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Supplementary Note 1: Theory and 
Computational Methods 

 

Theoretical description of RNA velocity 
Based on the model of transcription shown in Fig. 1, we can write down the rate equations for a 

single gene, which describes how the expected number of unspliced mRNA molecules 𝑢, and 

spliced molecules 𝑠, evolve over time: 

#$
#%
= 𝛼(𝑡) − 𝛽(𝑡)	𝑢(𝑡)      (1) 

#.
#%
= 𝛽(𝑡)	𝑢(𝑡) − 𝛾(𝑡)𝑠(𝑡)     (2) 

Here, 𝛼(𝑡) is the time-dependent rate of transcription, 𝛽(𝑡) is the rate of splicing, 𝛾(𝑡) is the rate 

of degradation. Under an assumption of constant (time-independent) rates 𝛼(𝑡) = 𝛼, 𝛾(𝑡) = 𝛾, 

and setting 𝛽(𝑡) = 1 (i.e. measuring all rates in units of the splicing rate), the rate equations 

simplify to: 

#$
#%
= 𝛼 − 	𝑢(𝑡)       (3) 

#.
#%
= 𝑢(𝑡) − 𝛾𝑠(𝑡)      (4) 

The complete solution to the rate equations is given by: 
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𝑢(𝑡) = 𝛼(1 − 𝑒2%) + 𝑢4𝑒2%     (5) 

𝑠(𝑡) = 567(89:);57(89:)<(=2>)?57:($@2<)=?57A<2=(.@?$@?.@=)BC
=(=2>)

 (6) 

with the initial conditions 𝑢(0) = 𝑢4 and 𝑠(0) = 𝑠4. This solution can be used to extrapolate 

mRNA abundance	𝑠 to a future timepoint 𝑡>,  under the assumption stated above, by entering the 

current state of the cell as 𝑢4 and 𝑠4, and then computing 𝑠(𝑡>).  

The equations above hold for a single gene. Across all genes, the same equations hold under the 

same assumptions, but with gene-specific rate constants. Note that setting 𝛽(𝑡) = 1 for all genes 

implies that we assume a common, constant rate of splicing. This simplifying assumption reduces 

the number of parameters that need to be estimated, making it possible to estimate velocity from 

scRNA-seq data. Additional experimental data on gene-specific splicing rates, however, would 

allow to relax this assumption and improve extrapolation accuracy.  

Note that the equations above are rate equations, which are deterministic and continuous-valued. 

The rate equations give the time-evolution of the expectation of the number of mRNA molecules 

observed, not the exact observed number at each timepoint. For example, if the rate equation 

gives 𝑠(20) = 14.3, then 14.3 is the expected number (in the statistical sense) of spliced mRNA 

molecules at time 𝑡 = 20.  

Master equation. In a chemical reaction system, the master equation gives the full probability 

distribution over the counts of all reacting species, as a function of time, often denoted Ψ. At any 

given point in time, Ψ(𝑥, 𝑦, 𝑡) assigns a probability to every possible configuration of molecules 

𝑢(𝑡) = 𝑥 and 𝑠(𝑡) = 𝑦, where ∑ ∑ Ψ(𝑥, 𝑦, 𝑡) = 1NO . We note that our model is an open system 

that contains only monomolecular reactions, for which the master equation has an exact analytical 

solution24. Informally, if the system starts with Poisson-distributed variables, they will stay 

Poisson. If it starts in any other state, then it will converge rapidly to a Poisson distribution. 

Furthermore, the Poisson-distributed variables have rate constants that are equal to the solution of 

the rate equations above. Thus, the master equation for our model is a product of Poisson 

distributions: 

Ψ(𝑥, 𝑦, 𝑡)	~	𝒫(𝑥, 𝑦; 𝑢, 𝑠)	

where u and s are the solutions (at time t) to the rate equation, and 𝒫 denotes the bivariate product 
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Poisson distribution with probability density function 

𝑓(𝑥, 𝑦; 𝑢, 𝑠) =
𝑒$𝑢O

𝑥!
𝑒.𝑠N

𝑦!  

Estimation and extrapolation. The normalized degradation rate 𝛾 varies among genes and needs 

to be estimated in a gene-specifc manner. In steady-state populations, where 𝑑𝑠/𝑑𝑡 = 0, we can 

determine 𝛾 of a given gene as the ratio of unspliced to spliced mRNA molecules (again setting 

𝛽 = 1): 

𝛾 =
𝑢
𝑠  

𝛼 = u 

The steady-state assumption may be realistic for genes expressed in populations known to be 

terminally differentiated. However, for genes expressed transiently during development, or in 

cases where the terminal population was not sampled, the steady-state assumption will fail. The 

subsequent sections will detail how 𝛾 can be estimated without the steady-state assumption. 

