Skip to main content
Log in

Using hybrid systems to explore the evolution of tolerance to damage

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Hybridization is common and important to the adaptive evolution of plants. Hybridization has resulted in the formation of new species and the introgression of traits between species. This paper discusses the advantages of using hybrid systems to explore the evolution of tolerance to herbivore damage (i.e., the ability to diminish the negative effects of damage on fitness). The major consequence of hybridization likely to make it influential for tolerance evolution is that hybridization generates broad variation in traits that can be selected for or against. In addition to generating greater variation in tolerance to damage and its putative traits (e.g., traits associated with allocation patterns and meristem production), hybridization can generate greater independence among tolerance traits and between tolerance and defense traits. Greater independence may provide a greater ability to discern mechanisms of tolerance, give a greater probability of detecting allocation costs of tolerance, and provide an effective means to evaluate tradeoffs between tolerance and defense. Interspecific hybrid systems can also be used to evaluate the importance of co-adaptation of tolerance traits. Moreover, recombinant hybrids can be used in selection studies focusing on tolerance to damage to discern whether parental combinations of tolerance traits are favored over novel combinations. Research in hybrid systems that investigate the selective importance of tolerance, the patterns of inheritance of tolerance traits, and the genetic architecture of plant species involved can be vital to our evaluation of the adaptive role of tolerance to damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E. (1939) Recombination in species crosses. Genetics 24, 668-698.

    CAS  PubMed  Google Scholar 

  • Arendt, J.D. (1997) Adaptive intrinsic growth rates: an integration across taxa. Quart. Rev. Biol. 72, 149-177.

    Article  Google Scholar 

  • Arnold, M.L. (1997) Natural Hybridization and Evolution. Oxford University Press, New York.

    Google Scholar 

  • Arnold, M.L. and Hodges, S.A. (1995) Are natural hybrids fit or unfit relative to their parents? Trends in Ecol. Evol. 10, 67-71.

    Article  Google Scholar 

  • Barber, L.D., Joern, B.C., Volenec, J.J. and Cunningham, S.M. (1996) Supplemental nitrogen effects on alfalfa regrowth and nitrogen mobilization from roots. Crop Sci. 36, 1217-1223.

    Article  Google Scholar 

  • Barton, N.H. and Hewitt, G.M. (1985) Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 16, 113-148.

    Article  Google Scholar 

  • Berenbaum, M.R. and Zangerl, A.R. (1992) Quantification of chemical coevolution. In R.S. Fritz and E.L. Simms (eds) Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. University of Chicago Press, Chicago, pp. 69-90.

    Google Scholar 

  • Brainerd, E. (1924) Some natural violet hybrids of North America. Vermont Agricultural Experimental Station, Bulletin No. 239.

  • Burdon, R.S. (1990a) Hybrid breakdown in physiological response: a mechanistic approach. Evolution 44, 1806-1813.

    Article  Google Scholar 

  • Burdon, R.S. (1990b) Hybrid breakdown in developmental time in the copepod Tigriopus californicus. Evolution 44, 1814-1822.

    Article  Google Scholar 

  • Burke, J.M., Carney, S.E. and Arnold, M.L. (1998) Hybrid fitness in the Louisiana irises: analysis of parental and F1 performance. Evolution 52, 37-43.

    Article  Google Scholar 

  • Edmands, S. (1999) Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53, 1757-1768.

    Article  Google Scholar 

  • Emms, S.K. and Arnold, M.L. (1997) The effect of habitat on parental and hybrid fitness: transplant experiments with Louisiana irises. Evolution 51, 1112-1119.

    Article  Google Scholar 

  • Endler, J.A. (1977) Geographic Variation, Speciation and Clines. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Fineblum, W.L. and Rausher, M.D. (1995) Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature 377, 517-520.

    Article  CAS  Google Scholar 

  • Fritz, R.S., Nichols-Orians, C.M. and Brunsfeld, S.J. (1994) Interspecific hybridization of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97, 106-117.

    Article  Google Scholar 

  • Fritz, R.S., Roche, B.M. and Brunsfeld, S.J. (1998) Genetic variation in resistance of hybrid willows to herbivores. Oikos 83, 117-128.

    Google Scholar 

  • Fritz, R.S., Roche, B.M., Brunsfeld, S.J. and Orians, C.M. (1996) Interspecific and temporal variation in herbivore responses to hybrid willows. Oecologia 108, 121-129.

    Article  Google Scholar 

  • Graham, J.H., Freeman, D.C. and McArthur, E.D. (1995) Narrow hybrid zone between two subspecies of big sagebrush, Artemisia tridentata (Asteraceae). II. Selection gradients and hybrid fitness. Am. J. Bot. 82, 709-716.

