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Whole genome transcript correlation-based approaches have been shown to be enormously useful

for candidate gene detection. Consequently, simple Pearson correlation has been widely applied in

several web based tools. That said, several more sophisticated methods based on e.g. mutual

information or Bayesian network inference have been developed and have been shown to be

theoretically superior but are not yet commonly applied. Here, we propose the application of a

recently developed statistical regression technique, the LASSO, to detect novel candidates from

high throughput transcriptomic datasets. We apply the LASSO to a tissue specific dataset in the

model plant Arabidopsis thaliana to identify novel players in Arabidopsis thaliana seed coat

mucilage synthesis. We built LASSO models based on a list of genes known to be involved in a

sub-pathway of Arabidopsis mucilage synthesis. After identifying a putative transcription factor,

we verified its involvement in mucilage synthesis by obtaining knock-out mutants for this gene.

We show that a loss of function of this putative transcription factor leads to a significant decrease

in mucilage pectin.

Introduction

Transcriptional coordination, also called co-expression or

co-regulation, has been observed in several biological contexts

between functionally related genes.1,2 This is likely because the

encoded proteins have to be present at the same time in order

to functionally co-operate in the same pathway or within the

same complex. While this does not imply that the underlying

transcripts have to be co-expressed across an exhaustive range

of different conditions, the assumption that genes that always

correlate might have a similar role or might be involved in

similar pathways is a valid starting hypothesis for finding new

genes, a paradigm often dubbed ‘‘guilt-by-association principle’’.3

This principle assumes that inferences can be made concerning the

function of previously unknown molecular species (e.g. genes)

based on the fact that they behave similarly to already

characterized genes. In the field of transcriptomics, the guilt-

by-association principle can be applied through co-expression,

that is the assessment of transcriptionally similar behavior between

two or more genes. Co-expression has been successfully exploited

to find new genes in a range of model organisms, including yeast,2

humans4 and other mammals.3 Using this ‘‘guilt by association’’

approach, transcriptome-wide gene function inference and

biological pathway discovery have been shown to be possible.5–7

To name but a few examples from the mammalian field, it has

been employed successfully in the mouse transcriptome: a list of

genes known by literature search to be involved in retina-related

processes was used to generate a network of 673 genes with

similar expression behavior, and finally a list of novel retina

disease-associated genes was successfully predicted.8 In another

example, the properties of cancer proteins in protein–protein

interaction networks were proven to be highly discriminatory in

terms of network degree, clustering coefficient and occupancy of

specific network motifs, therefore paving the way for novel

cancer genes discovery in areas still poorly investigated of the

human proteome.9 The approach has also been used by inte-

grating different species data, identifying novel human cancer

genes through comparative analysis of plant–animal transcrip-

tional behavior of DNA replication and repair genes.10

A particular success story, however, has been the model

plant Arabidopsis where the application of this approach was
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followed through meticulously and has resulted in the estab-

lishment of many different correlation databases, such as

PlaNet11 and AttedII12 (see13 for an overview). These data-

bases have led to a better understanding of e.g. plant cell wall

synthesis: in the case of cellulose synthase genes (CESAs), it

has been demonstrated that several of these genes, which code

for proteins which combine to form a functional CESA

complex, are tightly co-expressed in Arabidopsis thaliana.

Due to this tight behaviour, this complex was used to angle

for other genes using co-expression. Indeed, several new genes

were found to be co-expressed with these CESAs and char-

acterized as displaying cellulose synthesis deficiencies.14,15

Further examples where these databases and/or methods have

been used for candidate gene discovery encompass different

processes such as starch metabolism,16,17 seed germination18

and shade avoidance.19 However, many of these approaches

rely primarily on simple Pearson correlation, sometimes

coupled with network clustering approaches20 or sequence

analysis.21,22 Recently, more elaborate methods than Pearson

correlation have flourished in the biostatistical literature, with

the aim of increasing the accuracy of expression-based gene

association inference.23–25 These methods have been shown to

be better or complementary to standard correlation approaches, at

least for inferring causal gene interactions.26 Although powerful,

only a few of these algorithms have yet been used exhaustively

in the plant field. One such technique is the Least Absolute

Shrinkage and Selection Operator, or the LASSO. The LASSO

is a recently proposed linear regression technique,27 which

explains an outcome variable y as a linear combination of

independent predictor variables xi: y = b0 +
P

bixi. Unlike

standard regression, the LASSO imposes a limit to the weights

assigned to the predictor variables:

