Skip to main content
Log in

Effect of Exercise Intervention on Cardiac Function in Type 2 Diabetes Mellitus: A Systematic Review

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

The effect of exercise on cardiac function/structure in type 2 diabetes mellitus (T2DM) with or without diabetic cardiomyopathy (DCM) is not yet completely understood. To date, results of studies have been controversial with variable outcomes due to the variety of exercise modalities.

Objectives

The aim of the present review was to examine the impact of exercise intervention, and different types of exercise, on cardiac function and structure in T2DM through a systematic literature review, combining both pre-clinical and clinical studies.

Methods

A systematic literature search was performed on PubMed, Web of Science, and PEDro to identify studies up to 2 April 2018. Articles were included when well-defined exercise protocols were provided, and cardiac function in T2DM patients or validated animal models was examined.

Results

In diabetic animals, improvements in both diastolic and systolic function through exercise therapy were mainly attributed to reduced collagen deposition. In T2DM patients, improvements were observed in diastolic function, but not consistently in systolic function, after endurance (and combined resistance) exercise training. Different exercise intervention modalities and exercise types seemed equally effective in improving cardiac structure and function.

Conclusion

Exercise training elicits significant improvements in diastolic function and beneficial remodeling in T2DM and DCM animal models, but not necessarily improvements in systolic function and left ventricular structure, regardless of exercise type. Therefore, exercise intervention should be a cornerstone in the treatment of T2DM patients not only to improve glycemic control but also to specifically enhance cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

    Article  CAS  Google Scholar 

  2. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144–53.

    Article  CAS  Google Scholar 

  3. Dandamudi S, Slusser J, Mahoney DW, Redfield MM, Rodeheffer RJ, Chen HH. The prevalence of diabetic cardiomyopathy: a population-based study in Olmsted County, Minnesota. J Card Fail. 2014;20(5):304–9.

    Article  Google Scholar 

  4. Jorgensen PG, Jensen MT, Mogelvang R, von Scholten BJ, Bech J, Fritz-Hansen T, et al. Abnormal echocardiography in patients with type 2 diabetes and relation to symptoms and clinical characteristics. Diabetes Vasc Dis Res. 2016;13(5):321–30.

    Article  Google Scholar 

  5. Asghar O, Al-Sunni A, Khavandi K, Khavandi A, Withers S, Greenstein A, et al. Diabetic cardiomyopathy. Clin Sci (Lond). 2009;116(10):741–60.

    Article  CAS  Google Scholar 

  6. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213–23.

    Article  Google Scholar 

  7. Lee WS, Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med. 2017;32(3):404–21.

    Article  CAS  Google Scholar 

  8. Waddingham MT, Edgley AJ, Tsuchimochi H, Kelly DJ, Shirai M, Pearson JT. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World J Diabetes. 2015;6(7):943–60.

    Article  Google Scholar 

  9. Murarka S, Movahed MR. Diabetic cardiomyopathy. J Card Fail. 2010;16(12):971–9.

    Article  Google Scholar 

  10. Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59(1):56–66.

    Article  CAS  Google Scholar 

  11. Li Y, Cai M, Cao L, Qin X, Zheng T, Xu X, et al. Endurance exercise accelerates myocardial tissue oxygenation recovery and reduces ischemia reperfusion injury in mice. PLoS One. 2014;9(12):e114205.

    Article  Google Scholar 

  12. Marongiu E, Crisafulli A. Cardioprotection acquired through exercise: the role of ischemic preconditioning. Curr Cardiol Rev. 2014;10(4):336–48.

    Article  Google Scholar 

  13. Garza MA, Wason EA, Zhang JQ. Cardiac remodeling and physical training post myocardial infarction. World J Cardiol. 2015;7(2):52–64.

    Article  Google Scholar 

  14. Hordern MD, Coombes JS, Cooney LM, Jeffriess L, Prins JB, Marwick TH. Effects of exercise intervention on myocardial function in type 2 diabetes. Heart. 2009;95(16):1343–9.

    Article  CAS  Google Scholar 

  15. Sagar VA, Davies EJ, Briscoe S, Coats AJ, Dalal HM, Lough F, et al. Exercise-based rehabilitation for heart failure: systematic review and meta-analysis. Open Heart. 2015;2(1):e000163.

    Article  Google Scholar 

  16. Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.

    Article  CAS  Google Scholar 

  17. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care. 2010;33(12):2692–6.

    Article  Google Scholar 

  18. Kadoglou NP, Iliadis F, Angelopoulou N, Perrea D, Ampatzidis G, Liapis CD, et al. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil. 2007;14(6):837–43.

