Skip to main content

Therapeutic Targeting of Oxidative Stress and Inflammation in Asthma and COPD and Pharmacological Interventions with Phytochemicals

  • Chapter
  • First Online:
Oxidative Stress in Lung Diseases

Abstract

Asthma and chronic obstructive pulmonary disease (COPD) are the common respiratory diseases posing immense burden on human health. Incidence of asthma and COPD are increasing significantly in recent decade around the world. There is abundant evidence that these disorders are mediated by oxidative stress which plays a key role in the initiation and augmentation of inflammation. Currently available western drugs are associated with severe side effects and resistance, and hence, there is a need of new drugs which can halt the progression of disease. Use of herbal medicine to treat the ailment is known to mankind from ancient times. Phytoconstituents, apart from their antioxidant capacity, possess anti-inflammatory effect. This property can be utilized for the treatment of asthma and COPD, where oxidative stress and inflammation plays a major role in the progression of the disease.

The present chapter deals with the brief explanation of interplay between oxidative stress and inflammation in asthma and COPD. Phytochemicals that showed promising effect against these disorders in the animal models and their molecular mechanism involved for the protection are described briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcock IM, Caramori G, Chung KF (2008) New targets for drug development in asthma. Lancet 372:1073–1087

    Article  CAS  PubMed  Google Scholar 

  • Adenuga D, Yao H, March TH, Seagrave J, Rahman I (2009) Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am J Resp Cell Mol Biol 40:464–473

    Article  CAS  Google Scholar 

  • Aich J, Mabalirajan U, Ahmad T, Khanna K et al (2012) Resveratrol attenuates experimental allergic asthma in mice by restoring inositol polyphosphate 4 phosphatase (INPP4A). Int Immunopharmacol 14:438–443

    Article  CAS  PubMed  Google Scholar 

  • Amstad P, Crawford D, Muehlematter D, Zbinden I (1990) Oxidants stress induces the proto-oncogenes, C-fos and C-myc in mouse epidermal cells. Bull Can 77:501

    CAS  Google Scholar 

  • Barnes PJ (2006) Corticosteroids: The drugs to beat. Eur J Pharmacol 533:2–14

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2009) Histone deacetylase-2 and airway disease. Ther Adv Resp Dis 3:235–243

    Article  Google Scholar 

  • Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131:636–645

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Adcock IM (1997) NF-κB: a pivotal role in asthma and a new target for therapy. Tren Pharmacol Sci 18:46–50

    Article  CAS  Google Scholar 

  • Barnes PJ, Adcock IM (1998) Transcription factors and asthma. Eur Resp J 12:221–234

    Article  CAS  Google Scholar 

  • Barnes PJ, Drazen JM, Rennard SI, Thomson NC (2009) Asthma and COPD: basic mechanisms and clinical management. Elsevier, Academic Press

    Google Scholar 

  • Bateman ED, Hurd SS, Barnes PJ et al (2008) Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 31:143–178

    Article  CAS  PubMed  Google Scholar 

  • Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P (2016) The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxid Med Cellular Long:2016

    Google Scholar 

  • Bowler RP (2004) Oxidative Stress in the Pathogenesis of Asthma. Curr Allergy Asthma Rep 4:116–122

    Article  PubMed  Google Scholar 

  • Caito S, Rajendrasozhan S, Cook S, Chung S et al (2010) SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J 24:3145–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderon-Montano J, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M (2011) A review on the dietary flavonoid kaempferol. Min Rev Med Chem 11:298–344

    Article  CAS  Google Scholar 

  • Chen J, Zhou H, Wang J, Zhang B et al (2015) Therapeutic effects of resveratrol in a mouse model of HDM-induced allergic asthma. Int Immunopharmacol 25:43–48

    Article  CAS  PubMed  Google Scholar 

  • Chung MJ, Pandey RP, Choi JW, Sohng JK et al (2015) Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. Inter ImmunoPharmacol 25:302–310

    Article  CAS  Google Scholar 

  • Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Env Health Persp 64:111

    Article  CAS  Google Scholar 

  • Domej W, Oettl K, Renner W (2014) Oxidative stress and free radicals in COPD–implications and relevance for treatment. Int J Chr Obs Pul Dis 9:1207