More problematically, we do not know 𝛼, nor can it be easily estimated. This prevents us from 

extrapolating 𝑠(𝑡) into the future. Instead of assuming a constant 𝛼, we therefore estimate 𝑠(𝑡) 

using one of two alternative assumptions: 

Model I. Constant velocity assumption: 

We assume that for the purposes of 𝑠(𝑡) extrapolation, the rate of change of the spliced molecules 

remains constant. That is, we assume 𝑑𝑠/𝑑𝑡 = 𝑣 is constant, so that the current rate of increase or 

decrease in spliced mRNA molecules continues into the future. Under this assumption, 

extrapolation is trivial, since 

𝑠(𝑡) = 𝑠4 + 𝑣𝑡 

In other words, extrapolation amounts to taking the current number of mRNA molecules and 

adding the current rate of change multiplied by the extrapolation time step. This assumption 

works well in practice as long as the time step is short. For longer extrapolation, 𝑠(𝑡) can become 

negative if 𝑣 < 0 (i.e. in the case of a down-regulated gene). This requires clipping the values at 

zero. 
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Model II. Constant unspliced molecules assumption: 

Alternatively, we can extrapolate  𝑠(𝑡)	assuming that the number of unspliced molecules stays 

constant, i.e. that 𝑢(𝑡) = 𝑢4. This reduces the problem to a single rate equation: 

𝑑𝑠
𝑑𝑡 = 𝑢4 − 𝛾𝑠(𝑡) 

The solution then becomes 

𝑠(𝑡) = 𝑠4𝑒2=% +
𝑢4
𝛾 (1 − 𝑒

2=%) 

In practice, we found that at short extrapolation timescales both approaches yielded very similar 

results. We will indicate below when we used Model I or the Model II. 

Assuming gene independence, the overall RNA velocity of the cell is a multidimensional vector 

comprised of the individual gene velocities. 

 

Estimation framework 
In this section we give a description of the analysis framework we used the estimation of RNA 

velocity and the related data analysis. This analysis logic is implemented separately in R and 

python environments by velocyto.R and velocyto.py packages, respectively. Parameters, 

thresholds and other information related to the implementation of each package are described in 

detail in the next section, and code to reproduce our analysis is available in the companion 

notebooks at http://velocyto.org. 

The velocity estimation procedure incorporates several features to accommodate the complexity 

of splicing biology. Independent normalization of spliced and unspliced counts allows to control 

for genome-wide variation of splicing rates between cells. Our model incorporates a gene-specific 

offset to account for background signals that could originate from other transcripts or alignment 

errors. Several further adjustments can be used to enhance RNA velocity estimation, reducing 

impact of single-cell measurement noise and gene-specific aberrations. The robustness of the 

RNA velocity estimates can be improved by pooling of transcript counts across 𝑘 most similar 

cells (see “Cell nearest neighbor (kNN) pooling” section below). Similarly, pooling of counts can 

be performed across well-correlated genes, based on the assumption that such genes are also 
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subject to the same up-/down-regulation dynamics (see “Gene kNN pooling” section below, 

Supplementary Note 2 Figure 8d).  

The estimation of the gene-specific equilibrium coefficient 𝛾, a critical step for evaluating 

velocity, is performed using regression on the extreme expression quantiles (see next section). 

Such procedure ensures robust estimation even in situations where most (and sometimes all) of 

the observed cells are outside of the steady state (Supplementary Note 2 Section 2). This default 

fitting procedure, however, may systematically underestimate the velocity of genes that are 

observed far outside of their steady state, such as chromaffin maturation genes up-regulated at the 

very end of the observed differentiation, or neural-crest genes that are already being actively 

down-regulated in the initial Schwann cell precursor stage. To address this limitation we 

developed an alternative, structure-based fit to predict the steady-state relationship between 

spliced and unspliced RNA based on the structural parameters of the genes, such as the number of 

expressed exons, internal priming sites, or intronic length (Extended Data Fig. 4). The resulting 

velocity estimates corrected the underestimation at extremes of the chromaffin differentiation 

trajectory. 