|b1| + |b2| + |b3| +� � �+ |bn| r L1

Here L1 represents a tuning parameter for the stringency of the

model. Because of the nature of the constraint, making L1

sufficiently small will cause some of the coefficients to be

exactly zero, so that several variables get discarded.27 This

increases the interpretability of LASSO models, as relevant

variables can be clearly separated from irrelevant ones. The

original algorithm to obtain the solution for LASSO at all

possible sum-of-absolute-weight thresholds (referred to as L1

thresholds) is a computationally very challenging task.28 How-

ever a more efficient algorithm to get solutions for all LASSO

models has been recently developed28 and termed Least Angle

Regression for LASSO, or simply LARS. In brief, LARS

starts introducing an explanatory variable into the model

and continues to increase its weight in the model until a

second variable reaches the same correlation with the model’s

residuals as the initial variable. Then, the model proceeds

modifying the weights of the two variables in a direction that

is equiangular to both. This process balances all variables in

the model, while excluding indirect effects, since increasing the

weight of one variable also reduces the chance to include

variables from the same informational area, similarly to what

happens for partial correlation.23 Since it is intrinsically an

iterative, growing modeling process (in the LARS implemen-

tation), the LASSO can work in scenarios with more variables

than samples (like e.g.microarrays or RNASeq datasets29). As

such it provides a robust set of predictors and the capability of

removing indirect connections, like conditional correlation.30

The LASSO has been used extensively to generate well per-

forming models where a clear border between important and

unimportant variables had to be discerned,31 although with

only a handful of biological applications so far.25,32,33 Its

limited application to gene network reconstruction is however

not too surprising, as typically the LASSO is used to predict

one dependent variable by a linear combination of other

variables and is thus more suitable to be used in biomarker

discovery and statistical learning. Some exploratory studies

exist in biological contexts: for example, the LASSO has been

used in identifying genes coregulated with StHRE transcrip-

tion factors during Solanum tuberosum tuber development,

based on the data provided by less than twenty microarray

samples.31 Another study showed the potential of the LASSO in

reverse engineering simulated gene expression data.32 Altogether,

these studies indicate that the LASSO might indeed be suitable

for the guilt by association approach and might help to find

candidate genes complementary to those found by more

‘‘classical’’ approaches.

We have previously shown that the LASSO can provide

candidate genes in the case of tuber development hypoxia34

and wanted to explore if this is also possible in Arabidopsis

seed coat mucilage biosynthesis. In Arabidopsis thaliana, the

seed coat is characterized by epidermal cells showing some

specialized structures. Within the epidermal cells one can find

the columella, which is a volcano-shaped secondary cell wall

structure,35 and which is surrounded by pectinaceous mucilage,

arranged in a donut-shaped ring36 under the primary cell wall

separating the epidermal cell from outside. This mucilaginous

material is released upon contact with water and then com-

pletely envelopes the seed.36,37 Thus, mucilage has been sug-

gested to be important for seed hydration and germination,

attachment to soil components and for preventing gas

exchange.38,39 Once released, mucilage is characterized by a

denser, relatively insoluble, inner layer and a more soluble

outer layer, composed of sparsely branched rhamnogalac-

turonan I (RGI), a polysaccharide formed by succession of

L-rhamnose-D-galacturonic acid dimers with side chains of

arabinose, galactose and arabinogalactan residues.36,37,40

Due to its composition, it can be considered as a model to

study pectin biosynthesis. Unlike in other plant tissues,

mucilage can be easily extracted from Arabidopsis seeds and

Arabidopsis plants can tolerate the absence of mucilage under

laboratory conditions.35

Mutations in a number of genes have been associated with

altered mucilage production and/or release in the Arabidopsis

seed coat.41 These include several transcription factors and

developmental regulators, such as AP2, and the factors TTG1,

TT8, EGL3, TT2,MYB5, which comprise a WD–bHLH–MYB

complex.42 This complex and AP2 modulate the expression of

GL2 and TTG2 representing two transcriptional subpathways

(Fig. 1).43 In addition MYB61 seems to drive independent

genes.44

Furthermore, through screening of mucilage-defective

mutants, five ‘‘MUcilage-Modified’’ (MUM) loci have been

identified, which seem to act specifically in certain steps of
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mucilage production and release.45 A sub-pathway whose

expression is at least partly positively regulated by MUM1

(also known as LUH or Leunig Homolog46,47) has a key role in

mucilage release and/or modification. This sub-pathway comprises

MUM2 (also known as BGAL6 or beta-galactosidase 636,48)

