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REVIEW OF “WORLD MODELS”

Simplify notation by adopting c=1, so that E=m. Friedmann's
equation is then:

a\? k 81

(a) +az=3Cr

Substitute H(t)= a/a and recall that we can formally associate
an energy density with the cosmological constant, i.e

A e
= o - By =" (Z pi+ m)
S’FT(T 7

a2~ 3
The index i refers to the type of particle fluid under consideration,
e.g. matter or radiation. If the Universe is flat (k=0):

PA

— v _BHQ_
Prot = - Pi T PA = (7 = Perit



Let us define the fraction of the critical density contributed by
each component of the Universe :

Perit

So that we have Qn , Qr and Qa for matter, radiation and dark energy.

These quantities are time-dependent, the values today are denoted as
Qm,0 We can rewrite the Friedmann eqn:

k
SO 4 Qp — 1
a’H? Zg|: A

If we define Qk = -k/(aH)?, we can write:

D8+ O+ =1
1



Flat FRW Cosmologies

In the last lecture we showed that the density of matter evolves as:

( a )_3
Pm — Pm0 | —
ag

Set ap=1. The Friedmann equation becomes:

Sy 2 s / £ty , .
(E) B SWGPm,Uﬂ_S + —1 or a* = HEZIQm._Da' '+ HEQ:‘s,UGQ

In a flat Universe, QA 0 + Qm,0=1.

L 20000 4
Case 1: \>0 Use the substitution: « = — a
Qm,ﬂ
to obtain W® = 9HO 0 [2u + v?| = 3A [2u + 7]

Take the positive root: [ du
0 (2u + u?)

i
= [(30)'?dt = (30)"/*
0

1/2



This can be integrated by completing the square in the u-integral
and with substitutions v=u + 1 and cosh w = v:

= du o dv W ginh w dw =
- — = [ dw =w
Ejl. [(u o - 1]1"’2 '1[ o 1)”2 ﬂ/ (CDS]lE w — 1)”2 {{
. : 3 'Qm,l] AN1/2
to yield the solution: = [msh(?ﬂ) t — 1}
200 0
2€)
Case 2, A < 0: Introduce o — — 0 e a’
m.0
: 3 'Qm.[l Ay11/2
Solution: a” = ' {1 — cos [3(—A)] t}



Case 3, A=0 : This is now the Einstein-deSitter case which we have
already encountered in the last lecture.

0 1 1/3

/1

/ k|

/ \
o

Figure 4.1: The three flat, pressureless cosmological models. On the left A > 0, in the
middle A < 0 and on the right the Einstein de-Sitter model with A = 0.



A flat, pressureless universe with a small, but non-zero, cosmo-
logical constant initially evolves as if it were Einstein-deSitter.

For A >0, the second term on the right-hand side of these
equations dominates at larae values of t and the universe grows

exponentially: a4 X exp [(A/g)lﬁ t]

175 |
151

125 |

ay 1|
075t
05|
025t

Figure 4.3: Expansion histories for different values of {3, 0, {24 0, and {}p. From top to
bottom, the curves describe {1, g, {24 o, {4 o = (0.3,0.7,0.0), (0.3,0.0,0.7), (1.0,0.0,0.0),
and (4.0,0.0, —3.0).



A wide variety of world models are conceivable,
depending on the values of the parameters Q.
Observational cosmologists are interested in
assessing which, if any, of these models is a valid
description of the universe we live in. The
measurements on which these tests are based
generally involve the redshifts and radiant fluxes
of distant sources.
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Distant Galaxies in the Hubble Ultra Deep Field
Hubble Space Telescope « Advanced Camera for Surveys

NASA, ESA, R. Bouwens and G. lllingworth (University of California, Santa Cruz)




Cosmological Redshifts

We show that the redshift is directly related to the scale factor
of the universe at the time the photons were emitted from the

- a
source as: 14— 0
a(t =e)

We begin with the Robertson-Walker metric:

d 2
(ds)? = (edt)? — a*(t) | Tk - + 12 (d6? + sin? 0 do?)
— KA

In general relativity the propagation of light is along a null
geodesic (ds = 0). With the observer at the origin (r = 0),
we choose a radial null geodesic so that dO = dg =0, so

that cdt .
at) ~ (1— kr2)l/2

(+ is for emitted light ray, - is for a received one)



(t0+d‘b ,0)
(t,. 0)
(t+d , )
('[1, 1'1)
O’s world ’s world
line \. line

Imagine now that one crest of the light wave was emitted at time te¢ at
distance re , and received at the origin rg = 0 at tg , and that the next
wave crest was emitted at te+Ate and received at tg+Atg. The two

waves satisfy the relations:

7‘3 dt 1 fD d?‘ to+Atp dt 1 0 d'r
alt) e vVI—kr? anc tﬁf&te alt) ¢ T{ V1 — kr?



