ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Biocompatible Copper(I) Catalysts for in Vivo Imaging of Glycans

View Author Information
Department of Biochemistry and Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave, Bronx, New York 10461, United States, and The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 67R6110, Berkeley, California 94720, United States
†Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University.
#Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University.
‡The Molecular Foundry, Lawrence Berkeley National Laboratory.
Cite this: J. Am. Chem. Soc. 2010, 132, 47, 16893–16899
Publication Date (Web):November 9, 2010
https://doi.org/10.1021/ja106553e
Copyright © 2010 American Chemical Society

    Article Views

    11433

    Altmetric

    -

    Citations

    333
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    The Cu(I)-catalyzed azide−alkyne cycloaddition (CuAAC) is the standard method for bioorthogonal conjugation. However, current Cu(I) catalyst formulations are toxic, hindering their use in living systems. Here we report that BTTES, a tris(triazolylmethyl)amine-based ligand for Cu(I), promotes the cycloaddition reaction rapidly in living systems without apparent toxicity. This catalyst allows, for the first time, noninvasive imaging of fucosylated glycans during zebrafish early embryogenesis. We microinjected embryos with alkyne-bearing GDP-fucose at the one-cell stage and detected the metabolically incorporated unnatural sugars using the biocompatible click chemistry. Labeled glycans could be imaged in the enveloping layer of zebrafish embryos between blastula and early larval stages. This new method paves the way for rapid, noninvasive imaging of biomolecules in living organisms.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthetic procedures, spectral data for BTTES, protocol for kinetic measurement, experimental procedures for flow cytometry, fluorescent microscopy, and zebrafish husbandry and strains. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 333 publications.

    1. Wai-Seng Io, Tsung-Shing Andrew Wang. A Versatile Strategy to Manipulate and Probe Native Carbonic Anhydrases In Cellulo Utilizing Two-Step Ligand-Directed Functionalization. ACS Chemical Biology 2023, 18 (5) , 1208-1217. https://doi.org/10.1021/acschembio.3c00102
    2. Peng Wu. The Nobel Prize in Chemistry 2022: Fulfilling Demanding Applications with Simple Reactions. ACS Chemical Biology 2022, 17 (11) , 2959-2961. https://doi.org/10.1021/acschembio.2c00788
    3. Gina Partipilo, Austin J. Graham, Brian Belardi, Benjamin K. Keitz. Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne–Azide Cycloaddition. ACS Central Science 2022, 8 (2) , 246-257. https://doi.org/10.1021/acscentsci.1c01208
    4. Nicholas Banahene, Herbert W. Kavunja, Benjamin M. Swarts. Chemical Reporters for Bacterial Glycans: Development and Applications. Chemical Reviews 2022, 122 (3) , 3336-3413. https://doi.org/10.1021/acs.chemrev.1c00729
    5. Robert E. Bird, Steven A. Lemmel, Xiang Yu, Qiongqiong Angela Zhou. Bioorthogonal Chemistry and Its Applications. Bioconjugate Chemistry 2021, 32 (12) , 2457-2479. https://doi.org/10.1021/acs.bioconjchem.1c00461
    6. Anand K. Agrahari, Priyanka Bose, Manoj K. Jaiswal, Sanchayita Rajkhowa, Anoop S. Singh, Srinivas Hotha, Nidhi Mishra, Vinod K. Tiwari. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chemical Reviews 2021, 121 (13) , 7638-7956. https://doi.org/10.1021/acs.chemrev.0c00920