as well as BXL1 and SBT1.7 and is required for pectin

modification.46,49–51 MUM4 is clearly responsible for mucilage

biosynthesis as cloning of the underlying gene revealed this

to be RHM2 (rhamnose biosynthesis 2) which codes for an

UDP-L-rhamnose synthase.43 In addition to these genes, eight

enhancer loci (called MEN: Mum-ENhancers) have been

identified in the context of an already present RHM2 inactiva-

tion, showing reduced mucilage production and release.50

Finally, mum3 and mum5 mutants show mucilage with altered

composition.45 It is noteworthy to observe that among this

collection of cloned loci, only a few have been associated with

the early biosynthesis steps of seed coat mucilage, but much

more has been discovered about the upstream signaling

cascades (Fig. 1). Although these genes have been shown to be

involved in mucilage synthesis and/or modification,52 several

players are likely to be still missing from the network summarized

above (Fig. 1). The existence of genes known to be involved

in this pathway and transcriptionally measurable by the

Arabidopsis thaliana Affymetrix microarray53 makes this

scenario ideal for expression-based gene network reverse

engineering. Therefore, we decided to apply the LASSO

method on a subset of Affymetrix microarrays comprising

seed and seedling samples through several developmental

stages of healthy wild-type Columbia-0 Arabidopsis plants.54

Results and discussion

Prediction of candidate genes

In order to extend previously used correlation based approaches,

we wanted to explore the use of the LASSO on a specific

dataset to identify novel candidate genes involved in Arabidopsis

mucilage biosynthesis. We decided to use a small dataset,

focusing on samples where seed coat mucilage is synthesized

or its synthesis pre-programmed, and where genes known to be

involved in mucilage biosynthesis and regulation were known

to be expressed. Thus we used the AtGENEXPRESS tissue

dataset which measures the expression of more than 22 000 genes

using ATH1 affymetrix slides under many developmental

conditions and in different tissues,54 each being replicated

three times. As we were interested in seed coat mucilage, we

extracted slides from pollen, flower, seed and silique develop-

ment only. Within this small dataset, we focused on the GL2

sub-network involved in mucilage biosynthesis (Fig. 1). Thus

we tried to predict RHM2 expression as well as that of its

upstream transcription factor GL2 by all other genes measured

by the Arabidopsis ATH1 chip (>20 k) using the LASSO.

The LASSO needs to be parameterized, meaning that a

single ‘‘best’’ model must be chosen for each bait variable

(in our case, a gene), amongst the many weight constrained

models explored by the LASSO.30 In order to perform this

parameterization, we used cross-validation as calculated in

the LARS implementation28 to identify the model(s) yielding

the lowest error rate. In the case of RHM2, the model

comprised 16 genes, whereas the GL2model provided 14 genes

(Tables 1 and 2).

A manual inspection of the genes identified in the LASSO

regression showed promising results. In the case of RHM2

(Table 1), the genes identified contained glucuronoxylan

glucuronosyltransferase (GUT2) also known as irregular

xylem 10 (IRX10) due to its mild irregular xylem phenotype.

Due to the mutant phenotype it was suggested to be involved

in glucuronoxylan biosynthesis together with IRX10-like.55

Furthermore this list included NRS/ER, a gene which shows

strong similarity to RHM2 but lacks one of its domains and is

thus likely to be involved in the synthesis of UDP-L-rhamnose

as well.56 In addition, the model contained AtNST-KT1

(At4g39390), a gene which represents a monospecific nucleo-

tide sugar transporter.57 Specifically it was shown that this

transporter exchanges UDP-Gal for UMP and is localized to

Golgi membranes. Furthermore, the network included ATMAN7

(At5g66460), a putative mannanase, which is expressed

strongly during early Arabidopsis seed germination and whose

knock-out mutants show a lower germination frequency.58

Finally, At2g04690 had been found in a proteomics study for

cell wall proteins identifying less than 200 proteins in total.59

In order to check whether these genes would also have been

identified using simple Pearson correlation, we analyzed both

the Pearson correlation coefficient and their rank. The gene

NRS/ER, characterized by a partial homology to the bait gene

RHM2, showed an extremely high correlation of >0.93 and

concomitantly was the gene with the second highest correla-

tion to the bait (Table 1). Therefore this gene would also have

been found as a gene potentially involved in mucilage bio-

synthesis, not only because of its sequence homology, but also

because of its overwhelmingly similar expression behavior to

RHM2. Moreover At2g04690 was ranked 4th by LASSO and

12th by PCC and would likely have been included as a

candidate when using either technique. However this situation

drastically changes when looking at the three genes likely

involved in cell wall precursor biosynthesis and modification.