Subtract the two equations:

to+Ato gp  to gy

te+-[.lt6@_t{@:0

to+Atg dt tn {IIL to+Atg dt te+Ate (!IL
Expand / / + f = B
. a(t) £ a.(f.)
to+ Atg At te+ At dt
to obtain: t{ @ = tf (D)

Any change in a(t) during the time intervals between successive
wave crests can be safely neglected, so that a(t) is a constant with
respect to the time integration. Consequently,

At. Aty At.  aft.)
a(te) a(ty)’ Aty a(ty)




The time interval between successive wave crests is the inverse of
the frequency of the light wave, related to its wavelength by the
relation

c = A-v, so that . A

— -t
R O C )

Time Evolution of the Hubble Parameter

3
a ) so that we can write the

In aflat Universe, fm = Pm, (a,_[] Friedmann equation as:

a 8r G A

7.
(E) — TPm,DG_B 2 5 g or {11-2 = Hgﬂm?ga_l & % Héﬂﬁzgaz

H(z)

Hy

i
We can thus write ( ) = Qmo - (1+ 2)3 + Qa0

The right-hand side is often referred to as E(z), so that H(z)= Hg E(z) /2



We can derive a relationship between time t and redshift z by
considering the following:

ey (L
= . dﬂ. T dﬁ'
142 (1+ 2)
a da dz (1+ 2)
d — I
an a (%) dz dt ag
t2 1 z2 dz
so that dt = —— ,
1= S TR
The age of the Universe is t f £¥ i
==
Hopy (1+ 2)E(2)V2

In Einstein-de Sitter
cosmology, Qm=1, Q)=0:
dz 2

1 o0
£ T —3/2
| an(l+z)5f2 gl 4

R



Cosmological Distances

1. Proper Distances

We define a proper distance, as the distance between two events,
A and B, in a reference frame for which they occur simultaneously
(ta = tB).
On d?"z
ds)? = (cdt)? — a*(t
(@5 = (et~ () | -

and set d6=d@p=0 and dt=0, so that

+ 71 (d6'2 + sin 0 dng)

s(t) = [ ds' = a(t) Df q i;)l /2




This has solutions:

( sin~ (r\f) fork > 0
s(t) = a(t) - - T fork =0
ﬁ sinh_l(r k) fork <0

In a flat universe, the proper distance to an object is just its
coordinate distance, s(t) = a(t) - r. Because sin~1(x) > x and
sinh~1(x) < x, in a closed universe (k > 0) the proper distance to an
object is greater than its coordinate distance, while in an open
universe (k < 0) the proper distance to an object is less than its

coordinate distance.



The Horizon

Radius of the
observable Universe



As the universe expands and ages, an observer at any point is able
to see increasingly distant objects as the light from them has time to
arrive. This means that, as time progresses, increasingly larger
regions of the universe come into causal contact with the observer.
The proper distance to the furthest observable point—the particle
horizon— at time t is the horizon distance, sh(t).

Again we return to the Robertson-Walker metric, placing an
observer at the origin (r = 0) and let the particle horizon for this
observer at time t be located at radial coordinate distance rpor. This
means that a photon emitted at t = 0 at rhor Will reach our observer
at the origin at time t.

Since photons move along null geodesics, ds = 0. Considering only
radially traveling photons (d6 = d¢p = 0), we find

1
Ja()) cf (L- kP



sin (cff—t) fork =1

L
Thor — 1 Cfi fork =0

sinh (C} i) fork = —1

L 0 alt)

If the scale factor evolves with time as a(t) = t%, we can see that
the above time integral diverges as we approach t =0, if o>1.
This

would imply that the whole universe in is causal contact.
However,

«=1/2 and 2/3 in the radiation and matter-dominated regime, so
there

IS a horizon.