    7. Kiall F. Suazo, Keun-Young Park, Mark D. Distefano. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chemical Reviews 2021, 121 (12) , 7178-7248. https://doi.org/10.1021/acs.chemrev.0c01108
    8. Dat P. Nguyen, Huong T. H. Nguyen, Loi H. Do. Tools and Methods for Investigating Synthetic Metal-Catalyzed Reactions in Living Cells. ACS Catalysis 2021, 11 (9) , 5148-5165. https://doi.org/10.1021/acscatal.1c00438
    9. Zhiguo Gao, Yaojia Li, Zhikun Liu, Yu Zhang, Fanghui Chen, Peijing An, Wenjun Lu, Jinzhong Hu, Chaoqun You, Jun Xu, Xiangyang Zhang, Baiwang Sun. Small-Molecule-Selective Organosilica Nanoreactors for Copper-Catalyzed Azide–Alkyne Cycloaddition Reactions in Cellular and Living Systems. Nano Letters 2021, 21 (8) , 3401-3409. https://doi.org/10.1021/acs.nanolett.0c04930
    10. Benjamin D. Ravetz, Nicholas E. S. Tay, Candice L. Joe, Melda Sezen-Edmonds, Michael A. Schmidt, Yichen Tan, Jacob M. Janey, Martin D. Eastgate, Tomislav Rovis. Development of a Platform for Near-Infrared Photoredox Catalysis. ACS Central Science 2020, 6 (11) , 2053-2059. https://doi.org/10.1021/acscentsci.0c00948
    11. Shambojit Roy, Jennifer N. Cha, Andrew P. Goodwin. Nongenetic Bioconjugation Strategies for Modifying Cell Membranes and Membrane Proteins: A Review. Bioconjugate Chemistry 2020, 31 (11) , 2465-2475. https://doi.org/10.1021/acs.bioconjchem.0c00529
    12. Ying Liu, Yugang Bai. Design and Engineering of Metal Catalysts for Bio-orthogonal Catalysis in Living Systems. ACS Applied Bio Materials 2020, 3 (8) , 4717-4746. https://doi.org/10.1021/acsabm.0c00581
    13. Xiaoyun Zhang, Shuo-Qing Zhang, Qiang Li, Fan Xiao, Zongwei Yue, Xin Hong, Xiaoguang Lei. Computation-Guided Development of the “Click” ortho-Quinone Methide Cycloaddition with Improved Kinetics. Organic Letters 2020, 22 (8) , 2920-2924. https://doi.org/10.1021/acs.orglett.0c00578
    14. Jessica L. Daughtry, Wendy Cao, Johnny Ye, Jeremy M. Baskin. Clickable Galactose Analogues for Imaging Glycans in Developing Zebrafish. ACS Chemical Biology 2020, 15 (2) , 318-324. https://doi.org/10.1021/acschembio.9b00898
    15. Aurélie Rondon, Françoise Degoul. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjugate Chemistry 2020, 31 (2) , 159-173. https://doi.org/10.1021/acs.bioconjchem.9b00761
    16. Tejas Navaratna, Lydia Atangcho, Mukesh Mahajan, Vivekanandan Subramanian, Marshall Case, Andrew Min, Daniel Tresnak, Greg M. Thurber. Directed Evolution Using Stabilized Bacterial Peptide Display. Journal of the American Chemical Society 2020, 142 (4) , 1882-1894. https://doi.org/10.1021/jacs.9b10716
    17. Xin Xie, Bowen Li, Jie Wang, Chenyue Zhan, Yong Huang, Fang Zeng, Shuizhu Wu. Bioorthogonal Nanosystem for Near-Infrared Fluorescence Imaging and Prodrug Activation in Mouse Model. ACS Materials Letters 2019, 1 (5) , 549-557. https://doi.org/10.1021/acsmaterialslett.9b00281
    18. Bo Cheng, Lu Dong, Yuntao Zhu, Rongbing Huang, Yuting Sun, Qiancheng You, Qitao Song, James C. Paton, Adrienne W. Paton, Xing Chen. 9-Azido Analogues of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans. ACS Chemical Biology 2019, 14 (10) , 2141-2147. https://doi.org/10.1021/acschembio.9b00556
    19. Fei Fan, Ping Zhang, Lihao Wang, Tiantian Sun, Chao Cai, Guangli Yu. Synthesis and Properties of Functional Glycomimetics through Click Grafting of Fucose onto Chondroitin Sulfates. Biomacromolecules 2019, 20 (10) , 3798-3808. https://doi.org/10.1021/acs.biomac.9b00878
