Skip to main content

Advertisement

Log in

Insights from Animal Models on the Pathophysiology of Hyperphenylalaninemia: Role of Mitochondrial Dysfunction, Oxidative Stress and Inflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Phenylketonuria (PKU) is an inborn error of metabolism caused by phenylalanine hydroxylase (PAH) deficiency and characterized by elevated plasma levels of phenylalanine (hyperphenylalaninemia-HPA). In severe cases, PKU patients present with neurological dysfunction and hepatic damage, but the underlying mechanisms are not fully elucidated. Other forms of HPA also characterized by neurological symptoms occur in rare instances due to defects in the metabolism of the PAH cofactor tetrahydrobiopterin. This review aims to gather the knowledge acquired on the phenylalanine-induced toxicity focusing on findings obtained from pre-clinical studies. Mounting evidence obtained from PKU genetic mice, rats submitted to different HPA models, and cell cultures exposed to phenylalanine has shown that high levels of this amino acid impair mitochondrial bioenergetics, provoke changes in oxidative and inflammatory status, and induce apoptosis. Noteworthy, some data demonstrated that phenylalanine-induced oxidative stress occurs specifically in mitochondria. Further studies have shown that the metabolites derived from phenylalanine, namely phenylpyruvate, phenyllactate, and phenylacetate, also disturb oxidative status. Therefore, it may be presumed that mitochondrial damage is one of the most important mechanisms responsible for phenylalanine toxicity. It is expected that the findings reviewed here may contribute to the understanding of PKU and HPA pathophysiology and to the development of novel therapeutic strategies for these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Scriver CR (2007) The PAHGene, phenylketonuria, and a paradigm shift. Hum Mutat 28:831–845. https://doi.org/10.1002/humu.20526

    Article  CAS  PubMed  Google Scholar 

  2. Kaufman S (1987) Enzymology of the phenylalanine-hydroxylating system. Enzyme 38:286–295. https://doi.org/10.1159/000469218

    Article  CAS  PubMed  Google Scholar 

  3. Werner ER, Blau N, Thöny B (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 438:397–414. https://doi.org/10.1042/BJ20110293

    Article  CAS  PubMed  Google Scholar 

  4. Flydal MI, Martinez A (2013) Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life 65:341–349. https://doi.org/10.1002/iub.1150

    Article  CAS  PubMed  Google Scholar 

  5. Regier DS, Greene CL (2000) Phenylalanine hydroxylase deficiency. 2000 Jan 10 [Updated 2017 Jan 5]. In: Adam MP, Ardinger HH, Pagon RA (eds) GeneReviews® [Internet]. University of Washington, Seattle; 1993–2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1504/

  6. Mitchell JJ, Trakadis YJ, Scriver CR (2011) Phenylalanine hydroxylase deficiency. Genet Med 13:697–707. https://doi.org/10.1097/GIM.0b013e3182141b48

    Article  CAS  PubMed  Google Scholar 

  7. Rush ET (2017) Hyperphenylalaninemia treatment & management. In: Medscpae > Drugs Dis. > Pediatr. Genet. Metab. Dis. https://emedicine.medscape.com/article/945180-treatment

  8. Blau N, Hennermann JB, Langenbeck U, Lichter-Konecki U (2011) Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab 104(Suppl):S2–S9. https://doi.org/10.1016/j.ymgme.2011.08.017

    Article  CAS  PubMed  Google Scholar 

  9. Williams RA, Mamotte CDS, Burnett JR (2008) Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev 29:31–41

    PubMed  PubMed Central  Google Scholar 

  10. Penrose LS (1935) Inheritance of phenylpyruvic amentia (phenylketonuria). Lancet 226:192–194. https://doi.org/10.1016/S0140-6736(01)04897-8

    Article  Google Scholar 

  11. Saugstad OD (2018) 50 years ago in the Journal of Pediatrics: phenylketonuria: evaluation of therapy and verification of diagnosis. J Pediatr 193:92. https://doi.org/10.1016/j.jpeds.2017.12.035

    Article  PubMed  Google Scholar 

  12. Blau N, Van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376:1417–1427. https://doi.org/10.1016/S0140-6736(10)60961-0

    Article  CAS  PubMed  Google Scholar 

  13. Giovannini M, Verduci E, Salvatici E, Paci S, Riva E (2012) Phenylketonuria: nutritional advances and challenges. Nutr Metab 9:1–7. https://doi.org/10.1186/1743-7075-9-7

