissociation Rate
J. Biol. Chem., July 9, 2004; 279(28): 28844 - 28854.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Sci.Home page
S. Sousa, D. Cabanes, A. El-Amraoui, C. Petit, M. Lecuit, and P. Cossart
Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells
J. Cell Sci., April 15, 2004; 117(10): 2121 - 2130.
[Abstract] [Full Text] [PDF]


Home page
Microbiol. Mol. Biol. Rev.Home page
K. A. Borkovich, L. A. Alex, O. Yarden, M. Freitag, G. E. Turner, N. D. Read, S. Seiler, D. Bell-Pedersen, J. Paietta, N. Plesofsky, M. Plamann, M. Goodrich-Tanrikulu, U. Schulte, G. Mannhaupt, F. E. Nargang, A. Radford, C. Selitrennikoff, J. E. Galagan, J. C. Dunlap, J. J. Loros, D. Catcheside, H. Inoue, R. Aramayo, M. Polymenis, E. U. Selker, M. S. Sachs, G. A. Marzluf, I. Paulsen, R. Davis, D. J. Ebbole, A. Zelter, E. R. Kalkman, R. O'Rourke, F. Bowring, J. Yeadon, C. Ishii, K. Suzuki, W. Sakai, and R. Pratt
Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism
Microbiol. Mol. Biol. Rev., March 1, 2004; 68(1): 1 - 108.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
F. Les Erickson, A. C. Corsa, A. C. Dose, and B. Burnside
Localization of a Class III Myosin to Filopodia Tips in Transfected HeLa Cells Requires an Actin-binding Site in its Tail Domain
Mol. Biol. Cell, October 1, 2003; 14(10): 4173 - 4180.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
S. S. Rosenfeld, J. Xing, L.-Q. Chen, and H. L. Sweeney
Myosin IIB Is Unconventionally Conventional
J. Biol. Chem., July 18, 2003; 278(30): 27449 - 27455.
[Abstract] [Full Text] [PDF]


Home page
J Biochem (Tokyo)Home page
Y. Hachikubo, K. Ito, and K. Yamamoto
Roles of the Hydrophobic Triplet in the Motor Domain of Myosin in the Interaction between Myosin and Actin
J. Biochem. (Tokyo), July 1, 2003; 134(1): 165 - 171.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
S. Komaba, A. Inoue, S. Maruta, H. Hosoya, and M. Ikebe
Determination of Human Myosin III as a Motor Protein Having a Protein Kinase Activity
J. Biol. Chem., June 6, 2003; 278(24): 21352 - 21360.
[Abstract] [Full Text] [PDF]


Home page
Mol. Biol. CellHome page
A. C. Dose, D. W. Hillman, C. Wong, L. Sohlberg, J. Lin-Jones, and B. Burnside
Myo3A, One of Two Class III Myosin Genes Expressed in Vertebrate Retina, Is Localized to the Calycal Processes of Rod and Cone Photoreceptors and Is Expressed in the Sacculus
Mol. Biol. Cell, March 1, 2003; 14(3): 1058 - 1073.
[Abstract] [Full Text] [PDF]


Home page
Plant Cell PhysiolHome page
M. Seki, J.-y. Awata, K. Shimada, T. Kashiyama, K. Ito, and K. Yamamoto
Susceptibility of Chara Myosin to SH Reagents
Plant Cell Physiol., February 15, 2003; 44(2): 201 - 205.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
A. Inoue and M. Ikebe
Characterization of the Motor Activity of Mammalian Myosin VIIA
J. Biol. Chem., February 7, 2003; 278(7): 5478 - 5487.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
G. Tzolovsky, H. Millo, S. Pathirana, T. Wood, and M. Bownes
Identification and Phylogenetic Analysis of Drosophila melanogaster Myosins
Mol. Biol. Evol., July 1, 2002; 19(7): 1041 - 1052.
[Abstract] [Full Text] [PDF]


Home page
J. Cell Biol.Home page
J. R. Moore, E. B. Krementsova, K. M. Trybus, and D. M. Warshaw
Myosin V exhibits a high duty cycle and large unitary displacement
J. Cell Biol., November 12, 2001; 155(4): 625 - 636.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
M. Yoshimura, K. Homma, J. Saito, A. Inoue, R. Ikebe, and M. Ikebe
Dual Regulation of Mammalian Myosin VI Motor Function
J. Biol. Chem., October 19, 2001; 276(43): 39600 - 39607.
[Abstract] [Full Text] [PDF]


Home page
J. Neurosci.Home page
K. G. Patel, C. Liu, P. L. Cameron, and R. S. Cameron
Myr 8, A Novel Unconventional Myosin Expressed during Brain Development Associates with the Protein Phosphatase Catalytic Subunits 1{alpha} and 1{gamma}1
J. Neurosci., October 15, 2001; 21(20): 7954 - 7968.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
N. Wicker, G. Rene Perrin, J. C. Thierry, and O. Poch
Secator: A Program for Inferring Protein Subfamilies from Phylogenetic Trees
Mol. Biol. Evol., August 1, 2001; 18(8): 1435 - 1441.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
X. Liu, N. Osherov, R. Yamashita, H. Brzeska, E. D. Korn, and G. S. May
Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s)
PNAS, July 13, 2001; (2001) 161285698.
[Abstract] [Full Text] [PDF]


Home page
Plant Physiol.Home page
F. Baluska, F. Cvrcková, J. Kendrick-Jones, and D. Volkmann
Sink Plasmodesmata as Gateways for Phloem Unloading. Myosin VIII and Calreticulin as Molecular Determinants of Sink Strength?
Plant Physiology, May 1, 2001; 126(1): 39 - 46.
[Full Text]


Home page
Mol. Biol. CellHome page
J. S. Berg, B. C. Powell, and R. E. Cheney
A Millennial Myosin Census
Mol. Biol. Cell, April 1, 2001; 12(4): 780 - 794.
[Abstract] [Full Text]


Home page
J. Biol. Chem.Home page
M. Ikebe, S. Komatsu, J. L. Woodhead, K. Mabuchi, R. Ikebe, J. Saito, R. Craig, and M. Higashihara
The Tip of the Coiled-coil Rod Determines the Filament Formation of Smooth Muscle and Nonmuscle Myosin
J. Biol. Chem., August 3, 2001; 276(32): 30293 - 30300.
[Abstract] [Full Text] [PDF]


Home page
J. Biol. Chem.Home page
K. Homma, J. Saito, R. Ikebe, and M. Ikebe
Motor Function and Regulation of Myosin X
J. Biol. Chem., August 31, 2001; 276(36): 34348 - 34354.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
X. Liu, N. Osherov, R. Yamashita, H. Brzeska, E. D. Korn, and G. S. May
Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s)
PNAS, July 31, 2001; 98(16): 9122 - 9127.
[Abstract] [Full Text] [PDF]


This Article
Right arrow Figures Only
Right arrow Full Text (PDF)
Right arrow Poster Insert
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Services
Right arrow Email this article to a friend
Right arrow Similar articles in this journal
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Google Scholar
Right arrow Articles by Hodge, T.
Right arrow Articles by Cope, M. J.
Right arrow Articles citing this Article
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Hodge, T.
Right arrow Articles by Cope, M. J.