    20. Alexandros Katranidis, Jörg Fitter. Single-Molecule Techniques and Cell-Free Protein Synthesis: A Perfect Marriage. Analytical Chemistry 2019, 91 (4) , 2570-2576. https://doi.org/10.1021/acs.analchem.8b03855
    21. Joan Josep Soldevila-Barreda, Nils Metzler-Nolte. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chemical Reviews 2019, 119 (2) , 829-869. https://doi.org/10.1021/acs.chemrev.8b00493
    22. Karthik Subramanian Chandrasekaran, Andrea Rentmeister. Clicking a Fish: Click Chemistry of Different Biomolecules in Danio rerio. Biochemistry 2019, 58 (1) , 24-30. https://doi.org/10.1021/acs.biochem.8b00934
    23. Lingjun Li, Shenlong Huang, Tongpeng Shang, Bo Zhang, Yuanyang Guo, Gongming Zhu, Demin Zhou, Guisheng Zhang, Anlian Zhu, Lihe Zhang. Medium Rings Bearing Bitriazolyls: Easily Accessible Structures with Superior Performance as Cu Catalyst Ligands. The Journal of Organic Chemistry 2018, 83 (21) , 13166-13177. https://doi.org/10.1021/acs.joc.8b01899
    24. Junfeng Chen, Jiang Wang, Yugang Bai, Ke Li, Edzna S. Garcia, Andrew L. Ferguson, Steven C. Zimmerman. Enzyme-like Click Catalysis by a Copper-Containing Single-Chain Nanoparticle. Journal of the American Chemical Society 2018, 140 (42) , 13695-13702. https://doi.org/10.1021/jacs.8b06875
    25. Christopher D. Spicer, E. Thomas Pashuck, Molly M. Stevens. Achieving Controlled Biomolecule–Biomaterial Conjugation. Chemical Reviews 2018, 118 (16) , 7702-7743. https://doi.org/10.1021/acs.chemrev.8b00253
    26. Zi Ye, Xiaoyun Zhang, Yuangang Zhu, Tong Song, Xiaowei Chen, Xiaoguang Lei, Chu Wang. Chemoproteomic Profiling Reveals Ethacrynic Acid Targets Adenine Nucleotide Translocases to Impair Mitochondrial Function. Molecular Pharmaceutics 2018, 15 (6) , 2413-2422. https://doi.org/10.1021/acs.molpharmaceut.8b00250
    27. Victor R. Mann, Alexander S. Powers, Drew C. Tilley, Jon T. Sack, Bruce E. Cohen. Azide–Alkyne Click Conjugation on Quantum Dots by Selective Copper Coordination. ACS Nano 2018, 12 (5) , 4469-4477. https://doi.org/10.1021/acsnano.8b00575
    28. Aime Lopez Aguilar, Lu Meng, Xiaomeng Hou, Wei Li, Kelley W. Moremen, Peng Wu. Sialyltransferase-Based Chemoenzymatic Histology for the Detection of N- and O-Glycans. Bioconjugate Chemistry 2018, 29 (4) , 1231-1239. https://doi.org/10.1021/acs.bioconjchem.8b00021
    29. Yuting Sun, Senlian Hong, Ran Xie, Rongbing Huang, Ruoxing Lei, Bo Cheng, De-en Sun, Yifei Du, Corwin M. Nycholat, James C. Paulson, Xing Chen. Mechanistic Investigation and Multiplexing of Liposome-Assisted Metabolic Glycan Labeling. Journal of the American Chemical Society 2018, 140 (10) , 3592-3602. https://doi.org/10.1021/jacs.7b10990
    30. Ji Yu Choi, Matthew Park, Hyeoncheol Cho, Mi-Hee Kim, Kyungtae Kang, and Insung S. Choi . Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron–Astrocyte Coculture. ACS Chemical Neuroscience 2017, 8 (12) , 2607-2612. https://doi.org/10.1021/acschemneuro.7b00300
    31. Aime Lopez Aguilar, Yu Gao, Xiaomeng Hou, Gregoire Lauvau, John R. Yates, and Peng Wu . Profiling of Protein O-GlcNAcylation in Murine CD8+ Effector- and Memory-like T Cells. ACS Chemical Biology 2017, 12 (12) , 3031-3038. https://doi.org/10.1021/acschembio.7b00869
    32. Eileen G. Burke and Jennifer M. Schomaker . Synthetic Applications of Flexible SNO-OCT Strained Alkynes and Their Use in Postpolymerization Modifications. The Journal of Organic Chemistry 2017, 82 (17) , 9038-9046. https://doi.org/10.1021/acs.joc.7b01506
