The human metabolic response to chronic ketosis without caloric restriction: physical and biochemical adaptation

Metabolism. 1983 Aug;32(8):757-68. doi: 10.1016/0026-0495(83)90105-1.

Abstract

To study the metabolic effects of ketosis without weight loss, nine lean men were fed a eucaloric balanced diet (EBD) for one week providing 35-50 kcal/kg/d, 1.75 g of protein per kilogram per day and the remaining kilocalories as two-thirds carbohydrate (CHO) and one-third fat. This was followed by four weeks of a eucaloric ketogenic diet (EKD)--isocaloric and isonitrogenous with the EBD but providing less than 20 g CHO daily. Both diets were appropriately supplemented with minerals and vitamins. Weight and whole-body potassium estimated by potassium-40 counting (40K) did not vary significantly during the five-week study. Nitrogen balance (N-Bal) was regained after one week of the EKD. The fasting blood glucose remained lower during the EKD than during the control diet (4.4 mmol/L at EBD, 4.1 mmol/L at EKD-4, P less than 0.01). The fasting whole-body glucose oxidation rate determined by a 13C-glucose primed constant infusion technique fell from 0.71 mg/kg/min during the control diet to 0.50 mg/kg/min (P less than 0.01) during the fourth week of the EKD. The mean serum cholesterol level rose (from 159 to 208 mg/dL) during the EKD, while triglycerides fell from 107 to 79 mg/dL. No disturbance of hepatic or renal function was noted at EKD-4. These findings indicate that the ketotic state induced by the EKD was well tolerated in lean subjects; nitrogen balance was regained after brief adaptation, serum lipids were not pathologically elevated, and blood glucose oxidation at rest was measurably reduced while the subjects remained euglycemic.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acidosis / blood*
  • Adaptation, Physiological
  • Adult
  • Blood Glucose / analysis
  • Body Composition
  • Diet*
  • Energy Intake*
  • Humans
  • Ketosis / blood*
  • Kidney Function Tests
  • Liver Function Tests
  • Male
  • Oxidation-Reduction

Substances

  • Blood Glucose