    Article  CAS  Google Scholar 

  14. van Spronsen FJ, van Wegberg AM, Ahring K et al (2017) Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 5:743–756. https://doi.org/10.1016/S2213-8587(16)30320-5

    Article  PubMed  Google Scholar 

  15. Vockley J, Andersson HC, Antshel KM et al (2014) Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med 16:188–200. https://doi.org/10.1038/gim.2013.157

    Article  CAS  PubMed  Google Scholar 

  16. Manti F, Nardecchia F, Chiarotti F, Carducci C, Carducci C, Leuzzi V (2016) Psychiatric disorders in adolescent and young adult patients with phenylketonuria. Mol Genet Metab 117:12–18. https://doi.org/10.1016/j.ymgme.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  17. Bilder DA, Kobori JA, Cohen-Pfeffer JL, Johnson EM, Jurecki ER, Grant ML (2017) Neuropsychiatric comorbidities in adults with phenylketonuria: a retrospective cohort study. Mol Genet Metab 121:1–8. https://doi.org/10.1016/j.ymgme.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Filiou MD, Sandi C (2019) Anxiety and brain mitochondria: a bidirectional crosstalk. Trends Neurosci 42:573–588. https://doi.org/10.1016/j.tins.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  19. Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R (2019) Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid Redox Signal 31:275–317. https://doi.org/10.1089/ars.2018.7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ľupták M, Hroudová J (2019) Important role of mitochondria and the effect of mood stabilizers on mitochondrial function. Physiol Res 68:S3–S15. https://doi.org/10.33549/physiolres.934324

  21. Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D, Hargreaves IP (2017) Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J Clin Med 6. https://doi.org/10.3390/jcm6070071

  22. Schuck PF, Malgarin F, Cararo JH, et al (2015) Phenylketonuria pathophysiology: on the role of metabolic alterations. Aging Dis 6:390–399. https://doi.org/10.14336/AD.2015.0827

  23. Donlon J, Sarkissian C, Levy H, Scriver CR Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Beaudet A, Vogelstein B, Kinzler K, et al (eds) The online metabolic and molecular bases of inherited disease. Accessed on Jan 07 2021. McGraw-Hill

  24. Lehninger AL, Nelson DL, Cox MM (2017) Lehninger principles of biochemistry. Seventh Ed, New York

    Google Scholar 

  25. Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485. https://doi.org/10.1016/j.redox.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Venditti P, Di Meo S (2020) The role of reactive oxygen species in the life cycle of the mitochondrion. Int J Mol Sci 21:2173. https://doi.org/10.3390/ijms21062173

    Article  CAS  PubMed Central  Google Scholar 

  27. Yan J, Jiang J, He L, Chen L (2020) Mitochondrial superoxide/hydrogen peroxide: an emerging therapeutic target for metabolic diseases. Free Radic Biol Med 152:33–42. https://doi.org/10.1016/j.freeradbiomed.2020.02.029

    Article  CAS  PubMed  Google Scholar 

  28. Halliwell B, Gutteridge JMCJMC (2015) Free radicals in biology and medicine. Oxford University Press, Fifth Edit

    Book  Google Scholar 

  29. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science (80- ) 281:1309. https://doi.org/10.1126/science.281.5381.1309

  30. Quintanilla RA, Tapia C, Pérez MJ (2017) Possible role of mitochondrial permeability transition pore in the pathogenesis of Huntington disease. Biochem Biophys Res Commun 483:1078–1083. https://doi.org/10.1016/j.bbrc.2016.09.054

    Article  CAS  PubMed  Google Scholar 

  31. Chen L, Deng H, Cui H, et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218. https://doi.org/10.18632/oncotarget.23208

  32. Chung HY, Sung B, Jung KJ et al (2006) The molecular inflammatory process in aging. Andtioxidant redox Signal 8:572–581. https://doi.org/10.1111/j.1475-4959.2010.00371.x

    Article  CAS  Google Scholar 

  33. Kuprash D, Nedospasov S (2016) Molecular and cellular mechanisms of neuroinflammation. Biochem 81:1477–1480. https://doi.org/10.1155/2017/8417183