    Article  CAS  Google Scholar 

  • Du QH, Peng C, Zhang H (2013) Polydatin: a review of pharmacology and pharmacokinetics. Pharm Biol 51:1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Eng QY, Thanikachalam PV, Ramamurthy S (2017) Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol Aug 31

    Google Scholar 

  • Fischer BM, Pavlisko E, Voynow JA (2011) Pathogenic triad in COPD: oxidative stress, protease–antiprotease imbalance, and inflammation. Int J Chr Obs Pul Dis 6:413

    Article  CAS  Google Scholar 

  • Ganesan S, Faris AN, Comstock AT, Chattoraj SS et al (2010) Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Resp Res 11:131

    Article  CAS  Google Scholar 

  • Gobal Alliance against Chronic Respiratory Disease, W.H.O.; Available from: http://www.who.int/gard/news_events/1-3.GARD-06-07-K1.pdf

  • Goh FY, Upton N, Guan S, Cheng C et al (2012) Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB. Eur J Pharmacol 679:109–116

    Article  CAS  PubMed  Google Scholar 

  • Gong JH, Shin D, Han SY, Kim JL, Kang YH (2011) Kaempferol Suppresses Eosionphil Infiltration and Airway Inflammation in Airway Epithelial Cells and in Mice with Allergic Asthma, 2. J Nut 142:47–56

    Article  CAS  Google Scholar 

  • Gregory LG, Lloyd CM (2011) Orchestrating house dust mite-associated allergy in the lung. Tren Immunol 32:402–411

    Article  CAS  Google Scholar 

  • Guan SP, Tee W, Ng DS, Chan TK et al (2013) Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity. British J Pharmacol 168:1707–1718

    Article  CAS  Google Scholar 

  • Guan S, Xu W, Han F, Gu W et al (2017) Ginsenoside Rg1 attenuates cigarette smoke-induced pulmonary epithelial-mesenchymal transition via inhibition of the TGF-β1/Smad pathway. BioMed Res Intern 2017

    Google Scholar 

  • Gupta SC, Sung B, Kim JH, Prasad S et al (2013) Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nut Food Res 57:1510–1528

    Article  CAS  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to the future. Ann N Y Acad Sci 899:136–147

    Article  CAS  PubMed  Google Scholar 

  • Haddad JJ, Land SC (2001) A non-hypoxic ROS-sensitive pathway mediates TNF-α-dependent regulation of HIF-1α. FEBS Let 505:269–274

    Article  CAS  Google Scholar 

  • Imanifooladi AA, Yazdani S, Nourani MR (2010) The role of nuclear factor-κB in inflammatory lung disease. Inflam Aller Drug Tar (Formerly Current Drug Targets-Inflammation & Allergy) 9:197–205

    CAS  Google Scholar 

  • Ito K, Lim S, Caramori G, Chung KF, Barnes PJ, Adcock IM (2001) Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15:1110–1112

    Article  CAS  PubMed  Google Scholar 

  • Janssen YM, Matalon S, Mossman BT (1997) Differential induction of c-fos, c-jun, and apoptosis in lung epithelial cells exposed to ROS or RNS. Am J Physiol Lung Cell Mol Physiol 273:L789–L796

    Article  CAS  Google Scholar 

  • Jeffery PK (1998) Structural and inflammatory changes in COPD: a comparison with asthma. Thorax 53:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Liu ZG, Zandi E (1997) AP-1 function and regulation. Curr Opin Cel Bio 9:240–246

    Article  CAS  Google Scholar 

  • Keatings VM, Collins PD, Scott DM, Barnes PJ (1996a) Differences in interleukin-8 and tumor necrosis factor-α in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153:530–534

    Article  CAS  PubMed  Google Scholar 

  • Keatings VM, Collins PD, Scott DM, Barnes PJ (1996b) Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Resp Critic Med 153:530–534

    Article  CAS  Google Scholar 

  • Keatings VM, Jatakanon A, Worsdell YM, Barnes PJ (1997) Effects of inhaled and oral glutocorticoids on inflammatory indices in asthma and COPD. Am J Respir Crit Care Med 155:542–548

    Article  CAS  PubMed  Google Scholar 

  • Kim JH (2017) Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res Oct 21

    Google Scholar 

  • Kim SH, Park HJ, Lee CM, Choi IW et al (2006) Epigallocatechin-3-gallate protects toluene diisocyanate-induced airway inflammation in a murine model of asthma. FEBS let 580:1883–1890