    33. Eileen G. Burke, Brian Gold, Trish T. Hoang, Ronald T. Raines, and Jennifer M. Schomaker . Fine-Tuning Strain and Electronic Activation of Strain-Promoted 1,3-Dipolar Cycloadditions with Endocyclic Sulfamates in SNO-OCTs. Journal of the American Chemical Society 2017, 139 (23) , 8029-8037. https://doi.org/10.1021/jacs.7b03943
    34. Stephanie A. Fisher, Alexander E.G. Baker, and Molly S. Shoichet . Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy. Journal of the American Chemical Society 2017, 139 (22) , 7416-7427. https://doi.org/10.1021/jacs.7b00513
    35. Shentian Zhuang, Qiang Li, Lirong Cai, Chu Wang, and Xiaoguang Lei . Chemoproteomic Profiling of Bile Acid Interacting Proteins. ACS Central Science 2017, 3 (5) , 501-509. https://doi.org/10.1021/acscentsci.7b00134
    36. He Tian, Alexandre Fürstenberg, and Thomas Huber . Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chemical Reviews 2017, 117 (1) , 186-245. https://doi.org/10.1021/acs.chemrev.6b00084
    37. Jun Ando, Miwako Asanuma, Kosuke Dodo, Hiroyuki Yamakoshi, Satoshi Kawata, Katsumasa Fujita, and Mikiko Sodeoka . Alkyne-Tag SERS Screening and Identification of Small-Molecule-Binding Sites in Protein. Journal of the American Chemical Society 2016, 138 (42) , 13901-13910. https://doi.org/10.1021/jacs.6b06003
    38. Siheng Li, Honghao Cai, Jilin He, Haoqing Chen, Srujana Lam, Tao Cai, Zhiling Zhu, Steven J. Bark, and Chengzhi Cai . Extent of the Oxidative Side Reactions to Peptides and Proteins During the CuAAC Reaction. Bioconjugate Chemistry 2016, 27 (10) , 2315-2322. https://doi.org/10.1021/acs.bioconjchem.6b00267
    39. Satoshi Yamaguchi, Manami Ura, Shin Izuta, and Akimitsu Okamoto . Chemically Activatable Alkyne Tag for Low pH-Enhanced Molecular Labeling on Living Cells. Bioconjugate Chemistry 2016, 27 (9) , 1976-1980. https://doi.org/10.1021/acs.bioconjchem.6b00399
    40. Tiantian Sun, Seok-Ho Yu, Peng Zhao, Lu Meng, Kelley W. Moremen, Lance Wells, Richard Steet, and Geert-Jan Boons . One-Step Selective Exoenzymatic Labeling (SEEL) Strategy for the Biotinylation and Identification of Glycoproteins of Living Cells. Journal of the American Chemical Society 2016, 138 (36) , 11575-11582. https://doi.org/10.1021/jacs.6b04049
    41. Danielle Konetski, Tao Gong, and Christopher N. Bowman . Photoinduced Vesicle Formation via the Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction. Langmuir 2016, 32 (32) , 8195-8201. https://doi.org/10.1021/acs.langmuir.6b02043
    42. Gary R. Abel, Jr., Zachary A. Calabrese, Jeffrey Ayco, Jason E. Hein, and Tao Ye . Measuring and Suppressing the Oxidative Damage to DNA During Cu(I)-Catalyzed Azide–Alkyne Cycloaddition. Bioconjugate Chemistry 2016, 27 (3) , 698-704. https://doi.org/10.1021/acs.bioconjchem.5b00665
    43. Vinod K. Tiwari, Bhuwan B. Mishra, Kunj B. Mishra, Nidhi Mishra, Anoop S. Singh, and Xi Chen . Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chemical Reviews 2016, 116 (5) , 3086-3240. https://doi.org/10.1021/acs.chemrev.5b00408
    44. Jeannette E. Marine, Shuang Song, Xiaoli Liang, and Jonathan G. Rudick . Synthesis and Self-Assembly of Bundle-Forming α-Helical Peptide–Dendron Hybrids. Biomacromolecules 2016, 17 (1) , 336-344. https://doi.org/10.1021/acs.biomac.5b01452
    45. Yiliu Liu, Thomas Pauloehrl, Stanislav I. Presolski, Lorenzo Albertazzi, Anja R. A. Palmans, and E. W. Meijer . Modular Synthetic Platform for the Construction of Functional Single-Chain Polymeric Nanoparticles: From Aqueous Catalysis to Photosensitization. Journal of the American Chemical Society 2015, 137 (40) , 13096-13105. https://doi.org/10.1021/jacs.5b08299