    Article  CAS  Google Scholar 

  34. Banoth B, Cassel SL (2018) Mitochondria in innate immune signaling. Transl Res 202:52–68. https://doi.org/10.1016/j.trsl.2018.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wi SM, Moon G, Kim J, Kim ST, Shim JH, Chun E, Lee KY (2014) TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-κB. J Biol Chem 289:35205–35214. https://doi.org/10.1074/jbc.M114.597187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dimer NW, Ferreira BK, Agostini JF, Gomes ML, Kist LW, Malgarin F, Carvalho-Silva M, Gomes LM et al (2018) Brain bioenergetics in rats with acute hyperphenylalaninemia. Neurochem Int 117:188–203. https://doi.org/10.1016/j.neuint.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  37. Lu L, Ben X, Xiao L, Peng M, Zhang Y (2018) AMP-activated protein kinase activation in mediating phenylalanine-induced neurotoxicity in experimental models of phenylketonuria. J Inherit Metab Dis 41:679–687. https://doi.org/10.1007/s10545-017-0115-6

    Article  CAS  PubMed  Google Scholar 

  38. Mezzomo NJ, Becker Borin D, Ianiski F, Dotto Fontana B, Diehl de Franceschi I, Bolzan J, Garcez R, Grings M et al (2019) Creatine nanoliposome reverts the HPA-induced damage in complex II–III activity of the rats’ cerebral cortex. Mol Biol Rep 46:5897–5908. https://doi.org/10.1007/s11033-019-05023-y

    Article  CAS  PubMed  Google Scholar 

  39. Rech VC, Feksa LR, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2002) Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res 27:353–357. https://doi.org/10.1023/a:1015529511664

    Article  CAS  PubMed  Google Scholar 

  40. Dos Reis EA, Rieger E, de Souza SS et al (2013) Effects of a co-treatment with pyruvate and creatine on dendritic spines in rat hippocampus and posterodorsal medial amygdala in a phenylketonuria animal model. Metab Brain Dis 28:509–517. https://doi.org/10.1007/s11011-013-9389-z

    Article  CAS  PubMed  Google Scholar 

  41. Bortoluzzi VT, de Franceschi ID, Rieger E, Wannmacher CMD (2014) Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring. Neurochem Res 39:1594–1602. https://doi.org/10.1007/s11064-014-1353-8

    Article  CAS  PubMed  Google Scholar 

  42. Imperlini E, Orrù S, Corbo C, Daniele A, Salvatore F (2014) Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model. J Neurochem 129:1002–1012. https://doi.org/10.1111/jnc.12683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patel MS (1972) The effect of phenylpyruvate on pyruvate metabolism in rat brain. Biochem J 128:677–684. https://doi.org/10.1042/bj1280677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sutnick M, Grover W, Patel M (1974) Impairment of hepatic pyruvate metabolism in phenylketonuria. Life Sci 15:1945–1953. https://doi.org/10.1016/0024-3205(74)90045-9

    Article  CAS  PubMed  Google Scholar 

  45. Patel MS, Grover WD, Auerbach VH (1973) Pyruvate metabolism by homogenates of human brain: effects of phenylpyruvate and implications for the etiology of the mental retardation in phenylketonuria. J Neurochem 20:289–296. https://doi.org/10.1111/j.1471-4159.1973.tb12128.x

    Article  CAS  PubMed  Google Scholar 

  46. Halestrap AP, Brand MD, Denton RM (1974) Inhibition of mitochondrial pyruvate transport by phenylpyruvate and alpha-ketoisocaproate. Biochim Biophys Acta 367:102–108. https://doi.org/10.1016/0005-2736(74)90140-0

    Article  CAS  PubMed  Google Scholar 

  47. Land JM, Mowbray J, Clark JB (1976) Control of pyruvate and beta-hydroxybutyrate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J Neurochem 26:823–830. https://doi.org/10.1111/j.1471-4159.1976.tb04458.x

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Gu X, Yuan X (2007) Phenylalanine activates the mitochondria-mediated apoptosis through the RhoA/Rho-associated kinase pathway in cortical neurons. Eur J Neurosci 25:1341–1348. https://doi.org/10.1111/j.1460-9568.2007.05404.x

    Article  PubMed  Google Scholar 

  49. Zhang Y, Zhao J, Wang J, Jiao X (2010) Brain-derived neurotrophic factor inhibits phenylalanine-induced neuronal apoptosis by preventing RhoA pathway activation. Neurochem Res 35:480–486. https://doi.org/10.1007/s11064-009-0084-8