    Article  CAS  Google Scholar 

  • Kim SH, Hong JH, Lee YC (2013) Ursolic acid, a potential PPAR-γ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma. Eur J Pharmacol 701:131–143

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Lee HS, Seol GH (2017) Anti-inflammatory effects of trans-anethole in a mouse model of chronic obstructive pulmonary disease. Biomed Pharmacother 91:925–930

    Article  CAS  PubMed  Google Scholar 

  • Kiyoshi NO, Shibanuma M, Kikuchi K, Kageyama H et al (1991) Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 201:99–106

    Article  Google Scholar 

  • Kleniewska P, Pawliczak R (2017) The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother 94:100–108

    Article  CAS  PubMed  Google Scholar 

  • Ko JW, Shin NR, Park SH, Lee IC et al (2017) Silibinin inhibits the fibrotic responses induced by cigarette smoke via suppression of TGF-β1/Smad 2/3 signaling. Food Chem Toxicol 106:424–429

    Article  CAS  PubMed  Google Scholar 

  • Lee IT, Yang CM (2012) Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 84:581–590

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Kim SR, Park SJ, Park HS et al (2006) Peroxisome proliferator activated receptor-γ modulates reactive oxygen species generation and activation of nuclear factor-κB and hypoxia-inducible factor 1α in allergic airway disease of mice. J Aller Clin Immunol 118:120–127

    Article  CAS  Google Scholar 

  • Lee KS, Kim SR, Park HS, Park SJ et al (2007) A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-κB and hypoxia-inducible factor-1α. Exp Mol Med 39:756

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Fu P, Jun X, Cheng P (2018) Pharmacological properties of geraniol–a review. Planta Med Oct 11

    Google Scholar 

  • Li D, Xu D, Wang T, Shen Y et al (2015) Silymarin attenuates airway inflammation induced by cigarette smoke in mice. Inflamm 38:871–878

    Article  CAS  Google Scholar 

  • Liu YN, Zha WJ, Ma Y, Chen FF et al (2015) Galangin attenuates airway remodelling by inhibiting TGF-β1-mediated ROS generation and MAPK/Akt phosphorylation in asthma. Sci Rep 5:11758

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Hortas L, Pérez-Larrán P, González-Muñoz MJ, Falqué E, Domínguez H (2017) Recent developments on the extraction and application of ursolic acid. A review. Food Res Int Oct 16

    Google Scholar 

  • Luo YL, Zhang CC, Li PB, Nie YC et al (2012) Naringin attenuates enhanced cough, airway hyper responsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. Int Immunopharmacol 13:301–307

    Article  CAS  PubMed  Google Scholar 

  • Mak KK, Tan JJ, Marappan P, Balijepalli MK et al (2018) Galangin’s potential as a functional food ingredient. J Funct Food 46:490–503

    Article  CAS  Google Scholar 

  • Mori A, Kaminuma O, Mikami T, Inoue S et al (1999) Transcriptional control of the IL-5 gene by human helper T cells: IL-5 synthesis is regulated independently from IL-2 or IL-4 synthesis. J Aller Clin Immunol 103:S429–S436

    Article  CAS  Google Scholar 

  • Mullane K, Williams M (2014) Animal models of asthma: reprise or reboot? Biochem Pharmacol 87:131–139

    Article  CAS  PubMed  Google Scholar 

  • Nadeem A, Chhabra SK, Masood A, Raj HG (2003) Increased oxidative stress and altered levels of antioxidants in asthma. J of Aller Clin Immunol 111:72–78

    Article  CAS  Google Scholar 

  • Nadeem A, Masood A, Siddiqui N (2008) Oxidant—antioxidant imbalance in asthma: scientific evidence, epidemiological data and possible therapeutic options. Ther Adv Resp Dis 2:215–235

    Article  Google Scholar 

  • Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S (2014) Resveratrol: review on therapeutic potential and recent advances in drug delivery. Exp Opin Drug Deliv 11:1285–1298

    Article  CAS  Google Scholar 

  • Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirology 14:27–38

    Article  PubMed  Google Scholar 

  • Paul AJ, Henricks, Frans PN (2001) Reactive oxygen species as mediators in asthma. Pulm Pharmacol Ther 14:409–421