    46. Xiaoyun Zhang, Ting Dong, Qiang Li, Xiaohui Liu, Lin Li, She Chen, and Xiaoguang Lei . Second Generation TQ-Ligation for Cell Organelle Imaging. ACS Chemical Biology 2015, 10 (7) , 1676-1683. https://doi.org/10.1021/acschembio.5b00193
    47. Han Shih and Chien-Chi Lin . Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation. Biomacromolecules 2015, 16 (7) , 1915-1923. https://doi.org/10.1021/acs.biomac.5b00471
    48. Lars Ulrik Nordstrøm, Juan Sironi, Evelyn Aranda, Jorge Maisonet, Roman Perez-Soler, Peng Wu, and Edward L. Schwartz . Discovery of Autophagy Inhibitors with Antiproliferative Activity in Lung and Pancreatic Cancer Cells. ACS Medicinal Chemistry Letters 2015, 6 (2) , 134-139. https://doi.org/10.1021/ml500348p
    49. Jie Rong, Jing Han, Lu Dong, Yanhong Tan, Huaqian Yang, Lianshun Feng, Qi-Wei Wang, Rong Meng, Jing Zhao, Shi-Qiang Wang, and Xing Chen . Glycan Imaging in Intact Rat Hearts and Glycoproteomic Analysis Reveal the Upregulation of Sialylation during Cardiac Hypertrophy. Journal of the American Chemical Society 2014, 136 (50) , 17468-17476. https://doi.org/10.1021/ja508484c
    50. Mathias King and Alain Wagner . Developments in the Field of Bioorthogonal Bond Forming Reactions—Past and Present Trends. Bioconjugate Chemistry 2014, 25 (5) , 825-839. https://doi.org/10.1021/bc500028d
    51. Kathrin Lang and Jason W. Chin . Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins. Chemical Reviews 2014, 114 (9) , 4764-4806. https://doi.org/10.1021/cr400355w
    52. Hao Jiang, Tianqing Zheng, Aime Lopez-Aguilar, Lei Feng, Felix Kopp, Florence L. Marlow, and Peng Wu . Monitoring Dynamic Glycosylation in Vivo Using Supersensitive Click Chemistry. Bioconjugate Chemistry 2014, 25 (4) , 698-706. https://doi.org/10.1021/bc400502d
    53. David M. Patterson, Lidia A. Nazarova, and Jennifer A. Prescher . Finding the Right (Bioorthogonal) Chemistry. ACS Chemical Biology 2014, 9 (3) , 592-605. https://doi.org/10.1021/cb400828a
    54. Kathrin Lang and Jason W. Chin . Bioorthogonal Reactions for Labeling Proteins. ACS Chemical Biology 2014, 9 (1) , 16-20. https://doi.org/10.1021/cb4009292
    55. Xuefei Huang and David J. Vocadlo . Reports from the Award Symposia Hosted by the American Chemical Society, Division of Carbohydrate Chemistry at the 245th American Chemical Society National Meeting. ACS Chemical Biology 2013, 8 (7) , 1361-1365. https://doi.org/10.1021/cb400398f
    56. Prakasam Thirumurugan, Dariusz Matosiuk, and Krzysztof Jozwiak . Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chemical Reviews 2013, 113 (7) , 4905-4979. https://doi.org/10.1021/cr200409f
    57. Jie Li, Shixian Lin, Jie Wang, Shang Jia, Maiyun Yang, Ziyang Hao, Xiaoyu Zhang, and Peng R. Chen . Ligand-Free Palladium-Mediated Site-Specific Protein Labeling Inside Gram-Negative Bacterial Pathogens. Journal of the American Chemical Society 2013, 135 (19) , 7330-7338. https://doi.org/10.1021/ja402424j
    58. Qiang Li, Ting Dong, Xiaohui Liu, and Xiaoguang Lei . A Bioorthogonal Ligation Enabled by Click Cycloaddition of o-Quinolinone Quinone Methide and Vinyl Thioether. Journal of the American Chemical Society 2013, 135 (13) , 4996-4999. https://doi.org/10.1021/ja401989p
    59. Choy Theng Loh, Kiyoshi Ozawa, Kellie L. Tuck, Nicholas Barlow, Thomas Huber, Gottfried Otting, and Bim Graham . Lanthanide Tags for Site-Specific Ligation to an Unnatural Amino Acid and Generation of Pseudocontact Shifts in Proteins. Bioconjugate Chemistry 2013, 24 (2) , 260-268. https://doi.org/10.1021/bc300631z