Fig. 1 Putative regulatory network for the seed coat mucilage pathway

in Arabidopsis thaliana, inferred from the current literature.46,50 Red

circles represent transcription factors and blue squares represent genes

with products characterized by enzymatic activity.
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Whilst in each case the Pearson correlation coefficient is above

0.7 which is used as a common threshold,13 these genes are in

no case amongst the top 50 co-expressors and indeed the

nucleotide sugar transporter is found only at rank 249. Thus,

these genes would not have been picked up by mutual rank

based correlation approaches such as AraNet60 focusing on

the top 30 correlators, nor would they have been short-listed

as likely candidates from a simple correlation based approach.

We next turned our attention to the genes identified using

GL2 as a bait. As opposed to RHM2, this LASSO model did

not contain any gene likely involved in nucleotide sugar and/or

cell wall polymer biosynthesis or modification (Table 2).

Despite the absence of biosynthetic genes, some genes in the

GL2 model are already known to be involved in seed coat

development and differentiation, such asMYB5 (At3g13540)61

and TT8 (At4g09820), both of which are thought to be part of

a ternary complex with TTG142 regulating flavonoid synthesis

in the seed coat and the silique.62 Interestingly, a loss of

function of these genes not only leads to changes in the seed

coat but also results in reduced mucilage release. Once again,

we compared the simple Pearson correlation results and found

both MYB5 and TT8 to be also strongly co-regulated with

GL2 (Pearson correlation >0.93 in both cases). That said,

despite their extremely high correlation, both genes come out

on ranks 22 and 18 in the Pearson correlation based approach

respectively. In the LASSO model these were on ranks 6 and 3

respectively. Furthermore LASSO identified At5g49270 which

is a cobra like protein (COBL9) and whose mutant shows a

short root hair phenotype.63 This is interesting as COBRAs

have been speculated to signal between the membranes and the

cell walls.64 Due to its high PCC rank (999) it is however unlikely

that it would have been considered as a likely candidate when

using Pearson correlation alone. That said, several candidates in

the list likely represent false-positives, i.e. genes not involved in

mucilage or seed coat development or regulation.

Thus in order to investigate the similarity in outcome between

the LASSO and Pearson correlation, we plotted the LASSO

weight and the PCC (Fig. 2). In both RHM2 and GL2 models,

Table 2 List of genes included in the GL2 lowest prediction error LASSO model (assessed by 10-fold cross-validation). The expression behavior
of GL2 is explained by a linear combination of these genes, weighted by the coefficient indicated in the third column. Pearson Correlation
Coefficients (PCCs) and absolute ranks for each gene vs. GL2 are also indicated

Gene
symbol Protein function79

Weight in the GL2
LASSO model

PCC vs.
GL2

Absolute
LASSO rank

Absolute
PCC rank

At1g76880 Homeodomain-containing putative transcription factor 0.3351552 0.9347944 1 43
At2g23260 UDP-glucosyl transferase 84B1 0.0451604 0.9764201 2 2
At4g09820 Regulator flavonoid pathways (TT8) 0.1777512 0.9518524 3 18
At1g77990 Sulfate transporter AST56 �0.1511854 �0.8541893 4 252
At5g15180 Peroxidase superfamily protein 0.07057812 0.9443255 5 26
At3g13540 MYB transcription factor, negative regulator of trichome

branching (MYB5)
0.1685542 0.9480528 6 22

At1g20500 AMP-dependent synthetase and ligase 0.156592 0.9563064 7 13
At5g49270 Involved in successfully establishing tip growth in root hairs

(MRH4)
�0.04394491 �0.776442 8 999

At1g12880 Nudix hydrolase homolog 12 (NUDT12) �0.08522669 �0.844569 9 312
At1g56170 Nuclear factor y, subunit c2 (HAP5B) 0.0860337 0.8560389 10 240
At5g03190 Putative methyltransferase 0.1012894 0.7836278 11 909
At1g63300 Myosin heavy chain-related protein 0.05661009 0.9576575 12 10
At1g04040 HAD IIIB acid phosphatase �0.006245497 �0.6764834 13 2722
At4g27860 Vacuolar iron transporter (VIT) �0.01473578 �0.7953438 14 766

Table 1 List of genes included in the RHM2 lowest prediction error LASSO model (assessed by 10-fold cross-validation). The expression
behavior of RHM2 is explained by a linear combination of these genes, weighted by the coefficient indicated in the third column. Pearson
Correlation Coefficients (PCCs) and absolute ranks for each gene vs. RHM2 are also indicated