    Article  CAS  Google Scholar 

  • Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS (2001) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHLBI/WHO global initiative for chronic obstructive lung disease (GOLD) workshop summary. Amer J Respir Critical Care Med 163:1256–1276

    Article  CAS  Google Scholar 

  • Petruzzelli S, Puntoni R, Mimotti P, PulerÁ N et al (1997) Plasma 3-nitrotyrosine in cigarette smokers. Am Resp Critic Med 156:1902–1907

    Article  CAS  Google Scholar 

  • Rahman I (2005) The role of oxidative stress in the pathogenesis of COPD. Treat Resp Med 4:175–200

    Article  Google Scholar 

  • Rahman I, Adcock IM (2006a) The role of oxidative stress in the pathogenesis of COPD. Eur Respi J 28:219–242

    Article  CAS  Google Scholar 

  • Rahman I, Adcock IM (2006b) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28:219–242

    Article  CAS  PubMed  Google Scholar 

  • Rahman I, Kinnula VL, Gorbunova V, Yao H (2012) SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev Med 54:S20–S28

    Article  CAS  PubMed  Google Scholar 

  • Rajendrasozhan S, Yang SR, Caito S, Rahman I (2008) Nucleocytoplasmic shuttling and post-translational modifications of sirtuin in response to cigarette smoke lead to increased acetylation of NF-kappaB and FOXO3. Am J Respi Crit Care Med 177:A266

    Article  CAS  Google Scholar 

  • Raju KR, Kumar MS, Gupta S, Naga ST (2014) 5-Aminosalicylic acid attenuates allergen-induced airway inflammation and oxidative stress in asthma. Pulm Pharmacol Ther 29:209–216

    Article  CAS  PubMed  Google Scholar 

  • Rennard SI, Barnes PJ (2002) Pathogenesis of COPD. Asthma COPD 2002:361–379

    Article  Google Scholar 

  • Rogers LK, Cismowski MJ (2018) Oxidative stress in the lung–The essential paradox. Curr Opin Toxicol 1:37–43

    Article  Google Scholar 

  • Rom O, Avezov K, Aizenbud D, Reznick AZ (2013) Cigarette smoking and inflammation revisited. Resp Physiol Neurobiol 187:5–10

    Article  CAS  Google Scholar 

  • Sahiner UM, Birben E, Erzurum S et al (2011) Oxidative stress in asthma. World Allergy Organ J 4:151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan L, Kang X, Liu F, Cai X et al (2018) Epigallocatechin gallate improves airway inflammation through TGF-β1 signaling pathway in asthmatic mice. Mol Med Rep 18:2088–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cel Bio 4:E131

    Article  CAS  Google Scholar 

  • Stevenson CS, Belvisi MG (2008) Preclinical animal models of asthma and chronic obstructive pulmonary disease. Exp Rev Resp Med 2:631–643

    Google Scholar 

  • Stevenson CS, Birrell MA (2011) Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther 130:93–105

    Article  CAS  PubMed  Google Scholar 

  • Stütz AM, Woisetschläger M (1999) Functional synergism of STAT6 with either NF-κB or PU. 1 to mediate IL-4-induced activation of IgE germline gene transcription. J Immunol 163:4383–4391

    PubMed  Google Scholar 

  • Sugiura H, Ichinose M (2008) Oxidative and nitrative stress in bronchial asthma. Antioxid Redox Signal 10:785–798

    Article  CAS  PubMed  Google Scholar 

  • Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, An Inhibitor of Cyclin-Dependent Kinase 6, Down-Regulates Nuclear Factor-κB-Regulated Cell Proliferation, Antiapoptotic and Metastatic Gene Products Through The Suppression of TAK-1 and RIP Regulated IκBα Kinase Activation. Mol Pharmacol 26:1–44

    Google Scholar 

  • Suzuki M, Betsuyaku T, Ito Y, Nagai K et al (2009) Curcumin attenuates elastase-and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol 296:L614–L623

    Article  CAS  PubMed  Google Scholar 

  • Szulakowski P, Crowther AJ, Jiménez LA, Donaldson K et al (2006) The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am J Resp Med 174:41–50