The proper distance from the origin to rhor is given by:

Thor Jr i
Shur(t) — ﬂ(f) f (1 N k?"g)lﬁ = ﬂ(f)t_lf% for k=0

0

S0 shor(t)=2ct in the radiation-dominated era and shor(t)=3ct in
the matter-dominated era.

Notice that these distances are larger than ct, the distance travelled
by a photon in time t. How could this be? The reason lies in our
definition of proper distance, as the distance between two events
measured in a frame of reference where those two events happen
at the same time.

To understand this, consider a photon in emitted at comoving
radial coordinate rhor at time t = 0. We want to know what is the
proper distance of that photon from our position, atr =0, at a

later time t.The coordinate of the photon at time t may be found
by integrating



ft cdt T}-ﬂf dr
0 at) ¢ (1—kr2)2

As before, we consider zero curvature models.Substituting for a(t)
we obtain: . (t)”‘g
T .
Thor H[} Za
where tg = 2tH/3 is the present age of the universe. Recalling that

'or = 2¢/Hp, and that the proper distance in a flat universe is

just s(t) = a(t) - r, we find that the proper distance of the photon
from Earth as a function of time is

05[] o
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Figure 5.6: Proper distance as a function of time of a photon emitted from the present
particle horizon at the time of the Big Bang. The proper distance is expressed as a fraction
of 2¢/Hy, the present horizon distance in a flat universe. The right axis shows d in units

of h~! Mpe.



We can now see that the initial expansion actually carried the photon
away from Earth. Although the photon’s co-moving coordinate was always
decreasing from an initial value rnor towards Earth’s position at r = 0, the

scale factor a(t) increased so rapidly that at first the proper distance
between the photon and Earth increased with time.

Re-writing in terms of the redshift corresponding to time t ( k = 0),

2¢
Shol‘(g) == Hﬂ(l a 3)3;'& (fDI’ k= D)
we find that at the present time,
2
Sy — ﬁc — 1.85 x 10® h~lem = 6 h " 'Gpc (for k£ = 0)
0

The horizon distance at the epoch of decoupling (2 ~ 1100) was

2c
Hy(1+ 1100)3/2

Shotz = 0B = for k =0
(

or sper(z = 1100) ~ 164 kpe.



3. Angular Diameter Distance

(1"1,94'(5& ¢$rl)
D 30— O
,9, i ¢ r=0
(1,,6,6, 1) T

Consider a light source of size D at r =rq and t = t1 subtending an
angle 00 at the origin (r =0, t = tg). The proper distance D
between the two ends of the object is related to 80 by,

D
ﬂ(tl) (N |
We now define the angular diameter distance

00 =

™
142

D
dp = 5 SO that dy = a(t))r =



We are again studying the propagation of light, so following a similar
derivation leads to the expression:

E : dz
da(z) = - S (H V120 )
(=) V0| Ho(1 + 2) . ! ﬁ] H(z)

" sin(z) fork > 0
SHE]l =% & fork =0
_sinh(z) fork <O

Note that da(z) has a maximum at zm, corresponding to the

redshift at which objects of a given proper size D will subtend
the minimum angle 00 on the sky. At redshifts z > zy, objects of

a given proper size will appear bigger on the sky with increasing
Z.
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Things at higher redshift look bigger again because space-

time was compressed when the light was emitted,
I.e the galaxies were closer to us that they are today!
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Figure 5.9: O's hghtcone curves back into the Big Bang. The diagram shows the reception
and emission distances of galaxies X and Y. Although galaxy Y has a greater reception
distance, its emission distance 15 smaller than that of X. Thus ¥, which 18 now further

away than X, was closer to us than X at the time of the emission of the light which we
now see (reproduced from E. . Harmson's Cosmaology).



The dependence of the angular diameter distance on cosmological prompted
a number of tests of the geometry of the universe based on measuring the
angular size of different sources: STANDARD RULERS

One excellent standard ruler is the first peak in the angular power spectrum
of the temperature fluctuations of the CMB. One can calculate the typical size
of an overdense region at the time the microwave photons started to stream
free. As we also know the redshift of this last scattering surface, we can
compare their ratio to the observed angular size and hence obtain a very
accurate measurement of the curvature of the universe. The favoured solution
is that we live in a flat universe, with k=0.
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Horizon “problem”

shor(z = 1100) = 164 kpc. To find the angle subtended on the

sky by this diameter we divide by the angular distance which, is
given by:

2c 1 1
A(2) iR ( 1+ ;:)1!’2) i (for k = 0)

For large values of z,

Shor(z = 1100) ( 1 )Ww( 1 )”2
B Lsat 421100

1

7 = radians = 1.7 degrees



Why is the CMB radiation so isotropic over angular scales much
larger than the horizon scale at the time of decoupling?