    Article  CAS  PubMed  Google Scholar 

  50. Huang X, Lu Z, Lv Z, Yu T, Yang P, Shen Y, Ding Y, Fu D et al (2013) The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons. PLoS One 8:1–7. https://doi.org/10.1371/journal.pone.0071553

    Article  CAS  Google Scholar 

  51. Kienzle Hagen ME, Pederzolli CD, Sgaravatti AM, Bridi R, Wajner M, Wannmacher CMD, Wyse ATS, Dutra-Filho CS (2002) Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta 1586:344–352. https://doi.org/10.1016/s0925-4439(01)00112-0

    Article  CAS  PubMed  Google Scholar 

  52. Moraes TB, Zanin F, da Rosa A, de Oliveira A, Coelho J, Petrillo F, Wajner M, Dutra-Filho CS (2010) Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci 292:89–95. https://doi.org/10.1016/j.jns.2010.01.016

    Article  CAS  PubMed  Google Scholar 

  53. Moraes TB, Jacques CED, Rosa AP, Dalazen GR, Terra M, Coelho JG, Dutra-Filho CS (2013) Role of catalase and superoxide dismutase activities on oxidative stress in the brain of a phenylketonuria animal model and the effect of lipoic acid. Cell Mol Neurobiol 33:253–260. https://doi.org/10.1007/s10571-012-9892-5

    Article  CAS  PubMed  Google Scholar 

  54. Moraes TB, Dalazen GR, Jacques CE, de Freitas RS, Rosa AP, Dutra-Filho CS (2014) Glutathione metabolism enzymes in brain and liver of hyperphenylalaninemic rats and the effect of lipoic acid treatment. Metab Brain Dis 29:609–615. https://doi.org/10.1007/s11011-014-9491-x

    Article  CAS  PubMed  Google Scholar 

  55. Bortoluzzi VT, Brust L, Preissler T, et al (2019) Creatine plus pyruvate supplementation prevents oxidative stress and phosphotransfer network disturbances in the brain of rats subjected to chemically-induced phenylketonuria. Metab Brain Dis 34:1649—1660. https://doi.org/10.1007/s11011-019-00472-7

  56. Berti SL, Nasi GM, Garcia C, de Castro FL, Nunes ML, Rojas DB, Moraes TB, Dutra-Filho CS et al (2012) Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 27:79–89. https://doi.org/10.1007/s11011-011-9271-9

    Article  CAS  PubMed  Google Scholar 

  57. Martinez-Cruz F, Pozo D, Osuna C, Espinar A, Marchante C, Guerrero JM (2002) Oxidative stress induced by phenylketonuria in the rat: prevention by melatonin, vitamin E, and vitamin C. J Neurosci Res 69:550–558. https://doi.org/10.1002/jnr.10307

    Article  CAS  PubMed  Google Scholar 

  58. Martínez-Cruz F, Osuna C, Guerrero JM (2006) Mitochondrial damage induced by fetal hyperphenylalaninemia in the rat brain and liver: its prevention by melatonin, vitamin E, and vitamin C. Neurosci Lett 392:1–4. https://doi.org/10.1016/j.neulet.2005.02.073

    Article  CAS  PubMed  Google Scholar 

  59. Simon KR, Dos Santos RM, Scaini G et al (2013) DNA damage induced by phenylalanine and its analogue p-chlorophenylalanine in blood and brain of rats subjected to a model of hyperphenylalaninemia. Biochem Cell Biol 91:319–324. https://doi.org/10.1139/bcb-2013-0023

    Article  CAS  PubMed  Google Scholar 

  60. Ercal N, Aykin-Burns N, Gurer-Orhan H, McDonald JD (2002) Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med 32:906–911. https://doi.org/10.1016/s0891-5849(02)00781-5

    Article  CAS  PubMed  Google Scholar 

  61. Mazzola PN, Terra M, Rosa AP, Mescka CP, Moraes TB, Piccoli B, Jacques CE, Dalazen G et al (2011) Regular exercise prevents oxidative stress in the brain of hyperphenylalaninemic rats. Metab Brain Dis 26:291–297. https://doi.org/10.1007/s11011-011-9264-8