Gene
symbol Protein function79

Weight in the RHM2
LASSO model

PCC vs.
RHM2

Absolute
LASSO rank

Absolute
PCC rank

At1g63000 Nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER) 0.6536294 0.9300414 1 2
At1g61440 S-locus lectin protein kinase 0.5916742 0.615933 2 832
At4g38200 SEC7-like guanine nucleotide exchange family protein 0.1743362 0.658125 3 533
At2g04690 Pyridoxamine 50-phosphate oxidase family protein �0.12075 �0.8418919 4 12
At1g54110 Membrane fusion protein Use1 �0.128731 �0.7416396 5 141
At4g10030 alpha/beta-Hydrolases superfamily protein 0.08882269 0.7913813 6 43
At5g66460 Glycosyl hydrolase superfamily protein (ATMAN7) 0.09562279 0.719603 7 204
At4g39390 Golgi-localized nucleotide sugar transporter (AtNST-KT1) 0.07519697 0.7088117 8 249
At5g53540 P-loop containing nucleoside triphosphate hydrolases superfamily

protein
�0.06086272 �0.6424797 9 639

At1g67360 Rubber elongation factor protein (REF) 0.046068 0.6733259 10 449
At1g27440 Glucuronoxylan glucuronosyltransferase (GUT2) 0.04102195 0.775059 11 67
At1g56300 Chaperone DnaJ-domain protein 0.03710941 0.6461923 12 613
At3g01210 RNA-binding (RRM/RBD/RNP motifs) family protein �0.03595778 �0.7981043 13 35
At2g46660 Member of CYP78A �0.009253494 �0.6350844 14 686
At5g38530 Type 2 tryptophan synthase �0.001077749 �0.8126333 15 27
At1g73440 Calmodulin-related �0.04172261 �0.5315293 16 1721
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it is possible to note a general agreement between Pearson

correlation and LASSO (Fig. 2). The correlation between

Pearson and LASSO absolute ranks for the genes found using

RHM2 (Fig. 2A) and GL2 (Fig. 2B) is positive, although not

significant. The similarity between the Pearson correlation

coefficients and the LASSO weights is even stronger and

significant for both RHM2 (Fig. 2C, P-value 0.013) and GL2

(Fig. 2D, P-value 0.001). Moreover, we can see how genes with

opposite behavior to the two gene baits are given negative

PCCs and negative LASSO weights, in the bottom left of the

scatter plots, while positive Pearson correlators are deemed to

be positive contributors also in the LASSO model (Fig. 2C

and D). Altogether, it is possible to say that while they mostly

differ in the order of candidate genes provided, both Pearson

correlation and LASSO provide an overall comparable assess-

ment of the nature of individual genes’ contribution to the

behavior of the baits RHM2 and GL2.

Nevertheless as all guilt by association approaches might

yield false positives, we checked the functional annotation of

the genes included in both candidate lists for either enzymes

that might play a role in mucilage synthesis or modification or

transcription factors.

In the case of GL2, this yielded a list of transcription factors

plus two genes encoding enzymes putatively involved in

nucleotide sugar related processes: the UDP-glycosyl trans-

ferase At2g23260 and the AMP-dependent synthetase and ligase

At1g20500 (Table 2). Among the transcription factors, we could

identify At1g76880: a putative MYB-like transcription factor

member of the trihelix DNA binding family. At1g76880 has a

strong positive weight in the model (0.335, highest in the model,

see Table 2). Commonly used co-expression approaches, such as

Pearson correlation would have had problems in identifying it,

since it ranks at position 43 (Table 2) and is not indicated as a

top co-expressor of GL2 in any of the public data mining tools

Fig. 2 Comparison between LASSO weights and Pearson correlation coefficients in the GL2 and RHM2 networks. The ranks of absolute LASSO

weights and PCCs are positively correlated amongst the genes included in both the RHM2 (A) and GL2 (B) final LASSO models, although this

correlation is not significant. In the lower panels ((C) for the RHM2 model and (D) for the GL2 model) we show the correlation between the

LASSO weights and PCCs directly (without ranking). In all panels, the outcome of linear regression is drawn as a dashed line; correlation

coefficients are indicated, together with their P-values.
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known to the authors. At1g76880 has been recently named

DF1 in a general genomic study describing all Arabidopsis

trihelix proteins.65 It is already known that DF1 is able to bind

DNA with consensus sequences GGTAATT or TACAGT in

pea;66 furthermore, this gene has been shown to be repressed

by light in both pea and soybean.66,67 However, no detail on

DF1 specific function has been provided so far and no obvious

phenotype was found in a loss-of-function mutant,68 therefore

we decided to characterize this gene in more detail.

