
  

     Distances in Cosmology 

 



  

 

Simplify notation by adopting c=1, so that E=m. Friedmann's 
equation is then:

Substitute H(t)= a/a and  recall that we can formally associate  
an energy density with the cosmological constant, i.e

.

The index i refers to the type of particle fluid under consideration, 
e.g. matter or radiation. If the Universe is flat (k=0):

 REVIEW OF “WORLD MODELS”



  

Let us define the fraction of the critical density contributed by 
each component of the Universe :

So that we have Ωm , Ωr and ΩΛ for matter, radiation and dark energy. 
These quantities are time-dependent, the values today are denoted as 
Ωm,0 We can rewrite the Friedmann eqn:

If we define Ωk = -k/(aH)2, we can write:



  

              Flat FRW Cosmologies

 In the last lecture we showed that the density of matter evolves as:

 Set a0=1. The Friedmann equation becomes:

 or

In a flat Universe, ΩΛ,0 + Ωm,0=1.

Case 1:  Λ>0        Use the substitution:

         to obtain

Take the positive root:



  

This can be integrated by completing the square in the u-integral 
and with substitutions v = u + 1 and cosh w = v:

 to yield the solution:

Case 2, Λ < 0:  Introduce

Solution:



  

Case 3Case 3,, Λ=0 : This is now the Einstein-deSitter case which we have 
already encountered in the last lecture.



  

A flat, pressureless universe with a small, but non-zero, cosmo-
logical constant initially evolves as if it were Einstein-deSitter.

Fo r Λ > 0, the second term on the right-hand side of these 
equations dominates at large values of t and the universe grows 
exponentially:



  

 A wide variety of world models are conceivable, 
depending on the values of the parameters Ω.  
Observational cosmologists are interested in 
assessing which, if any, of these models is a valid 
description of the universe we live in. The 
measurements on which these tests are based 
generally involve the redshifts and radiant fluxes 
of distant sources.



  



  

Cosmological Redshifts

We show that the redshift is directly related to the scale factor 
of the universe at the time the photons were emitted from the 
source as:

We begin with the Robertson-Walker metric:

In general relativity the propagation of light is along a null 
geodesic (ds = 0). With the observer  at the origin (r = 0), 
we choose a radial null geodesic so that dθ = dφ = 0, so 
that

 (+ is for emitted light ray, - is for a received one)



  

Imagine now that one crest of the light wave was emitted at time te at 
distance re , and received at the origin r0 = 0 at t0 , and that the next 
wave crest was emitted at te+Δte and received at t0+Δt0. The  two 
waves satisfy the relations:

 and



  

Subtract the two equations:

Expand

to obtain:

Any change in a(t) during the time intervals between successive 
wave crests can be safely neglected, so that a(t) is a constant with 
respect to the time integration. Consequently,



  

The time interval between successive wave crests is the inverse of 

the frequency of the light wave, related to its wavelength by the 
relation
 c = λ·ν, so that

 Time Evolution of the Hubble Parameter

In a flat Universe, so that  we can write the 
Friedmann equation as:

  or

We can thus write Ωλ,0

The right-hand side is often referred to as E(z), so that H(z)= H0 E(z) 1/2



  

We can derive a relationship between time t and redshift z by 
considering the following:

       and

so that

The age of the Universe is 

In Einstein-de Sitter 
cosmology, Ωm=1, Ωλ=0:



  

  Cosmological Distances

1. Proper Distances

We define a proper distance, as the distance between two events, 
A and B, in a reference frame for which they occur simultaneously 
(tA = tB).
Once again, we start with the Robertson-Walker metric, 

 and set dθ=dφ=0 and dt=0, so that



  

This has solutions:

In a flat universe, the proper distance to an object is just its 
coordinate distance, s(t) = a(t) · r.  Because sin−1(x) > x and 
sinh−1(x) < x, in a closed universe (k > 0) the proper distance to an 
object is greater than its coordinate distance, while in an open 
universe (k < 0) the proper distance to an object is less than its 
coordinate distance.



  

 The Horizon



  

As the universe expands and ages, an observer at any point is able 
to see increasingly distant objects as the light from them has time to 
arrive. This means that, as time progresses, increasingly larger 
regions of the universe come into causal contact with the observer. 
The proper distance to the furthest observable point—the particle 
horizon— at time t is the horizon distance, sh(t).

Again we return to the Robertson-Walker metric, placing an 
observer at the origin (r = 0) and let the particle horizon for this 
observer at time t be located at radial coordinate distance rhor. This 
means that a photon emitted at t = 0 at rhor will reach our observer 
at the origin at time t.
Since photons move along null geodesics, ds = 0. Considering only 
radially traveling photons (dθ = dφ = 0), we find



  

If the scale factor evolves with time as a(t) =  tα, we can see that 
the above time integral diverges as we approach t = 0, if α>1. 
This
would imply that the whole universe in is causal contact. 
However,
α=1/2 and  2/3  in the radiation and matter-dominated regime, so 
there
is a horizon.



  

The proper distance from the origin to rhor is given by:

   for k=0

So shor(t)=2ct in the radiation-dominated era and shor(t)=3ct in 
the matter-dominated era.