    Article  CAS  PubMed  Google Scholar 

  62. Mazzola PN, Bruinenberg V, Anjema K et al (2016) Voluntary exercise prevents oxidative stress in the brain of phenylketonuria mice. JIMD Rep 27:69–77. https://doi.org/10.1007/8904_2015_498

    Article  PubMed  Google Scholar 

  63. Lu L, Gu X, Li D, Liang L, Zhao Z, Gao J (2011) Mechanisms regulating superoxide generation in experimental models of phenylketonuria: an essential role of NADPH oxidase. Mol Genet Metab 104:241–248. https://doi.org/10.1016/j.ymgme.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  64. He Y, Gu X, Lu L, Liang L, Gao J, Zhang X (2013) NOX, the main regulator in oxidative stress in experimental models of phenylketonuria? J Pediatr Endocrinol Metab 26:675–682. https://doi.org/10.1515/jpem-2012-0387

    Article  CAS  PubMed  Google Scholar 

  65. Fernandes CG, Leipnitz G, Seminotti B, Amaral AU, Zanatta Â, Vargas CR, Dutra Filho CS, Wajner M (2010) Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol 30:317–326. https://doi.org/10.1007/s10571-009-9455-6

    Article  CAS  PubMed  Google Scholar 

  66. Preissler T, Bristot IJ, Costa BML, Fernandes EK, Rieger E, Bortoluzzi VT, de Franceschi ID, Dutra-Filho CS et al (2016) Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metab Brain Dis 31:529–537. https://doi.org/10.1007/s11011-015-9763-0

    Article  CAS  PubMed  Google Scholar 

  67. Rosa AP, Jacques CED, Moraes TB, Wannmacher CMD, de Mattos Dutra Â, Dutra-Filho CS (2012) Phenylpyruvic acid decreases glucose-6-phosphate dehydrogenase activity in rat brain. Cell Mol Neurobiol 32:1113–1118. https://doi.org/10.1007/s10571-012-9834-2

    Article  CAS  PubMed  Google Scholar 

  68. Matalon R, Surendran S, McDonald JD et al (2005) Abnormal expression of genes associated with development and inflammation in the heart of mouse maternal phenylketonuria offspring. Int J Immunopathol Pharmacol 18:557–565. https://doi.org/10.1177/039463200501800316

    Article  CAS  PubMed  Google Scholar 

  69. Oh HJ, Lee H, Park JW, Rhee H, Koo SK, Kang S, Jo I, Jung SC (2005) Reversal of gene expression profile in the phenylketonuria mouse model after adeno-associated virus vector-mediated gene therapy. Mol Genet Metab 86:124–132. https://doi.org/10.1016/j.ymgme.2005.06.015

    Article  CAS  Google Scholar 

  70. van der Goot E, Bruinenberg VM, Hormann FM, Eisel ULM, van Spronsen FJ, van der Zee EA (2019) Hippocampal microglia modifications in C57Bl/6 Pah(enu2) and BTBR Pah(enu2) phenylketonuria (PKU) mice depend on the genetic background, irrespective of disturbed sleep patterns. Neurobiol Learn Mem 160:139–143. https://doi.org/10.1016/j.nlm.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  71. Zhang H, Gu XF (2005) A study of gene expression profiles of cultured embryonic rat neurons induced by phenylalanine. Metab Brain Dis 20:61–72. https://doi.org/10.1007/s11011-005-2477-y

    Article  CAS  PubMed  Google Scholar 

  72. Sawin EA, De Wolfe TJ, Aktas B et al (2015) Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am J Physiol - Gastrointest Liver Physiol 309:G590–G601. https://doi.org/10.1152/ajpgi.00211.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Solverson P, Murali SG, Brinkman AS, Nelson DW, Clayton MK, Yen CLE, Ney DM (2012) Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria. Am J Physiol - Endocrinol Metab 302:885–895. https://doi.org/10.1152/ajpendo.00647.2011

    Article  CAS  Google Scholar 

  74. Cosentino F, Barker JE, Brand MP, Heales SJ, Werner ER, Tippins JR, West N, Channon KM et al (2001) Reactive oxygen species mediate endothelium-dependent relaxations in Tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 21:496–502. https://doi.org/10.1161/01.ATV.21.4.496