DF1 mucilage analysis

In order to establish whether DF1 might play a role in

mucilage synthesis, we sought T-DNA insertion lines for this

gene. After querying the SALK database,69 we could identify

two independent insertion lines. Both insertions were mapped

into the second exon by SALK and were relatively close to

each other (Fig. 3). The lines were screened by PCR for the

insertion and homozygosity. Homozygous loss of function plants

were grown side by side with the recurrent WT Columbia-0

and seeds were harvested from at least seven independent

plants per line. The mature seeds were stained with ruthenium

red, a dye used to visualize the release of the Arabidopsis seed

coat mucilage. Interestingly, while mucilage release was clearly

visible in the case of the WT (Fig. 4A), it was not possible to

detect any staining in either of the mutant alleles (Fig. 4B

and C). This could be explained by (i) a failure to release

mucilage upon contact with water due to changes in the outer

cell wall, (ii) only low amounts of mucilage being released due

to synthesis problems, or (iii) failure to stain released mucilage

due to changes in its physicochemical properties. To distin-

guish these possibilities we conducted additional staining

experiments.

Firstly seeds were shaken prior to staining, which removed

the outer mucilage layer in the WT (Fig. 4D), but this

treatment only revealed weak and irregular staining in the

mutant seeds (Fig. 4E and F). It has been previously shown

that the release of mucilage can be encouraged by physical

damage to the seed coat if mucilage is produced but not

released. In the mutants, the seed coat was therefore scraped

while in the staining solution. Once again, hardly any mucilage

was released in either mutant alleles (Fig. 4G and H). Another

method to induce mucilage release is the treatment with chelators

such as EDTA (Fig. 4I).50 Interestingly, after the treatment

with EDTA both knock-out lines were showing release of the

mucilage (Fig. 4J and K).52 This result suggests that mucilage

release might be impaired in mutant seeds. Nevertheless these

experiments alone could not exclude that some physicochemically

modified mucilage is released when the seeds are immersed in

water. We therefore quantified the differences in mucilage

release by extracting soluble mucilage from the mutants and

the WT by shaking them in water. The supernatant was

subjected to monosaccharide composition analysis. Both lines

showed a drastic reduction in galacturonic acid and rhamnose

by more than 80% in each case. As stated earlier, the outer

mucilage is largely composed of a relatively unbranched RGI,

thus consisting mostly of rhamnosyl and galacturonosyl residues

(Table 3). Therefore the drastic reduction in these sugars

Fig. 3 Structure of the At1g76880 gene and the positions of the two

T-DNA insertions. The position of the T-DNA insertions for df1-1

and df1-2 for At1g76880 mutants is indicated by triangles. Gray boxes

represent the untranslated regions, whereas black boxes show the

coding region.

Fig. 4 Cytological analysis of the two knock-out lines df1-1 and df1-2.

Arabidopsis thaliana seeds were stained using ruthenium red. Staining

was performed on the seeds directly for the WT (A) as well as for the

df1-1 (B) and the df1-2 (C) mutant, as well as after shaking WT (D),

df1-1 (E) and df1-2 (F) and after shaking with EDTAWT (I), df1-1 (J)

and df1-2 (K). The two mutant lines were also stained after scraping

the seed coat df1-1 (G) and df1-2 (H). Scale bars = 10 mm.

Table 3 Monosaccharide levels (nmol mg�1 seed weight) in water
extractable mucilage of Arabidopsis thaliana wild type seeds and the
two independent insertion lines for At1g76880 (df1-1 and df1-2).
Values are represented as mean � standard deviation for at least 7
biological replicates. Significant values P o 0.001 are marked by an
asterisk

WT Col-0 df1-1 df1-2

Fucose 0.13 � 0.05 0.07 � 0.03* 0.05 � 0.02*
Rhamnose 27.88 � 9.85 5.13 � 3.33* 3.67 � 4.30*
Arabinose 1.50 � 0.50 0.71 � 0.24* 0.52 � 0.21*
Galactose 1.36 � 0.56 0.73 � 0.21* 0.61 � 0.21*
Glucose 2.18 � 1.40 1.98 � 0.67 2.57 � 1.20
Xylose 2.73 � 0.96 0.64 � 0.37* 0.43 � 0.34*
Mannose 0.64 � 0.22 0.26 � 0.10* 0.19 � 0.08*
Galacturonic acid 26.24 � 9.05 4.2 � 2.58* 3.64 � 3.39*
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confirms the staining results and indicates that the observed

phenotype is likely induced by a soluble mucilage reduction as

opposed to reduced dye accessibility. Interestingly, this pheno-

type extended also to the ‘‘minor’’ seed coat sugars. Xylose

was reduced by more than 70% and fucose, arabinose, galac-

tose as well as mannose were reduced by more than 50% in

both lines (Table 3). However glucose was unchanged in both

lines when compared to the WT.