Estimation of RNA velocity. For each gene, the normalized degradation rate 𝛾 was determined 

using a least squares fit of the following linear model: 𝑢 ∼ 𝛾 ∗ 𝑠, where 𝑢 and 𝑠 are the size-

normalized unspliced and spliced abundances, respectively, observed for given gene across the 

cells. Note that to control for global variation of splicing efficiency and detection of unspliced 

molecules, the spliced and unpsliced counts are normalized separately. Specifically, in a given 

cell 𝑢 = 𝑈/𝑁$, 𝑠 = 𝑆/𝑁., where 𝑈 and 𝑆 are the number of unspliced and spliced counts, 

respectively, and 𝑁$ and 𝑁. are the total numbers of unspliced and spliced molecules observed in 

a given cell, respectively. An offset can optionally be included to account for baseline intronic 

counts that might be driven by unannotated transcripts.  

Note that fitting 𝛾 in this manner is correct only if the cells are at steady state (and away from 

zero). However, using a robust quantile fit (i.e. including only cells near the origin and cells near 

the upper-right corner of the phase portrait) we found that 𝛾 could be reasonably well 

approximated even in situations where most (or even all) of the cells were found away from the 

steady state (see Supplementary Note 2 Section 2). 

Under Model I, the velocity component v for a given gene in a given cell was assumed to be 
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constant and estimated as 𝑣 = 𝑢 − 𝛾𝑠 − 𝑜, where o is the optional offset parameter accounting 

for contribution of extraneous transcripts. The extrapolated counts of a given gene in a given cell 

was then determined as 𝑠% = 𝑚𝑎𝑥(0, 𝑠4 + 𝑣𝑡). Where t is the extrapolation time step, that was 

chosen such that the total RNA count for each cell did not change substantially.  

Under Model II, the displacement of spliced mRNA 𝛥𝑠 for a given gene in a given cell was 

estimated assuming constant u as 𝛥𝑠(𝑡) = d$e
=
− 𝑠f (1 − 𝑒2=%), where 𝑢g is the offset-adjusted 

unspliced count, calculated as  𝑢g = 𝑚𝑎𝑥(0, 𝑢 − 𝑜), and using the default extrapolation time 𝑡 =

1. The extrapolated counts of a given gene in a given cell was then determined as 𝑆% =

𝑚𝑎𝑥(0, 𝑆 + 𝛥𝑠(𝑡)𝑁.), where 𝑆 is the non-normalized spliced count for a gene in a given cell. 

The normalized extrapolated counts were then calculated as 𝑠% = 𝑆%/𝑁h, where 𝑁h is the 

extrapolated total size of the cell 𝑁h = 𝑁. + 𝑆% − 𝑆.  

Errors due to unequal losses. Counts of spliced and unspliced mRNA molecules are subject to 

gene-specific losses during sample preparation. As long as these losses are equal, the observed 

counts U and S will be simply a linear rescaling of the true counts 𝑈h and 𝑆i: 

𝑈 = 𝑘𝑈h 

𝑆 = 𝑘𝑆i 

All assumptions above will still hold in the rescaled units. If the losses are uniformly random with 

rate k, and if the distributions of 𝑈h and 𝑆i are Poisson, then U and S will stay Poisson (the same is 

true if they are Negative Binomial, since the latter can be viewed as a Poisson distribution with a 

Gamma-distributed rate). Thus, both the expectations of U and S, and their distributions, will be 

maintained in the new units. Relative variances will increase, however, since fewer molecules are 

observed. 

However, if the gene-specific loss of unspliced molecules U differs from S, say by a factor 𝑓, 

then our estimates of #.
#%

 will be off by the factor 𝑓. This can be seen as follows. First, at steady 

state, instead of estimating 𝛾 = 𝑈h
𝑆ij , we will be estimating 𝑓𝛾 = 𝑓𝑈h

𝑆i
k  . Second, away from 

steady state, our estimates of the velocity will be: 
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𝑓𝑈h(𝑡) − 𝑓𝛾𝑆i(𝑡) = 𝑓(𝑈h(𝑡) − 𝛾𝑆i(𝑡)) = 𝑓
𝑑𝑆i
𝑑𝑡  

Informally, the effect of this factor is to create a different timescale for each gene, compounding 

the effect of the assumption of constant splicing rate 𝛽 (above). 

Cell nearest neighbor (kNN) pooling.  To improve 𝛾 estimation, we pooled count data across 

local neighborhoods. Specifically, we substituted S, U counts with the sum of the counts from the 

original cell and its k nearest neighbors. k was adapted to match the sparsity and size of the 

dataset. The estimation of velocity was carried out using pooled count data. The extrapolated state 

was calculated using the initial (non-pooled) count values. Pearson linear correlation distance on 

all genes (log scale) was used to find k closest cells for the SMART-seq2 datasets, while 

Euclidean distance in PCA space was used for the larger 10x Chromium and inDrop datasets.   

