The Wayback Machine - https://web.archive.org/web/20110604040324/http://www.newscientist.com/article/dn12709-nextgeneration-ion-engine-sets-new-thrust-record.html

SUBSCRIBE TO NEW SCIENTIST

Space

Log in

Your login is case sensitive

close

Home |Space |Tech | News

Next-generation ion engine sets new thrust record

An ion engine has smashed the record for total thrust in a NASA test. The successful test means the engine could be used in future NASA missions.

Ion engines work by accelerating electrically charged atoms, or ions, through an electric field, thereby pushing the spacecraft in the opposite direction.

The thrust they provide at any given moment is very small, roughly equal to the force needed to hold up a sheet of paper against Earth's gravity. But they can operate continuously in space for years using very little fuel, ultimately providing a much bigger boost than a chemical rocket.

The Dawn mission, which launchedMovie Camera on Thursday, is equipped with NASA's first generation of ion engines, called NSTAR. Dawn's three NSTAR engines will allow it to reach the asteroid belt and park in orbit around two different asteroids.

The agency has also been testing a more advanced ion engine, called NASA's Evolutionary Xenon Thruster (NEXT), which generates 2.5 times as much thrust as an NSTAR engine.

Now, NEXT has broken a record, providing more "total impulse" than any previous ion engine. Total impulse is a measure of the overall acceleration that an engine would provide to a spacecraft. It is the result of multiplying the engine's thrust by how long it fires.

Record fuel

The NEXT engine has now been fired for over 12,000 hours (500 days), providing more than 10 million Newton-seconds of impulse, more than any ion engine has ever achieved.

During this time, it has processed more than 245 kilograms of fuel in the form of xenon gas, a record amount for an ion engine. The amount of fuel an ion engine can handle before wearing down is critical, since ion engines on spacecraft need to fire for years at a time.

Previous estimates have suggested NEXT engines could safely handle 450 kilograms of fuel in their lifetime. NSTAR is rated for only 150 kilograms of fuel throughput, although one NSTAR engine has processed 235 kilograms of fuel in a previous test.

"This test validates NEXT technology for a wide range of NASA solar system exploration missions, as well as the potential for Earth-space commercial ventures," says NEXT principal investigator Mike Patterson of NASA's Glenn Research Center in Cleveland, Ohio, US.

NEXT could power a mission to Saturn's moon, Titan. It would require about 20 kilowatts of engine power to get there if the mission included both an orbiter and a lander. "We could do that with an array of three thrusters, plus a spare," NEXT project manager Scott Benson of Glenn told New Scientist.

Star Wars

Although NSTAR and NEXT both use xenon gas as a propellant, NEXT accelerates the xenon ions more efficiently, providing up to 236 milliNewtons of thrust compared to NSTAR's maximum of 92 mN. The ion engines used on Japan's Hayabusa spacecraft to the asteroid Itokawa use 22 mN, while those used on the European Space Agency's SMART-1 Moon probe operated at 70 mN.

NEXT can also vary its thrust by a factor of 11, as compared with NSTAR's factor of five. This means it can throttle down to lower levels as it travels farther from the Sun and receives less sunlight, allowing it to operate at greater distances than NSTAR.

Although ion engines are just beginning to see regular use on scientific probes, they have been a common sight in science fiction for many years. Dawn spacecraft engineer Marc Rayman of NASA's Jet Propulsion Laboratory in Pasadena, California, US, reminded journalists at a recent press conference of the ion engines used in the Star Wars movies.

"If you remember the TIE fighters that Darth Vader and the Evil Empire used to fight the rebel alliance, TIE stood for 'twin ion engines'," he said. "Well, Dawn does the Star Wars TIE fighters one better because we use three ion engines."

print
send

If you would like to reuse any content from New Scientist, either in print or online, please contact the syndication department first for permission. New Scientist does not own rights to photos, but there are a variety of licensing options available for use of articles and graphics we own the copyright to.

Have your say

Only subscribers may leave comments on this article. Please log in.

Only personal subscribers may leave comments on this article

Subscribe now to comment.

Good News, But!

Thu Jun 05 22:45:24 BST 2008 by William Elliott

Good news, but Ion Engines will probably be sidetracked by a surprising and simple idea, take a look at See http://wjetech.50webs.com/#propellers (and think about for a minute before rolling your eyes

Good News, But!

Mon Mar 23 08:23:50 GMT 2009 by Imperial En-sign Yagami

Umm, I rolled my eyes before and after I read it that dumb idea. Noone will want to use a propeller in space. Technology not only has to work well, but it has to be flashy too. A propeller is out-dated. If we trully are going to advance, TIEs are the way to go. TIEs will work better than that anyway..

Good !

Thu Aug 21 20:58:58 BST 2008 by François Poisson

I just hope this technology comes rolling soon and that we make spacecrafts with these babies. We are at a stage where the exploration boundaries lies from Pluto outward. Enough with the "oars" and time to kick-in the speed. Now with these, going to pluto would take what ? 1-2 years ? Not to mention faster travel to mars. I just hope i'll still live to be there when it happens !

Good !

Thu Jun 18 01:05:46 BST 2009 by Kevin

Well either we use Solar Flare sails or TIE's we still will never reach the point of hyperspace travel. Lightspeed would be impossible to reach since we would have to become pure energy.

All comments should respect the New Scientist House Rules. If you think a particular comment breaks these rules then please use the "Report" link in that comment to report it to us.

If you are having a technical problem posting a comment, please contact technical support.

print
send
The NEXT ion engine fires at peak power during testing at NASA's Glenn Research Center (Image: NASA)

The NEXT ion engine fires at peak power during testing at NASA's Glenn Research Center (Image: NASA)

Enlarge image

ADVERTISEMENT

Gold-mine worm shows animals could be living on Mars

11:16 02 June 2011

The search for life on Mars typically focuses on microbes, but it seems we should be looking for more complex organisms too

When the multiverse and many-worlds collide

18:00 01 June 2011

Two of the strangest ideas in modern physics have been unified into a single theory, creating excitement and bewilderment in equal measure

Into the breeches: A makeover for Longitude's villain

11:00 30 May 2011

History has been unkind to astronomer Nevil Maskelyne, says Stephanie Pain – but the bizarre suit he wore in the cause of science tells a different story

Birthplace of 'hot Neptunes' revealed

14:00 28 May 2011

The puzzle over why so many modestly giant planets orbit close to other stars – but not the sun – may finally have been solved

Latest news

Deceptive puzzle may be solved after 74 years

17:40 03 June 2011

A prize of $500 was once offered for its solution: is mathematics finally ready to prove the Collatz conjecture?

'Shoestring' Danish rocket blasts off

17:18 03 June 2011

A rocket that could one day act as a capsule for a single human passenger makes its first test flight

CultureLab loves... 3 June 2011 edition

17:19 03 June 2011

Check out our pick of this week's science-related books, arts, events and culture

New media laws could mean jail for ordinary users

16:30 03 June 2011

Legislators seeking to regulate sharing copyrighted material online aren't keeping up with the latest technology

TWITTER

New Scientist is on Twitter

Get the latest from New Scientist: sign up to our Twitter feed

ADVERTISEMENT

Login

Your login is case sensitive

close

© Copyright Reed Business Information Ltd.