    CAS  Google Scholar 

  • Tuder RM, Yoshida T, Fijalkowka I, Biswal S, Petrache I (2006) Role of lung maintenance program in the heterogeneity of lung destruction in emphysema. Proc Am Thorac Soc 3:673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voynow JA, Kummarapurugu A (2011) Isoprostanes and asthma. Bioch Biophy Act (BBA)-General Subjects 1810:1091–1095

    Article  CAS  Google Scholar 

  • Wedes SH, Khatri SB, Zhang R, Wu W et al (2009) Noninvasive markers of airway inflammation in asthma. Clin Trans Sci 2:112–117

    Article  CAS  Google Scholar 

  • Wei Sheg JL, Mann YL, Craig RL, Paul ST (2014) Oxidative stress in Lung Cancer. Cancer Oxidative Stress and Dietary Antioxidants, Vol 3. Academic Press, pp 23–32

    Google Scholar 

  • Wiggs BR, Moreno R, Hogg JC et al (1990) A model of the mechanics of airway narrowing. J Appl Physiol 69:849–860

    Article  CAS  PubMed  Google Scholar 

  • Wood LG, Gibson PG, Garg ML (2003) Biomarkers of lipid peroxidation, airway inflammation and asthma. Eur Resp J 21:177–186

    Article  CAS  Google Scholar 

  • World Health Organization. Global Tuberculosis Report 2012; Available from: http://www.who.int/tb/publications/global_report/en/

  • World Health Organization. Chronic respiratory disease, Asthma. 2013a; Available from: http://www.who.int/respiratory/asthma/en/

  • World Health Organization. Chronic Respiratory Diseases, Burden of COPD. 2013b; Available from: http://www.who.int/respiratory/copd/burden/en/index.html

  • World Health Organization. Chronic respiratory diseases. Available from: http://www.who.int/gard/publications/chronic_respiratory_diseases.pdf

  • Xue Z, Zhang XG, Wu J, Xu WC et al (2016) Effect of treatment with geraniol on ovalbumin-induced allergic asthma in mice. Ann Aller Asthma Immunol 116:506–513

    Article  CAS  Google Scholar 

  • Yao H, Rahman I (2011a) Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 254:72–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Rahman I (2011b) Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 254:72–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Liu R, Ma Y, Zhang Z, Xie Z (2018) Curcumin attenuates airway inflammation and airway remolding by inhibiting NF-κB signaling and COX-2 in cigarette smoke-induced COPD mice. Inflamm 41:1804–1814

    Article  CAS  Google Scholar 

  • Zeng H, Wang Y, Gu Y, Wang J et al (2018) Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci Aug 7

    Google Scholar 

  • Zha WJ, Qian Y, Shen Y, Du Q et al (2013) Galangin abrogates ovalbumin-induced airway inflammation via negative regulation of NF-κB. Evid Complem Alter Med 13:1–14

    Article  Google Scholar 

  • Zhang R, Chen HZ, Liu JJ, Jia YY et al (2010) SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. J Bio Chem 285:7097–7110

    Article  CAS  Google Scholar 

  • Ziegelbauer K, Gantner F, Lukacs NW, Berlin A et al (2005) A selective novel low-molecular-weight inhibitor of IkappaB kinase-beta (IKK-beta) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol 145:178–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zosky GR, Sly PD (2007) Animal models of asthma. Clin Exp Aller 37:973–988

    Article  CAS  Google Scholar 

  • Zuo L, Oteanbaker NP, Rose BA, Salisbury KS (2013) Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol Immunol 56(1–2):57–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NN thanks the Indian Council of Medical Research (ICMR), New Delhi, India, for financial assistance in the form of Senior Research Fellowship. SA thanks the Department of Science and Technology (DST), New Delhi, India, for providing INSPIRE Fellowship (IF 160504). SR thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for awarding Senior Research Fellowship.

CSIR-IICT Communication No: IICT/Pubs/2018/354

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Sistla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nalban, N., Alavala, S., Sangaraju, R., Mir, S.M., Sistla, R. (2019). Therapeutic Targeting of Oxidative Stress and Inflammation in Asthma and COPD and Pharmacological Interventions with Phytochemicals. In: Chakraborti, S., Chakraborti, T., Das, S., Chattopadhyay, D. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8413-4_21

Download citation

Publish with us

Policies and ethics