    Article  Google Scholar 

  • Grant, V. (1981) Plant Speciation. Colombia University Press, New York.

    Google Scholar 

  • Grant, P.R. and Grant, B.R. (1992) Hybridization of bird species. Science 256, 193-197.

    CAS  PubMed  Google Scholar 

  • Harrison, R.G. (ed.) (1993) Hybrid Zones and the Evolutionary Process. Oxford University Press, New York.

    Google Scholar 

  • Herms, D.A. and Mattson, W.J. (1992) The dilemma of plants: to grow or defend. Quart. Rev. Biol. 67, 283-335.

    Article  Google Scholar 

  • Hewitt, G.M. (1988) Hybrid zones — natural laboratories for evolutionary studies. Trends in Ecol. Evol. 3, 158-167.

    Article  Google Scholar 

  • Heywood, J.S. (1986) Clinal variation associated with edaphic ecotones in hybrid populations of Gaillardia pulchella. Evolution 40, 1132-1140.

    Article  Google Scholar 

  • Hochwender, C., Marquis, R. and Stowe, K. (2000) The potential for and constraints on the evolution of compensatory ability in Asclepias syriaca. Oecologia 122, 361-370.

    Article  Google Scholar 

  • Keim, P., Paige, K.N., Whitham, T.G. and Lark, K.G. (1989) Genetic analysis of an interspecific swarm of Populus: occurrence of unidirectional introgression. Genetics 123, 557-565.

    PubMed  CAS  Google Scholar 

  • Lewontin, R.C. and Birch, L.C. (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20, 315-336.

    Article  Google Scholar 

  • Louahlia, S., MacDuff, J.H., Ourry, A., Humphreys, M. and Boucaud, J. (1999) Nitrogen reserve status affects the dynamics of nitrogen remobilization and mineral nitrogen uptake during recovery of contrasting cultivars of Lolium perenne from defoliation. New Phytologist 142, 451-462.

    Article  CAS  Google Scholar 

  • Lynch, M. (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45, 622-629.

    Article  Google Scholar 

  • Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative Genetics. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Manley, S.A.M. and Fowler, D.P. (1969) Spruce budworm defoliation in relation to introgression in red and black spruce. Forest Sci. 15, 365-366.

    Google Scholar 

  • Marquis, R.J. (1992) The selective impact of herbivores. In R.S. Fritz and E.L. Simms (eds) Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. University of Chicago Press, Chicago, pp. 301-325.

    Google Scholar 

  • Marquis, R.J., Newell, E.A. and Villegas, A.C. (1997) Non-structural carbohydrate accumulation and use in an understorey rain-forest shrub and relevance for the impact of leaf herbivory. Func. Ecol. 11, 636-643.

    Article  Google Scholar 

  • Mather, K. and Jinks, J.L. (1982) Introduction to Biometrical Genetics. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Mauricio, R. (2000) Natural selection and the joint evolution of tolerance and resistance as plant defenses. Evol. Ecol. 14, 491-507 (this issue).

    Article  Google Scholar 

  • Mauricio, R., Rausher M.D. and Burdick, D.S. (1997) Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecology 78, 1301-1311.

    Article  Google Scholar 

  • Messina, F.J., Richards, J.H. and McArthur, E.D. (1996) Variable responses of insects to hybrid versus parental sagebrush in common gardens. Oecologia 107, 513-521.

    Article  Google Scholar 

  • Millar, C.V. (1983) A steep cline in Pinus muricata. Evolution 37, 311-319.

    Article  Google Scholar 

  • Orians, C.M. (2000) The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plants and herbivores. Am. J. Bot. 87, 1749-1756.

    Article  PubMed  CAS  Google Scholar 

  • Orians, C.M. and Fritz, R.S. (1995) Secondary chemistry of hybrid and parental willows: phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala, and their hybrids. J. Chem. Ecol. 21, 1245-1253.

    Article  CAS  Google Scholar 

  • Orians, C.M., Griffiths, M.E., Roche, B.M. and Fritz, R.S. (2000) Phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: not all hybrids are created equal. Biochem. Syst. Ecol. 28, 619-632.

    Article  PubMed  CAS  Google Scholar 

  • Painter, R.H. (1968) Insect Resistance in Crop Plants. Macmillan, New York.

    Google Scholar 

  • Philippi, T.E. (1993) Multiple regression: herbivory. In S.M. Scheiner and J. Gurevitch (eds) Design and Analysis of Ecological Experiments. Chapman and Hall, New York, pp. 183-210.