The solution to the horizon problem provided by inflationary

theories is that there must have been a very early period of rapid
expansion, when the scale factor of the universe increased
exponentially:
a(t) o exp(Ht) .
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3. Luminosity Distance (standard candles)

The luminosity distance d is defined to satisfy the relation:

L
F-:Js:
. Awd?

where Fops IS the observed flux from an astronomical source and L

Is its absolute luminosity. We define flux as the energy that passes
per unit time through a unit area (so that the energy per unit time, or
the power, collected by a telescope of area A is F A); and

luminosity as the total power (energy per unit time) emitted by the
source at all wavelengths.

At distance r1, photons are spread
over a sphere of area

A:T%ffsinﬂdﬁdqb = Amrs




Recall that photons emitted with wavelength A1 at time intervals dtq are

received (by an observer on the surface of the sphere) at time intervals
otpand with wavelengthAg. Both wavelengths and time intervals are

related by

A Oty a
A _ 71 T Now consider a single photon: E=hv = hc/A
)\U 5t0 a(
. 2
Emitted power: P,,, = ey Recelved Py — o hﬂ i
oty power: oty Oty ad
1 af
Flux measured on a sphere at | L AT ot
: . obs I
distance r1: dmagr] aj

This implies  dy, = % =(+2)r = (1+2)?-da



In practice, we do not record the light emitted at all wavelengths from
an astronomical source, but rather only a part of its electromagnetic
spectrum, between A —AAX and A+AA . This introduces an additional
term into the expression for the luminosity distance, which accounts
for the fact that astronomical sources do not emit the same power at
all wavelengths. This factor is termed the K-correction.
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Cosmological Tests using Supernovae as
Standard Candles

The “standard candle” approach
to distance measurement.

If you know you have the same
source strength of light, then
counting the number of photons
through a standard area detector
tells you the distance to the source.

Light from a point source
drops off according to the
inverse square law, a
strictly geometrical
relationship.

--‘.:w
4 M

photons




Apparent Magnitude

(useful for describing how bright objects
appear from the Earth)

The original magnitude system of
Hipparchus had:

magnitude 1 — the brightest stars
magnitude 2 ..

magnitude 3 ...

magnitude 4 ...

magnitude 5 .

magnitude 6 — the faintest stars

Today the magnitude system has been
extended to include much fainter and
brighter objects.

Apparent Magnitude

Y
=

— {-26) Sun

———{-13) Full Moon

—{-4) Venus {atmax)

—{2) Polans
——{G6) Naked Eye Lmmit
e —{10) Bamad's Star

{1.2)Banch Telescope Lmnk
—{14) Pluio

e e {2200} 1- Telescope Linik

{30) Keck, Hubbvle Lt

Note: Logarithmic scale. A a first magnitude star is about 2.512
times as bright as a second magnitude star.



Define a distance modulus:

48 =

Absolute  Apparent 3w | g

ma mag %ﬂ 45:— e —:
/ g . g -

d d i - =

m = 2.5log LG) —5log( LD] k A 3

dy, 42 .

40 —

If we set d|_p at 1 Mpc:

m = M + 5logd, + 25

Sensitivity of distance
modulus to cosmology

‘ﬁ{m' M}! =il {m@}




SN of type la are thought to be nuclear explosions of carbon/oxygen white dwarfs
in binary systems. The white dwarf (a stellar remnant supported by the degenerate
pressure of electrons)accretes matter from an evolving companion and its mass
increases toward the Chandrasekhar limit of 1.44 solar masses (this is the mass
above which the degenerate electrons become relativistic and the white dwarf
unstable). Near this limit there is a nuclear detonation in the core in which carbon

(or oxygen) is converted to iron. A nuclear flame propagates tot he exterior and
blows the white dwarf apart.

. rkm.com.au




Supernova 1998ba
Supernova Cosmology Project
(Perlmutter, ef al., 1998)
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Supernovae
In distant
galaxies
found by
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Light curves can be
scaled to yield a
“universal” shape --
So the peak brightness
can serve as a standard
candle, provided
astronomers can track
the supernovae as it
fades
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