DF1 seed coat analysis

In order to further explore the reason for these changes, we

investigated the seeds using environmental scanning electron

microscopy (ESEM). Here we could show that mature dry

mutant seeds showed a significantly disturbed seed coat

(Fig. 5B and C) when compared to the WT (Fig. 5A). Both

alleles showed very irregular structures and an apparently

changed columella shape. This was visible in the case of a

whole seed coat scan, but became more apparent when zooming

into a detailed section of the seed coat (Fig. 5E and F).

We then explored how hydration of the seeds would influ-

ence the seed coat epidermis morphology. For this the seeds

were observed by ESEM after hydration with water. Interest-

ingly, we again saw consistent changes between the mutant

lines and the WT. Though the epidermis seemed more regular

in the mutant seeds than before hydration, both mutant lines

showed a grossly different columella structure than the WT

seeds, exhibiting a ring like structure instead of a simple flat

columella (Fig. 5G, H and I).

As stated above it is most likely that the change in mucilage

release seen in our mutants is due to changes that prevent

mucilage hydration and release. This is in line with what has

been observed for several mutants such as mum3, mum5 and

sbt1.7,45,51 where treatment with metal chelators promoted the

mucilage release as in our mutants (Fig. 5J, K and L).

Experimental

Data processing

The transcriptome dataset used to build the LASSO models was

the Affymetrix AtGenExpress54 (GEO accessions: GSE5634 and

GSE5632) seed, silique, flower and pollen developmental series,

comprising 90 Affymetrix entries, and normalized via tRMA70

with the CustomCDF v14.1.0 probeset annotation.71 The entries

were grouped by biological replicates and averaged after normali-

zation, in order to give identical weights to each developmental

condition, thus ending up with 30 samples. The relatively small

number of samples allowed for a full LASSO modeling over all

the 21492 (CustomCDF) genes without further gene filtering. The

models were built using the following list of genes as dependent

variables, measured according to the probes annotated in the

CustomCDF project for RHM2 and GL2. The path of the

LASSO calculation was obtained via the Least Angle Regression

for LASSO (LARS) algorithm,28 in the implementation available

from the R package lars. The best model obtained by LARS for

each dependent variable was selected as the one yielding the

smallest mean squared prediction error during a 10-fold cross

validation analysis. Correlations between absolute ranks

(Fig. 2A and B) and between LASSO weights and PCC

(Fig. 2C and D) have been calculated via PCC; the P-value

of these coefficients has been obtained via Fisher’s Z transform

based on the assumption that Pearson’s correlation coefficients

follow a t distribution with length(x) � 2 degrees of freedom.72

Plant material

Arabidopsis plants were grown in soil under standard condi-

tions (120 mmol m�2 s�1, 60% humidity, 20 1C, 16 h light/8 h

dark) side by side with the respective Columbia-0 WT plants.

Seeds were harvested and kept at 10 1C for at least two weeks

prior to their analysis.

Identification of T-DNA lines

Two independent T-DNA insertion lines were obtained for

At1g76880 (DF1) from the Nottingham Arabidopsis Stock

Centre SALK collection.69 Both lines (df1-1, SALK_106258

and df1-2, SALK_072465) showed a TDNA insertion in an

exon and were confirmed by PCR using the primers

(50-ATTTTGCCGATTTCGGAAC-3 0) and (50-AACCAAT-

CTCTCGTGTTCTCGC-3 0) to confirm the insertion and

(50-GCGGAGCATGGTTACATAAG-30) and (50-AACCAA-

TCTCTCGTGTTCTCGC-30) to test for the presence of the

WT allele.

Mucilage monosaccharide composition analysis

From a minimum of 7 different individual plants for each line,

mucilage was extracted from 6 to 8 mg two week old seeds

by shaking them in 1 mL bi-distilled water for 2 h at 37 1C.