Visualization of cell velocities. The extrapolated state for a cell corresponds to a vector in the 

same space of the original cell measurement, which can be directly visualized using linear 

dimensionality reduction approaches such as PCA. For PCA-based visualization (Figure 1h, 

Figure 2d), principal components were determined based on the observed expression space. The 

projection of the extrapolated state on the same eigenvectors was then used to position the tips of 

velocity arrows.  

For non-linear, non-parametric embeddings such as t-SNE (e.g. Fig. 2h), it is challenging to 

project new data points into the embedding. We therefore developed an approach that places the 

velocity arrow in the direction in which expression difference is best correlated with the estimated 

velocity vector, controlling for the cell density distribution. The direction was estimated as 

follows. We calculated a transition probability matrix P by applying an exponential kernel on the 

Pearson correlation coefficient between the velocity vector and cell state difference vectors:  

𝑷mn = 𝑒𝑥𝑝 p
𝑐𝑜𝑟𝑟(𝒓mn, 𝒅m)

𝜎 v	 

where 𝒓mn is the difference vector between the expression vectors 𝒔m and 𝒔n  of cells i and j 

transformed with a variance-stabilizing (elementwise) transformation 𝜚, and 𝒅m	 is the 𝜚-

transformed velocity extrapolation vector of the cell i: 

𝒓mn = 	𝜚(𝒔n −	𝒔m) 
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𝒅m = 	𝜚(𝒗𝑡) 

𝜚(𝑥) = 𝑠𝑔𝑛(𝑥)	||𝑥| 

where 𝑠𝑔𝑛() is a sign function. Other formulations of 𝜚 transformation are also implemented in 

velocyto, including identity and log-based functions. The transition matrix was row-normalized so 

that ∑ 𝑷mnn = 1. Then the transition probabilities 𝑃mn were used as weights to compute a linear 

combination of the unitary displacement vectors. Given an embedding with the n positions of the 

cells described by a set of vectors  

𝑿 = 	 [𝑥>, 𝑥�, … , 𝑥�2>, 𝑥�] 

the predicted velocity displacement of a cell was calculated as:  

∆𝑥m =��𝑃mn − 	
1
𝑛�	

(𝑥n − 𝑥𝒊)
‖𝑥n − 𝑥m‖

	
n

 

where subtracting 1/𝑛  corrects the estimate for the non-uniform density of points in the 

embedding. 

Visualization of individual cell velocity arrows is not practical for large datasets. For such cases 

we visualized a vector field showing local group velocity evaluated on a regular grid. The grid 

vector field was estimated by applying Gaussian kernel smoothing to the velocity vectors of cells 

around each grid point: 

∆𝑥��m# = 	�𝐾�(𝑥��m#, 𝑥m)∆𝑥m
m

 

where kernel function 𝐾�  was defined as: 

𝐾�(𝑎, 𝑏) = 	expp
−‖𝑎 − 𝑏‖�

2𝜎� v 

The size of the grid (number of grid points) was chosen depending on the visual scale of the 

figure. 
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Diffusion start and end-point modeling (Fig. 3). 

To find the set of cells that correspond to the differentiation starting point (e.g. early neural 

progenitors) and end points (e.g. neurons and glial cells) we used a Markov process where 

respectively the transition probability matrix 𝑻, where each entry was defined as: 

𝑻mn = 𝑝𝑾mn + (1 − 𝑝)𝑫mn 

where W (after row sum normalization) corresponds to the local Brownian motion component: 

𝑾mn = 𝐾��(𝒙𝒊, 𝒙𝒋) 

 and D (after row sum normalization) represents the local velocity-driven drift: 

𝑫mn = 𝑃mn𝐾��(𝒙𝒊, 𝒙𝒋) 

The Gaussian kernel 𝐾��is used to make the diffusion process proceed gradually and locally on 

the embedding. p<0.5 is the mixture ratio that we set equal to 0.2. Furthermore, to avoid the 

influence of the local density of points on the result, we downsampled the dataset selecting the 

nearest neighbours of a uniform grid. 𝜎�was set to the average distance between neighbouring 

points and 𝜎� = 𝜎�/2	. Backward diffusion (i.e. diffusion against the velocity bias) was 

performed by transposing and row-normalizing transition probability matrix 𝑻. In both directions 

of the diffusion we started from a uniform distribution and performed 2500 iterations.  