Notice that these distances are larger than ct, the distance travelled
by a photon in time t. How could this be? The reason lies in our
definition of proper distance, as the distance between two events
measured in a frame of reference where those two events happen 
at the same time.

To understand this, consider a photon in emitted at comoving 
radial coordinate rhor at time t = 0. We want to know what is the 
proper distance of that photon from our position, at r = 0, at a 
later time t.The coordinate of the photon at time t may be found 
by integrating



  

As before, we consider zero curvature models.Substituting for a(t)  
we obtain:

where t0 = 2tH/3 is the present age of the universe. Recalling that
rhor = 2c/H0, and that the proper distance in a flat universe is
just s(t) = a(t) · r, we find that the proper distance of the photon
from Earth as a function of time is



  



  

We can now see that the initial expansion actually carried the photon 
away from Earth. Although the photon’s co-moving coordinate was always 
decreasing from an initial value rhor towards Earth’s position at r = 0, the 
scale factor a(t) increased so rapidly that at first the proper distance 
between the photon and Earth increased with time.

Re-writing in terms of the redshift corresponding to time t ( k = 0),



  

3. Angular Diameter Distance

Consider a light source of size D at r = r1 and t = t1 subtending an 
angle δθ at the origin (r = 0, t = t0). The proper distance D 
between the two ends of the object is related to δθ by,

We now define the angular diameter distance

so that



  

We are again studying the propagation of light, so following a similar 
derivation leads to the expression:

Note that dA(z) has a maximum at zm, corresponding to the 
redshift at which objects of a given proper size D will subtend 
the minimum angle δθ on the sky. At redshifts z > zm objects of 
a given proper size will appear bigger on the sky with increasing 
z.



  

 Things at higher redshift look bigger again because  space-
time was compressed when the light was emitted,

i.e the galaxies were closer to us that they are today!



  



  

The dependence of the angular diameter distance on cosmological  prompted 
a number of tests of the geometry of the universe based on measuring the 
angular size of different sources: STANDARD RULERS
 One excellent standard ruler  is the  first peak in  the angular power spectrum 
of the temperature fluctuations of the CMB. One can calculate the typical size 
of an overdense region at the time the microwave photons started to stream 
free. As we also know the redshift of this last scattering surface, we can 
compare their ratio to the observed angular size  and hence obtain a very 
accurate measurement of the curvature of the universe. The favoured solution 
is that we live in a flat universe, with k=0.



  



  

   Horizon “problem”

shor(z = 1100) = 164 kpc. To find the angle subtended on the
sky by this diameter we divide by the angular distance which, is 
given by:



  

Why is the CMB radiation so isotropic over angular scales much 
larger than the horizon scale at the time of decoupling? 

The solution to the horizon problem provided by inflationary 
theories is that there must have been a very early period of rapid 
expansion, when the scale factor of the universe increased 
exponentially:
a(t) α exp(Ht) .



  

3. Luminosity Distance (standard candles)

The luminosity distance dL is defined to satisfy the relation:

where Fobs is the observed flux from an astronomical source and L 
is its absolute luminosity. We define flux as the energy that passes 
per unit time through a unit area (so that the energy per unit time, or 
the power, collected by a telescope of area A  is F A); and 
luminosity as the total power (energy per unit time) emitted by the 
source at all wavelengths.

At distance r1, photons are spread 
over a sphere of area



  

Recall that photons emitted with wavelength λ1 at time intervals δt1 are 
received (by an observer on the surface of the sphere) at time intervals 
δt0and with wavelengthλ0. Both wavelengths and time intervals are 
related by

Now consider a single photon:  E=hν = hc/λ

Emitted power: Received 
power:

Flux measured on a sphere at 
distance r1:

         This implies



  

 In practice, we do not record the light emitted at all wavelengths from 
an astronomical source, but rather only a part of its electromagnetic
spectrum, between λ −Δλ and λ+Δλ . This introduces an additional 
term into the expression for the luminosity distance, which accounts 
for the fact that astronomical sources do not emit the same power at 
all wavelengths. This factor is termed the K-correction.



  

 Cosmological Tests using Supernovae as 
Standard Candles



  

Note: Logarithmic scale. A a first magnitude star is about 2.512 
times as bright as a second magnitude star. 



  

Define a distance modulus:

If we set dL,0 at 1 Mpc:

Sensitivity of distance 
modulus to cosmology

Absolute 
mag

Apparent 
mag



  

SN of type Ia are thought to be nuclear explosions of carbon/oxygen white dwarfs 
in binary systems. The white dwarf (a stellar remnant supported by the degenerate 
pressure of electrons)accretes matter from an evolving companion and its mass 
increases toward the Chandrasekhar limit of 1.44 solar masses (this is the mass 
above which the degenerate electrons become relativistic and the white dwarf 
unstable). Near this limit there is a nuclear detonation in the core in which carbon 
(or oxygen) is converted to iron.  A nuclear flame propagates tot he exterior and 
blows the white dwarf apart.



  



  

Supernovae 
in distant 
galaxies 
found by 

HST



  

Light curves can be 
scaled to yield a 

“universal” shape --
So the peak brightness 
can serve as a standard 

candle, provided 
astronomers can track 
the supernovae as it 

fades
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