Fig. 5 Environmental Scanning Electron Microscopy (ESEM) of seed

coat epidermis of dry and hydrated seed surfaces. Seeds were visualized

directly, WT (A, D), df1-1 (B, E) and df1-2 (C, F) or after being hydrated

WT (G), df1-1 (H) and df1-2 (I). In addition seeds were visualized after

treatment with EDTA WT (J), df1-1 (K) and df1-2 (L). Scale bars

(A, B, C) = 100 mm; scale bars (D, E, F, G, H, I, J, K, L) = 20 mm.
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After the addition of ribose as an internal standard, the

released mucilage material was dried under a stream of air

and hydrolyzed to monosaccharides by incubation with 2 M

trifluoroacetic acid for 1 hour at 121 1C.

Monosaccharide composition analysis of hydrolyzed material

was performed73 using a High-Performance Anion Exchange

Chromatography with Pulse Amperometric Detection74 ICS

3000 (Dionex, California) equipped with a CarboPac PA20

column. Under a constant flow of 0.45 mL min�1 a NaOH

gradient was applied as follows: start at 4 mM NaOH, decrease

to 2 mM in 2 minutes, isocratic at 2 mM NaOH for 19 minutes,

rise to 616 mMNaOH in 2 minutes, isocratic at 616 mMNaOH

for 16 minutes, decrease to 4 mM NaOH in 3 minutes and

re-equilibration of the column for 11 minutes at 4 mMNaOH.

A constant post-column addition of 0.15 mL min�1 100 mM

NaOH was used to increase sensitivity.

Statistical analysis on the measured sugar levels was per-

formed using a student’s t test as implemented in the statistical

environment R/Bioconductor.75

Seed staining

Arabidopsis thaliana ecotype Columbia-0 seeds and seeds from

two knock-out lines (df1-1 and df1-2) were stained with a 0.01%

(w/v) aqueous solution of ruthenium red for 5–10 minutes both

after 2 h shaking with water at 37 1C and without shaking. For

the experiment of mucilage release by EDTA the seeds were

shaken in 50 mM EDTA for 2 h at 37 1C, rinsed with water and

stained with 0.01% (w/v) aqueous solution of ruthenium red.

Seeds were visualized using a Leica MZ 12.5 Stereomicroscope

(software: Leica Application Suite).

Environmental scanning electron microscopy

Environmental scanning electron micrographs were obtained

with an FEI FE-ESEM Quanta 600 scanning electron micro-

scope. Images were acquired at 5 kV of accelerating voltage

and at 0.75 Pa of water vapor pressure. Mature dry seeds,

hydrated seeds (aqueous shaking for 2 h at 37 1C) and EDTA

treated seeds (shaking for 2 h at 37 1C with 50 mM EDTA)

were analyzed.

Conclusions

The finding of ‘‘missing links’’ in gene network reverse

engineering has always been a challenge both for experimental

biology and bioinformatics since the advent of transcriptomics.76

The capability to create a short list of novel gene candidates

can give a considerable advantage in our understanding of

biological systems, with tremendous benefits in e.g. cancer24

and crop77 research. In the present study, we propose a novel

expression-based approach built on LASSO modeling, with

the aim of discovering novel genes involved in mucilage

biosynthesis in Arabidopsis thaliana. Our method follows the

well-established ‘‘guilt-by-association’’ principle:3 specifically,

it scouts a developmental series transcriptomic dataset, using

as a bait the expressional behavior of two genes known to be

already involved in the process: the transcription factor GL2

and the UDP-L-rhamnose synthase RHM2. Despite LASSO

being developed for linear modeling of genes, we show that it

provides realistic candidates (see Tables 1 and 2), some of which

were already known to be involved in pectin metabolism.

Furthermore, we show that it is a rather complimentary

technique when compared with common Pearson correlation,

the most widely-used method in expression-based gene

network reconstruction studies.13 The LASSO, unlike simple

regression techniques, can operate in datasets with far less

samples than genes (in our case, 30 developmental samples and

21 492 measured transcripts), which is a common case for

microarray data, and will be an even more critical issue for

RNASeq data,78 therefore LASSO might see a further adapta-

tion in the future. In our study, we experimentally proved a

loss of function mutation for a putative transcription factor

yielded by the GL2 model to be largely devoid of mucilage as

would be expected for a transcription factor involved in seed

(mucilage) development. Furthermore, similar to other tran-

scription factors involved in seed development, the mutants

show an altered seed coat surface. Thus showing that the

LASSO can not only be used to find already known candidate

genes, our approach thus offers itself as a complementary

method for guilt-by-association gene finding for transcrip-

tomic studies.
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