Implementation details of gene-relative estimation of RNA velocity. In the basic velocity 

estimation scheme, o was taken to be mean u across cells where s=0. For the least squares fit, 

cell-specific regression weights w  were taken to be 𝑒� + 𝑠�. Note that o and 𝛾 fit were estimated 

using a different logic when using quantile fit, spanning-read based fit, or gene kNN pooling. To 

improve stability at low counts, 𝑢g was additionally calculated adding or subtracting one pseudo-

count, and a minimal magnitude velocity 𝑣 was reported.   

To handle scenarios where most of the observed cells are outside of the steady state, we used 

extreme quantiles of expression values to fit the  𝛾 coefficient and offset o. Specifically, a linear 

model 𝑢 ∼ 𝛾 ∗ 𝑠 + 𝑜 was fit for the slope and intercept (𝛾 and o) coefficients, limiting the set of 

cells to those with values of s within the top and bottom 5% for that gene (2% was used for larger 

datasets, such as mouse BM). No regression weights were used. The velocyto packages also 
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implement a “diagonal quantiles” option, where the extreme quantiles are determined not on the 

spliced expression magnitude alone, but on a normalized sum of spliced and unspliced expression 

magnitude (𝑥 = 𝑠/𝑆 + 𝑢/𝑈), where 𝑈 and S are the maximal unspliced and spliced expression of 

that gene, respectively.  

Gene kNN pooling. Gene pooling was implemented by pooling counts across k most correlated 

genes. Gene correlation was assessed using Pearson linear correlation distance on 𝑙𝑜𝑔(𝑠 + 1) 

values. The resulting matrix represents counts for metagenes. The slope and offset estimates were 

then carried out on the pooled gene counts. The velocity of the original gene was then evaluated 

based on the assumption that the observed vs. expected (in steady-state) ratio of the unspliced 

signal should be similar between co-regulated genes, and therefore also similar for the pooled 

gene counts. The log ratio of observed to expected unspliced counts was calculated for a given 

gene and a given cell as 𝑚 = 𝑙𝑜𝑔� d
$

=e.?�g
f, where 𝛾g and 𝑜g are the the slope and offset estimates 

obtained using metagene matrices. Then, gene-specific 𝛾 was estimated by taking mean of 

2��� ($e/.)2¡across all cells with 𝑠 > 0. Under the assumption of constant 𝑢 (Model II), 𝛥𝑠(𝑡) 

was then estimated as 𝛥𝑠(𝑡) = (𝑠 + 𝜖)[𝑒2=%(1 − 2¡) + 2¡] − 𝑠, where 𝜖 = 102�. 

Structure-based estimation of RNA velocity (Extended Data Fig. 4). Structure-based model 

starts with the initial estimates (𝛾�) obtained using gene-relative model described above. It then 

proceeds to fit a generalized additive model (gam) to predict gene-specific values of 𝛾 based on a 

combination of gene structure parameters, such as the number of exons, total intronic length, or 

the number of predicted internal priming sites. The 𝛾 values predicted by this model are then 

translated into the unspliced count M values (log observed over expected under steady state ratios 

unspliced count ratios). Unlike 𝛾 estimates, the M values can be directly compared between 

genes, and we expect co-regulated genes to show similar M values during up- and down-

regulation. The M values were therefore refined further by applying trimmed mean procedure 

across closely-correlated genes, and these adjusted M values are finally used to extrapolate the 

future expression state of the cell.  

The analysis considers only genes with more than one annotated exon (𝑛5 > 2), with total exonic 

length 𝑙5 over 500bp, and total intronic length 𝑙m over 3kbp. Then a global generalized additive 

model was constructed to fit the dependency 𝛾� on the structural parameters of the gene and its 

expression magnitude:  
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𝛾� ∼ 𝐾�(𝑠, 𝑙m) + 𝐾> ¤𝑙𝑜𝑔>4 �
𝑙m + 1
𝑙5 + 1

�¥ + 𝐾>(𝑛5) 	+ 𝐾>(𝑛¦) 	+ 𝐾>(𝑛#)	 

where 𝐾> and 𝐾� denote 1D and 2D local smoothing kernels, respectively as implemented by the 

mgcv R package. Here, 𝑠 denotes spliced expression magnitude of a gene, and 𝑛5 the number of 

expressed exons in a gene. 𝑛¦ and 𝑛#  denote the number of concordant and discordant internal 

priming sites, respectively (see Extended Data Fig. 1 for details on the internal priming sites). The 

model was fit, weighting the observations of each gene by the square root of its total spliced 

counts across the dataset. The fitting procedure also omitted genes with disproportionate amount 

of unspliced counts (likely due to unannotated non-coding transcripts). To do so, total unspliced 

counts were modeled as ∑ 𝑢¦5��. ~∑ 𝑠¦5��. + 𝑙m/𝑙5 using a generalized linear model with normal 

distribution and log link and genes with pearson deviance exceeding 3 were omitted when fitting 

the model. 