    Article  Google Scholar 

  19. Kelley GA, Kelley KS. Effects of aerobic exercise on lipids and lipoproteins in adults with type 2 diabetes: a meta-analysis of randomized-controlled trials. Public Health. 2007;121(9):643–55.

    Article  CAS  Google Scholar 

  20. Nojima H, Watanabe H, Yamane K, Kitahara Y, Sekikawa K, Yamamoto H, et al. Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2008;57(2):170–6.

    Article  CAS  Google Scholar 

  21. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article  CAS  Google Scholar 

  22. McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1573–6.

    Article  CAS  Google Scholar 

  23. Sherrington C, Herbert RD, Maher CG, Moseley AM. PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man Ther. 2000;5(4):223–6.

    Article  CAS  Google Scholar 

  24. Hollekim-Strand SM, Bjorgaas MR, Albrektsen G, Tjonna AE, Wisloff U, Ingul CB. High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: a randomized controlled trial. J Am Coll Cardiol. 2014;64(16):1758–60.

    Article  Google Scholar 

  25. Loimaala A, Groundstroem K, Rinne M, Nenonen A, Huhtala H, Vuori I. Exercise training does not improve myocardial diastolic tissue velocities in type 2 diabetes. Cardiovasc Ultrasound. 2007;5:32.

    Article  Google Scholar 

  26. Sacre JW, Jellis CL, Jenkins C, Haluska BA, Baumert M, Coombes JS, et al. A six-month exercise intervention in subclinical diabetic heart disease: effects on exercise capacity, autonomic and myocardial function. Metabolism. 2014;63(9):1104–14.

    Article  CAS  Google Scholar 

  27. Schmidt JF, Andersen TR, Horton J, Brix J, Tarnow L, Krustrup P, et al. Soccer training improves cardiac function in men with type 2 diabetes. Med Sci Sports Exerc. 2013;45(12):2223–33.

    Article  Google Scholar 

  28. Hollekim-Strand SM, Hoydahl SF, Follestad T, Dalen H, Bjorgaas MR, Wisloff U, et al. Exercise training normalizes timing of left ventricular untwist rate, but not peak untwist rate, in individuals with type 2 diabetes and diastolic dysfunction: a pilot study. J Am Soc Echocardiogr. 2016;29(5):421–30.

    Article  Google Scholar 

  29. Hafstad AD, Lund J, Hadler-Olsen E, Hoper AC, Larsen TS, Aasum E. High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes. 2013;62(7):2287–94.

    Article  CAS  Google Scholar 

  30. Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E. Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Heart Circ Physiol. 2017;313(5):H1054–62.

    Article  Google Scholar 

  31. Stolen TO, Hoydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum E, et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res. 2009;105(6):527–36.

    Article  CAS  Google Scholar 

  32. Kesherwani V, Chavali V, Hackfort BT, Tyagi SC, Mishra PK. Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10. Front Physiol. 2015;6:124.

    Article  Google Scholar 

  33. Veeranki S, Givvimani S, Kundu S, Metreveli N, Pushpakumar S, Tyagi SC. Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. J Mol Cell Cardiol. 2016;92:163–73.

    Article  CAS  Google Scholar 

  34. Wang H, Bei Y, Lu Y, Sun W, Liu Q, Wang Y, et al. Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1alpha and Akt activation. Cell Physiol Biochem. 2015;35(6):2159–68.

    Article  CAS  Google Scholar 

  35. Ko TH, Marquez JC, Kim HK, Jeong SH, Lee S, Youm JB, et al. Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts. Pflugers Arch. 2018;470(2):263–75.

    Article  CAS  Google Scholar 

  36. VanHoose L, Sawers Y, Loganathan R, Vacek JL, Stehno-Bittel L, Novikova L, et al. Electrocardiographic changes with the onset of diabetes and the impact of aerobic exercise training in the Zucker Diabetic Fatty (ZDF) rat. Cardiovasc Diabetol. 2010;9:56.

    Article  Google Scholar 

  37. American Diabetes Association. 4. Lifestyle management: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S38–50.

    Article  Google Scholar 

  38. Colberg SR. Key points from the updated guidelines on exercise and diabetes. Front Endocrinol (Lausanne). 2017;8:33.

    Article  Google Scholar 

  39. Howorka K, Pumprla J, Haber P, Koller-Strametz J, Mondrzyk J, Schabmann A. Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. Cardiovasc Res. 1997;34(1):206–14.