    Google Scholar 

  • Rieseberg, L.H. (1995) The role of hybridization in evolution: old wine in new skins. Am. J. Bot. 82, 944-953.

    Article  Google Scholar 

  • Rieseberg, L.H. and Carney, S.E. (1998) Plant hybridization. New Phytologist 140, 599-624.

    Article  Google Scholar 

  • Rieseberg, L.H. and Ellstrand, N.C. (1993) What can molecular and morphological markers tell us about plant hybridization? Crit. Rev. Plant Sci. 12, 213-241.

    CAS  Google Scholar 

  • Rieseberg, L.H., Sinervo, B., Linder, C.R., Ungerer, M.C. and Arias, D.M. (1996) Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272, 741-745.

    PubMed  CAS  Google Scholar 

  • Rieseberg, L.H. and Wendel, J.F. (1993) Introgression and its consequences in plants. In R. Harrison (ed.) Hybrid Zones and the Evolutionary Process. Oxford University Press, New York, pp. 70-109.

    Google Scholar 

  • Roy, B.A. and Kirchner, J.W. (2000) Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54, 51-63.

    Article  PubMed  CAS  Google Scholar 

  • Scarascia-Mugnozza, G.E., Ceulemans, R., Heilman, P.E., Isebrands, J.G., Stettler, R.F. and Hinckley, T.M. (1997) Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones. Can. J. Forest Res. 27, 285-294.

    Article  Google Scholar 

  • Scarascia-Mugnozza, G.E., Hinckley, T.M., Stettler, R.F., Heilman, P.E. and Isebrands, J.G. (1999) Production physiology and morphology of Populus species and their hybrids grown under short rotation. III. Seasonal carbon allocation patterns from branches. Can. J. Forest Res. 27, 285-294.

    Article  Google Scholar 

  • Simms, E.L. (1992) Costs of plant resistance to herbivory. In R.S. Fritz and E.L. Simms (eds) Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. University of Chicago Press, Chicago, pp. 392-425.

    Google Scholar 

  • Simms, E.L. and Triplett, J. (1994) Costs and benefits of plant responses to disease: resistance and tolerance. Evolution 48, 1973-1985.

    Article  Google Scholar 

  • Smith, C.M. (1989) Plant Resistance to Insects: A Fundamental Approach. John Wiley and Sons, New York.

    Google Scholar 

  • Stace, C.A. (1987) Hybridization and the plant species. In K.M. Urbanska (ed.) Differentiation Patterns in Higher Plants. Academic Press, New York, pp. 115-127.

    Google Scholar 

  • Stebbins, G.L. (1959) The role of hybridization in evolution. Proc. Am. Philos. Soc. 103, 231-251.

    Google Scholar 

  • Stebbins, G.L. (1973) Flowering Plants: Evolution above the Species Level. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Stowe, K.A. (1998) Experimental evolution of resistance in Brassica rapa: correlated response of tolerance in lines selected for glucosinolate content. Evolution 52, 703-712.

    Article  CAS  Google Scholar 

  • Stowe, K.A., Marquis, R.J., Hochwender, C.G. and Simms, E.L. (2000) The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst. 31, 565-595.

    Article  Google Scholar 

  • Stutz, H.C. and Thomas, L.K. (1964) Hybridization and introgression in Cowania and Purshia. Evolution 18, 183-195.

    Article  Google Scholar 

  • Tiffin, P. (2000) Are tolerance, avoidance, and antibiosis evolutionarily and ecologically equivalent responses of plants to herbivores? Am. Nat. 155, 128-138.

    Article  PubMed  Google Scholar 

  • Tiffin, P. and Rausher, M.D. (1999) Genetic constraints and selection acting on tolerance to herbivory in the common morning glory, Ipomoea purpurea. Am. Nat. 154, 700-716.

    Article  PubMed  Google Scholar 

  • Wang, H., McArthur, E.D., Sanderson, S.C., Graham, J.H. and Freeman, D.C. (1997) Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). IV. Reciprocal transplant experiments. Evolution 51, 95-102.

    Article  Google Scholar 

  • Wu, H.X., Ying, C.C. and Muir, J.A. (1996) Effect of geographic variation and jack pine introgression on disease and insect resistance in lodgepole pine. Can. J. Forest Res. 26, 711-726.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochwender, C.G., Fritz, R.S. & Orians, C.M. Using hybrid systems to explore the evolution of tolerance to damage. Evolutionary Ecology 14, 509–521 (2000). https://doi.org/10.1023/A:1010846514418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010846514418

Navigation