    60. Frédéric Friscourt, Christoph J. Fahrni, and Geert-Jan Boons . A Fluorogenic Probe for the Catalyst-Free Detection of Azide-Tagged Molecules. Journal of the American Chemical Society 2012, 134 (45) , 18809-18815. https://doi.org/10.1021/ja309000s
    61. Sara H. Rouhanifard, Ran Xie, Guoxin Zhang, Xiaoming Sun, Xing Chen, and Peng Wu . Detection and Isolation of Dendritic Cells Using Lewis X-Functionalized Magnetic Nanoparticles. Biomacromolecules 2012, 13 (10) , 3039-3045. https://doi.org/10.1021/bm3007506
    62. Juliane Schoch, Markus Staudt, Ayan Samanta, Manfred Wiessler, and Andres Jäschke . Site-Specific One-Pot Dual Labeling of DNA by Orthogonal Cycloaddition Chemistry. Bioconjugate Chemistry 2012, 23 (7) , 1382-1386. https://doi.org/10.1021/bc300181n
    63. Chelsea G. Gordon, Joel L. Mackey, John C. Jewett, Ellen M. Sletten, K. N. Houk, and Carolyn R. Bertozzi . Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry. Journal of the American Chemical Society 2012, 134 (22) , 9199-9208. https://doi.org/10.1021/ja3000936
    64. Samuel de Medeiros Modolon, Issei Otsuka, Sébastien Fort, Edson Minatti, Redouane Borsali, and Sami Halila . Sweet Block Copolymer Nanoparticles: Preparation and Self-Assembly of Fully Oligosaccharide-Based Amphiphile. Biomacromolecules 2012, 13 (4) , 1129-1135. https://doi.org/10.1021/bm3000138
    65. Richard D. Carpenter, Sven H. Hausner, and Julie L. Sutcliffe . Copper-Free Click for PET: Rapid 1,3-Dipolar Cycloadditions with a Fluorine-18 Cyclooctyne. ACS Medicinal Chemistry Letters 2011, 2 (12) , 885-889. https://doi.org/10.1021/ml200187j
    66. David C. Kennedy, Craig S. McKay, Marc C. B. Legault, Dana C. Danielson, Jessie A. Blake, Adrian F. Pegoraro, Albert Stolow, Zoltan Mester, and John Paul Pezacki . Cellular Consequences of Copper Complexes Used To Catalyze Bioorthogonal Click Reactions. Journal of the American Chemical Society 2011, 133 (44) , 17993-18001. https://doi.org/10.1021/ja2083027
    67. Howard C. Hang, John P. Wilson, and Guillaume Charron . Bioorthogonal Chemical Reporters for Analyzing Protein Lipidation and Lipid Trafficking. Accounts of Chemical Research 2011, 44 (9) , 699-708. https://doi.org/10.1021/ar200063v
    68. Ziyang Hao, Senlian Hong, Xing Chen, and Peng R. Chen . Introducing Bioorthogonal Functionalities into Proteins in Living Cells. Accounts of Chemical Research 2011, 44 (9) , 742-751. https://doi.org/10.1021/ar200067r
    69. Ellen M. Sletten and Carolyn R. Bertozzi . From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Accounts of Chemical Research 2011, 44 (9) , 666-676. https://doi.org/10.1021/ar200148z
    70. Karen W. Dehnert, Brendan J. Beahm, Thinh T. Huynh, Jeremy M. Baskin, Scott T. Laughlin, Wei Wang, Peng Wu, Sharon L. Amacher, and Carolyn R. Bertozzi . Metabolic Labeling of Fucosylated Glycans in Developing Zebrafish. ACS Chemical Biology 2011, 6 (6) , 547-552. https://doi.org/10.1021/cb100284d
    71. Josep Rayo, Neri Amara, Pnina Krief, and Michael M. Meijler . Live Cell Labeling of Native Intracellular Bacterial Receptors Using Aniline-Catalyzed Oxime Ligation. Journal of the American Chemical Society 2011, 133 (19) , 7469-7475. https://doi.org/10.1021/ja200455d
    72. Yongfang Zheng, Xinyu Zhu, Mingyi Jiang, Fangfang Cao, Qing You, Xiaoyuan Chen. Development and Applications of D‐Amino Acid Derivatives‐based Metabolic Labeling of Bacterial Peptidoglycan. Angewandte Chemie International Edition 2024, 63 (17) https://doi.org/10.1002/anie.202319400