    Article  CAS  Google Scholar 

  40. Hansen D, Coninx K, Dendale P. The EAPC EXPERT tool. Eur Heart J. 2017;38(30):2318–20.

    Article  Google Scholar 

  41. Seeger JP, Lenting CJ, Schreuder TH, Landman TR, Cable NT, Hopman MT, et al. Interval exercise, but not endurance exercise, prevents endothelial ischemia–reperfusion injury in healthy subjects. Am J Physiol Heart Circ Physiol. 2015;308(4):H351–7.

    Article  CAS  Google Scholar 

  42. Chilibeck PD, Bell GJ, Farrar RP, Martin TP. Higher mitochondrial fatty acid oxidation following intermittent versus continuous endurance exercise training. Can J Physiol Pharmacol. 1998;76(9):891–4.

    Article  CAS  Google Scholar 

  43. Miele EM, Headley SAE. The effects of chronic aerobic exercise on cardiovascular risk factors in persons with diabetes mellitus. Curr Diab Rep. 2017;17(10):97.

    Article  Google Scholar 

  44. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128(1):191–227.

    Article  CAS  Google Scholar 

  45. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7):387–407.

    Article  CAS  Google Scholar 

  46. Schultz MG, Hordern MD, Leano R, Coombes JS, Marwick TH, Sharman JE. Lifestyle change diminishes a hypertensive response to exercise in type 2 diabetes. Med Sci Sports Exerc. 2011;43(5):764–9.

    Article  Google Scholar 

  47. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.

    Article  CAS  Google Scholar 

  48. Drosatos K, Schulze PC. Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep. 2013;10(2):109–21.

    Article  CAS  Google Scholar 

  49. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol. 2009;54(20):1891–8.

    Article  CAS  Google Scholar 

  50. Pulinilkunnil T, Kienesberger PC, Nagendran J, Waller TJ, Young ME, Kershaw EE, et al. Myocardial adipose triglyceride lipase overexpression protects diabetic mice from the development of lipotoxic cardiomyopathy. Diabetes. 2013;62(5):1464–77.

    Article  CAS  Google Scholar 

  51. Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105(21):2512–7.

    Article  CAS  Google Scholar 

  52. Motoyasu M, Kurita T, Onishi K, Uemura S, Tanigawa T, Okinaka T, et al. Correlation between late gadolinium enhancement and diastolic function in hypertrophic cardiomyopathy assessed by magnetic resonance imaging. Circ J. 2008;72(3):378–83.

    Article  Google Scholar 

  53. Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta. 2011;1813(7):1351–9.

    Article  CAS  Google Scholar 

  54. Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal. 2015;22(17):1587–605.

    Article  CAS  Google Scholar 

  55. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60.

    Article  Google Scholar 

  56. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28(2):183–93.

    Article  Google Scholar 

  57. Brassard P, Legault S, Garneau C, Bogaty P, Dumesnil JG, Poirier P. Normalization of diastolic dysfunction in type 2 diabetics after exercise training. Med Sci Sports Exerc. 2007;39(11):1896–901.

    Article  Google Scholar 

  58. Cugusi L, Cadeddu C, Nocco S, Orru F, Bandino S, Deidda M, et al. Effects of an aquatic-based exercise program to improve cardiometabolic profile, quality of life, and physical activity levels in men with type 2 diabetes mellitus. PM&R. 2015;7(2):141–8 (quiz 8).

    Article  Google Scholar 

  59. Jonker JT, de Mol P, de Vries ST, Widya RL, Hammer S, van Schinkel LD, et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology. 2013;269(2):434–42.

    Article  Google Scholar 

  60. Schrauwen-Hinderling VB, Meex RC, Hesselink MK, van de Weijer T, Leiner T, Schar M, et al. Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction. Cardiovasc Diabetol. 2011;10:47.

    Article  CAS  Google Scholar 

  61. The Norwegian Diabetes Association. Type 2-diabetes og fysisk aktivitet. https://www.diabetes.no/globalassets/om-diabetes/innvandrere/engelsk/faktaark/engelsk_diabetes2ogfysisk.pdf. Accessed Sept 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Hansen.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article. Funding was provided by BOF-scholarship from Hasselt University (Grant no. 15NI06-BOF).

Conflict of interest

Maxim Verboven, Lisa Van Ryckeghem, Jamal Belkhouribchia, Paul Dendale, Bert O. Eijnde, Dominique Hansen, and Virginie Bito declare that they have no conflicts of interest relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verboven, M., Van Ryckeghem, L., Belkhouribchia, J. et al. Effect of Exercise Intervention on Cardiac Function in Type 2 Diabetes Mellitus: A Systematic Review. Sports Med 49, 255–268 (2019). https://doi.org/10.1007/s40279-018-1003-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-018-1003-4

Navigation