    Article  CAS  PubMed  Google Scholar 

  75. Gao L, Siu KL, Chalupsky K, Nguyen A, Chen P, Weintraub NL, Galis Z, Cai H (2012) Role of uncoupled endothelial nitric oxide synthase in abdominal aortic aneurysm formation: treatment with folic acid. Hypertension 59:158–166. https://doi.org/10.1161/HYPERTENSIONAHA.111.181644

    Article  CAS  PubMed  Google Scholar 

  76. Rivera JC, Noueihed B, Madaan A, Lahaie I, Pan J, Belik J, Chemtob S (2017) Tetrahydrobiopterin (BH4) deficiency is associated with augmented inflammation and microvascular degeneration in the retina. J Neuroinflammation 14:1–15. https://doi.org/10.1186/s12974-017-0955-x

    Article  CAS  Google Scholar 

  77. Deon M, Landgraf SS, Lamberty JF, Moura DJ, Saffi J, Wajner M, Vargas CR (2015) Protective effect of L-carnitine on phenylalanine-induced DNA damage. Metab Brain Dis 30:925–933. https://doi.org/10.1007/s11011-015-9649-1

    Article  CAS  PubMed  Google Scholar 

  78. Ribas GS, Sitta A, Wajner M, Vargas CR (2011) Oxidative stress in phenylketonuria: what is the evidence? Cell Mol Neurobiol 31:653–662. https://doi.org/10.1007/s10571-011-9693-2

    Article  CAS  PubMed  Google Scholar 

  79. Sitta A, Vanzin CS, Biancini GB, Manfredini V, de Oliveira AB, Wayhs CAY, Ribas GOS, Giugliani L et al (2011) Evidence that L-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31:429–436. https://doi.org/10.1007/s10571-010-9636-3

    Article  CAS  PubMed  Google Scholar 

  80. Sitta A, Barschak AG, Deon M, de Mari JF, Barden AT, Vanzin CS, Biancini GB, Schwartz IVD et al (2009) L-carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell Mol Neurobiol 29:211–218. https://doi.org/10.1007/s10571-008-9313-y

    Article  CAS  PubMed  Google Scholar 

  81. Sanayama Y, Nagasaka H, Takayanagi M, Ohura T, Sakamoto O, Ito T, Ishige-Wada M, Usui H et al (2011) Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab 103:220–225. https://doi.org/10.1016/j.ymgme.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  82. Macêdo LGRP, Carvalho-Silva M, Ferreira GK, Vieira JS, Olegário N, Gonçalves RC, Vuolo FS, Ferreira GC et al (2013) Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats. Neurochem Res 38:2625–2630. https://doi.org/10.1007/s11064-013-1180-3

    Article  CAS  PubMed  Google Scholar 

  83. Ramos AC, Ferreira GK, Carvalho-Silva M, Furlanetto CB, Gonçalves CL, Ferreira GC, Schuck PF, Streck EL (2013) Acute administration of l-tyrosine alters energetic metabolism of hippocampus and striatum of infant rats. Int J Dev Neurosci Off J Int Soc Dev Neurosci 31:303–307. https://doi.org/10.1016/j.ijdevneu.2013.03.005

    Article  CAS  Google Scholar 

  84. Ferreira GK, Scaini G, Carvalho-Silva M, Gomes LM, Borges LS, Vieira JS, Constantino LS, Ferreira GC et al (2013) Effect of L-tyrosine in vitro and in vivo on energy metabolism parameters in brain and liver of young rats. Neurotox Res 23:327–335. https://doi.org/10.1007/s12640-012-9345-4

    Article  CAS  PubMed  Google Scholar 

  85. Feksa LR, Latini A, Rech VC, Feksa PB, Koch GDW, Amaral MFA, Leipnitz G, Dutra-Filho CS et al (2008) Tryptophan administration induces oxidative stress in brain cortex of rats. Metab Brain Dis 23:221–233. https://doi.org/10.1007/s11011-008-9087-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ATSW, TMS, BS, and GL conceived, wrote, and revised the manuscript. TMS and BS designed and created the figures.

Corresponding author

Correspondence to Guilhian Leipnitz.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyse, A.T.S., dos Santos, T.M., Seminotti, B. et al. Insights from Animal Models on the Pathophysiology of Hyperphenylalaninemia: Role of Mitochondrial Dysfunction, Oxidative Stress and Inflammation. Mol Neurobiol 58, 2897–2909 (2021). https://doi.org/10.1007/s12035-021-02304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02304-1

Keywords

Navigation