 

The global model was then used to predict structure-based steady-state 𝛾 (𝛾.) for all genes 

passing structural parameter thresholds mentioned above. 𝛾. was then used to estimate the log 

ratio of observed to expected unspliced counts as 𝑚. = 𝑙𝑜𝑔� d
$

=§.?�¨
f, where 𝑜� is the gene 

specific offset determined as described in the gene-relative model.  As we expect 𝑚. estimates of 

individual genes to be noisy, the next step used k nearest genes to stabilize 𝑚 estimates for each 

gene. Specifically, for a given gene g, 𝑚 was estimated as a trimmed mean of the 𝑚. values for k 

genes most correlated with gene g across the entire dataset. Default k=15 was used, with top and 

bottom 5 genes trimmed. These robust 𝑚 estimates were then used to estimate RNA velocity as 

described in “Gene kNN pooling”. 

Metabolic labeling (Extended Data Fig. 2) 

We performed metabolic labeling of Hek293 cells using 4-thiouridine as described in22 but 

without fragmentation (4sU-seq), and then prepared the bulk RNA samples for sequencing using 

STRT23. We incubated cells in duplicate for 5, 15 and 30 minutes and included a no pull-down 

control representing the steady-state expression state. Importantly, STRT is a single-cell RNA-

seq protocol based on oligo-dT priming, and thus should be representative of the protocols 

designed to detect poly-A+ RNA. We have previously estimated that the cross-contamination 
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(fraction of contaminating non-labeled RNA that is found in labeled RNA) is ~0.5%, although we 

could not measure it directly here as the 4sU-seq internal controls were not polyadenylated. We 

analyzed two independent biological samples for condition, for each samples two technical 

replicates (reverse transcription) were performed. 

The data was analyzed using the standard velocyto counting pipeline with option “-u 8b”. Genes 

that satisfied the following conditions were selected: (1) spliced molecules were detected in all 

control samples; (2) unspliced molecules were detected in at least 75% of the pull-down samples 

and in at least 2 of the control samples; (3) the levels of unspliced molecules in the pull-down 

with the higher unspliced expression were at least twice that of the control samples; (4) the 

coefficient of variation of the spliced fraction was lower than what would be predicted by a linear 

model using the spliced magnitude as a predictor (residuals to the fit above the 10th percentile); 

(5) the time-dependent trend was significant as determined by ANOVA (p < 0.15). Factor 

analysis was performed on the genes, and the genes were clustered in the space of the two factors 

using a Gaussian mixture model. Of the two clusters obtained, the smaller one presented patterns 

showing a discordant signature (incompatible with a simple model of transcription) which were 

not processed further. For the remaining genes, we considered the observed fraction of spliced 

molecules .
.?$

. The parameters beta and gamma were determined by least squares fit of the 

following equation, derived from the solution of time-independent rate models (note that alpha 

simplifies out when calculating the ratio 𝑠/(𝑠 + 𝑢)). 

𝑠
𝑠 + 𝑢 = 𝑓(𝛽, 𝛾, 𝑡) =

1

�𝛽 + 𝛾𝛽 +	 (−𝑒%© 	+	𝑒%=)𝛾
𝑒%©𝛽	–	𝑒%=𝛾	 +	𝑒%(©?=)(𝛾 − 𝛽)�

 

 

The time constant τ for an asymptotically increasing system is defined as the time required to 
reach the fraction 1 − >

5
≅ 0.632	of its equilibrium value, that for the spliced fraction is  

lim
𝑡→∞

.
.?$

= ©
©?=

	 ; therefore the value of τ  was obtained by solving (numerically) the following 

equation: 

1

�𝛽 + 𝛾𝛽 +	 (−𝑒²© 	+	𝑒²=)𝛾
𝑒²©𝛽	–	𝑒²=𝛾	 +	𝑒²(©?=)(𝛾 − 𝛽)�

−
𝛽�1− 1𝑒�
𝛽+ 𝛾 = 0 
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