    73. Yongfang Zheng, Xinyu Zhu, Mingyi Jiang, Fangfang Cao, Qing You, Xiaoyuan Chen. Development and Applications of D‐Amino Acid Derivatives‐based Metabolic Labeling of Bacterial Peptidoglycan. Angewandte Chemie 2024, 136 (17) https://doi.org/10.1002/ange.202319400
    74. Stanislav K. Petrovskii, Elena V. Grachova, Kirill Yu. Monakhov. Bioorthogonal chemistry of polyoxometalates – challenges and prospects. Chemical Science 2024, 15 (12) , 4202-4221. https://doi.org/10.1039/D3SC06284H
    75. Eva J. Meeus, María Álvarez, Emma Koelman, Pedro J. Pérez, Joost N. H. Reek, Bas de Bruin. Copper‐Catalyzed Sulfimidation in Aqueous Media: a Fast, Chemoselective and Biomolecule‐Compatible Reaction. Chemistry – A European Journal 2024, 30 (14) https://doi.org/10.1002/chem.202303939
    76. Nicholas Andrikopoulos, Huayuan Tang, Yue Wang, Xiufang Liang, Yuhuan Li, Thomas P. Davis, Pu Chun Ke. Exploring Peptido‐Nanocomposites in the Context of Amyloid Diseases. Angewandte Chemie 2024, 136 (9) https://doi.org/10.1002/ange.202309958
    77. Nicholas Andrikopoulos, Huayuan Tang, Yue Wang, Xiufang Liang, Yuhuan Li, Thomas P. Davis, Pu Chun Ke. Exploring Peptido‐Nanocomposites in the Context of Amyloid Diseases. Angewandte Chemie International Edition 2024, 63 (9) https://doi.org/10.1002/anie.202309958
    78. Dominik Schauenburg, Tanja Weil. Chemical Reactions in Living Systems. Advanced Science 2024, 11 (8) https://doi.org/10.1002/advs.202303396
    79. Huiling Tang, Xia Yuan, Yefeng Chen, Yuyao Li, Xiaoyong Xu, Hexin Xie. Arylamino‐substituted Rhodamine as a Fluorogenic Molecular Rotor for the Wash‐free Imaging of Non‐catalytic Proteins in Live Cells. Analysis & Sensing 2024, 4 (1) https://doi.org/10.1002/anse.202300037
    80. Hanqing Zhao, Yuelan He, Yingtung Lo, Huizhu Song, Jianzhong Lu. Fluorescent probes based on bioorthogonal reactions: Construction strategies and applications. TrAC Trends in Analytical Chemistry 2023, 169 , 117388. https://doi.org/10.1016/j.trac.2023.117388
    81. Daniel J. Stone, Miguel Macias-Contreras, Shaun M. Crist, Christelle F. T. Bucag, Gwimoon Seo, Lei Zhu. SNAP-tagging live cells via chelation-assisted copper-catalyzed azide–alkyne cycloaddition. Organic & Biomolecular Chemistry 2023, 21 (36) , 7419-7436. https://doi.org/10.1039/D3OB01003A
    82. Kutloano Edward Sekhosana, Shereen A. Majeed, Usisipho Feleni. Click chemistry in the electrochemical systems: Toward the architecture of electrochemical (bio)sensors. Coordination Chemistry Reviews 2023, 491 , 215232. https://doi.org/10.1016/j.ccr.2023.215232
    83. Sijun Pan, Aixiang Ding, Yisi Li, Yaxin Sun, Yueqin Zhan, Zhenkun Ye, Ning Song, Bo Peng, Lin Li, Wei Huang, Huilin Shao. Small-molecule probes from bench to bedside: advancing molecular analysis of drug–target interactions toward precision medicine. Chemical Society Reviews 2023, 52 (16) , 5706-5743. https://doi.org/10.1039/D3CS00056G
    84. Jianbo Li, Xuepu Feng, Wenting Wang, Mengbi Guo, Jing Yang, Xiang Li, Rui Yang, Bo Yang. Cyclodextrin-based multifunctional supramolecular catalysts for aqueous CuAAC reaction. Applied Catalysis A: General 2023, 663 , 119309. https://doi.org/10.1016/j.apcata.2023.119309
    85. Adam D. Moorhouse, Joshua A. Homer, John E. Moses. The certainty of a few good reactions. Chem 2023, 9 (8) , 2063-2077. https://doi.org/10.1016/j.chempr.2023.03.017
    86. Roy A. J. F. Oerlemans, Jingxin Shao, Sander G. A. M. Huisman, Yudong Li, Loai K. E. A. Abdelmohsen, Jan C. M. van Hest. Compartmentalized Intracellular Click Chemistry with Biodegradable Polymersomes. Macromolecular Rapid Communications 2023, 44 (16) https://doi.org/10.1002/marc.202200904
    87. Christin Bednarek, Ute Schepers, Franziska Thomas, Stefan Bräse. Bioconjugation in Materials Science. Advanced Functional Materials 2023, 1 https://doi.org/10.1002/adfm.202303613
    88. T. Moritz Weber, Jörg Pietruszka. Synthesis of a Water-Soluble Tridentate (Dimethylamino)ethyl Cu(I)/Cu(II)-Ligand. Synthesis 2023, 55 (14) , 2128-2133. https://doi.org/10.1055/a-2034-9427
    89. Madonna M. A. Mitry, Francesca Greco, Helen M. I. Osborn. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry – A European Journal 2023, 29 (20) https://doi.org/10.1002/chem.202203942
    90. Lan Lin, Lai Jiang, En Ren, Gang Liu. Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy. Frontiers of Chemical Science and Engineering 2023, 17 (4) , 483-489. https://doi.org/10.1007/s11705-022-2227-2
    91. Bing Gao. Making functional connections: A summary of the Nobel Prize in Chemistry 2022. Chinese Science Bulletin 2022, 67 (36) , 4332-4336. https://doi.org/10.1360/TB-2022-1201
    92. Pascal Hoffmann, Christian Lherbet, Isabelle Fabing, Marie-Claire Barthélémy, Yann Borjon-Piron, Christophe Laurent, Alain Vigroux. A mesoporous metal–organic framework used to sustainably release copper( ii ) into reducing aqueous media to promote the CuAAC click reaction. RSC Advances 2022, 12 (41) , 26825-26833. https://doi.org/10.1039/D2RA04298C
    93. Andrés Seoane, José Luis Mascareñas. Exporting Homogeneous Transition Metal Catalysts to Biological Habitats. European Journal of Organic Chemistry 2022, 2022 (32) https://doi.org/10.1002/ejoc.202200118
    94. Yifei Liu, Ka Lun Lai, Kenward Vong. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. European Journal of Inorganic Chemistry 2022, 2022 (21) https://doi.org/10.1002/ejic.202200215
    95. Endri Karaj, Shaimaa H. Sindi, L.M. Viranga Tillekeratne. Photoaffinity labeling and bioorthogonal ligation: Two critical tools for designing “Fish Hooks” to scout for target proteins. Bioorganic & Medicinal Chemistry 2022, 62 , 116721. https://doi.org/10.1016/j.bmc.2022.116721
    96. Zongyang Li, Yaxuan Li, Wenxu Chang, Sen Pang, Xuefeng Li, Liusheng Duan, Zhenhua Zhang. Synthesis and Fluorescent Properties of Aminopyridines and the Application in “Click and Probing”. Molecules 2022, 27 (5) , 1596. https://doi.org/10.3390/molecules27051596
    97. Thao M. Xiong, Edzna S. Garcia, Junfeng Chen, Lingyang Zhu, Ariale J. Alzona, Steven C. Zimmerman. Enzyme-like catalysis by single chain nanoparticles that use transition metal cofactors. Chemical Communications 2022, 58 (7) , 985-988. https://doi.org/10.1039/D1CC05578J
    98. Hongjie Xiong, Liu Liu, Yihan Wang, Hui Jiang, Xuemei Wang. Engineered Aptamer‐Organic Amphiphile Self‐Assemblies for Biomedical Applications: Progress and Challenges. Small 2022, 18 (4) https://doi.org/10.1002/smll.202104341
    99. Samuel L. Scinto, Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu, Christopher W. am Ende, M. G. Finn, Kathrin Lang, Qing Lin, John Paul Pezacki, Jennifer A. Prescher, Marc S. Robillard, Joseph M. Fox. Bioorthogonal chemistry. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-021-00028-z
    100. Zilong Li, Qinhua Chen, Jin Wang, Xiaoyan Pan, Wen Lu. Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis. Topics in Current Chemistry 2021, 379 (6) https://doi.org/10.1007/s41061-021-00352-8
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect