Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

DNA damage induced by phenylalanine and its analogue p-chlorophenylalanine in blood and brain of rats subjected to a model of hyperphenylalaninemia

Publication: Biochemistry and Cell Biology
20 June 2013

Abstract

Phenylketonuria (PKU) is a disease caused by a deficiency of phenylalanine hydroxylase (PAH), resulting in an accumulation of phenylalanine (Phe) in the brain tissue, cerebrospinal fluid, and other tissues of PKU patients. Considering that high levels of Phe are associated with neurological dysfunction and that the mechanisms underlying the neurotoxicity in PKU remain poorly understood, the main objective of this study was to investigate the in vivo and in vitro effects of Phe on DNA damage, as determined by the alkaline comet assay. The results showed that, compared to control group, the levels of DNA migration were significantly greater after acute administration of Phe, p-chlorophenylalanine (p-Cl-Phe, an inhibitor of PAH), or a combination thereof in cerebral cortex and blood, indicating DNA damage. These treatments also provoked increase of carbonyl content. Additionally, when Phe or p-Cl-Phe was present in the incubation medium, we observed an increase in the frequency and index of DNA damage in the cerebral cortex and blood, without affecting lactate dehydrogenase (LDH) release. Our in vitro and in vivo findings indicate that DNA damage occurs in the cerebral cortex and blood of rats receiving Phe, suggesting that this mechanism could be, at least in part, responsible for the neurological dysfunction in PKU patients.

Résumé

La phénylcétonurie (PCU) est une la maladie causée par une déficience en phénylalanine hydroxylase (PAH) qui résulte en une accumulation de phénylalanine (Phe) dans le tissu cérébral, le liquide céphalorachidien et dans d’autres tissus chez les patients qui en sont atteints. Puisque des niveaux élevés de Phe sont associés à une dysfonction neurologique et que les mécanismes qui sous-tendent la neurotoxicité dans la PCU demeurent peu compris, l’objectif principal de cette étude était d’examiner les effets de la Phe sur le dommage à l’ADN in vivo et in vitro, en utilisant la version alcaline du dosage COMET. Les résultats ont montré que, comparativement au groupe contrôle, les niveaux de migration d’ADN étaient significativement supérieurs dans le cortex cérébral et le sang après une administration aigue de Phe, de p-chlorophénylalanine (p-Cl-Phe, un inhibiteur de la PAH) ou d’une combinaison des deux, indiquant la présence de dommages à l’ADN. Ces traitements provoquaient aussi une augmentation du contenu en carbonyles. De plus, lorsque la Phe ou la p-Cl-Phe étaient présentes dans le milieu d’incubation, une augmentation de la fréquence et de l’indice du dommage à l’ADN était observée dans le cortex cérébral et le sang, sans que la libération de lactate déshydrogénase (LDH) ne soit affectée. Les résultats actuels des expériences réalisées in vivo et in vitro indiquent qu’un dommage à l’ADN survient dans le cortex cérébral et le sang des rats ayant reçu de la Phe, ce qui suggère que ce mécanisme pourrait être, au moins en partie, responsable de la dysfonction neurologique observée chez les patients atteints de PCU. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Anderson P.J., Wood S.J., Francis D.E., Coleman L., Anderson V., and Boneh A. 2007. Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev. Neuropsychol. 32(2): 645–668.
Aragon M.C., Gimenez C., and Valdivieso F. 1982. Inhibition by l-phenylalanine of tryptophan transport by synaptosomal plasma membrane vesicle, implications in the patogenesis of phenylketonuria. J. Neurochem. 39(4): 1185–1187.
Bauman M.L. and Kemper T.L. 1982. Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol. 58(1): 55–63.
Brumm V.L., Bilder D., and Waisbren S.E. 2010. Psychiatric symptoms and disorders in phenylketonuria. Mol. Genet. Metab. 99(Suppl. 1): S59–S63.
Burri R., Stefen C., Stiger S., Brodbeck U., Colombo J.P., and Herschkowitz N. 1990. Reduced myelinogenesis and recovery in hyperphenylalaninemic rats. Correlation between brain phenylalanine levels, characteristic brain enzymes for myelination, and brain development. Mol. Chem. Neuropathol. 13(1–2): 57–69.
Chan F.K., Moriwaki K., and De Rosa M.J. 2013. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol. 979: 65–70.
Collins A.R. 2004. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 26(3): 249–261.
Colomé C., Artuch R., Vilaseca M.A., Sierra C., Brandi N., Lambruschini N., Cambra F.J., and Campistol J. 2003. Lipophilic antioxidants in patients with phenylketonuria. Am. J. Clin. Nutr. 77(1): 185–188.
Cooke M.S., Evans M.D., Dove R., Rozalski R., Gackowski D., Siomek A., Lunec J., and Olinski R. 2005. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. Mutat. Res. 574(1–2): 58–66.
Cooke M.S., Olinski R., and Evans M.D. 2006. Does measurement of oxidative damage to DNA have clinical significance? Clin. Chim. Acta, 365(1–2): 30–49.
Cordero M.E., Trejo M., Colombo M., and Aranda V. 1983. Histological maturation of the neocortex in phenylketonuric rats. Early Hum. Dev. 8(2): 157–173.
Culmsee C. and Mattson M.P. 2005. p53 in neuronal apoptosis. Biochem. Biophys. Res. Commun. 331(3): 761–777.
DeRoche K. and Welsh M. 2008. Twenty-five years of research on neurocognitive outcomes in early-treated phenylketonuria: intelligence and executive function. Dev. Neuropsychol. 33(4): 474–504.
Ercal N., Aykin-Burns N., Gurer-Orhan H., and Mcdonald J.D. 2002. Oxidative stress in a phenylketonuria animal model. Free Radic. Biol. Med. 32(9): 906–911.
Evans M.D. and Cooke M.S. 2004. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays, 26(5): 533–542.
Evans M.D., Dizdaroglu M., and Cooke M.S. 2004. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. 567(1): 1–61.
Faust F., Kassie F., Knasmüller S., Boedecker R.H., Mann M., and Mersch-Sundermann V. 2004. The use of the alkaline comet assay with lymphocytes in human biomonitoring studies. Mutat. Res. 566(3): 209–229.
Gassió R., Artuch R., Vilaseca M.A., Fusté E., Colome R., and Campistol J. 2008. Cognitive functions and the antioxidant system in phenylketonuric patients. Neuropsychology, 22(4): 426–431.
Gazit V., Ben-Abraham R., Pick C.G., and Katz Y. 2003. beta-phenylpyruvate induces long-term neurobehavioral damage and brain necrosis in neonatal mice. Behav. Brain Res. 143(1): 1–5.
Gu X.F., Yang X.W., and Chen R.G. 2000. Possible mechanism of nerve damage on hyperphenylalanine in embryonic rat. Am. J. Hum. Genet. 67(Suppl. 1): S281.
Hagen M.E.K., Pederzolli C.D., Sgaravatti A.M., Bridi R., Wajner M., Wannmacher C.M.D., Wyse A.T.S., and Dutra-Filho C.S. 2002. Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim. Biophys. Acta, 1586(3): 344–352.
Halliwell B. 2006. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97(6): 1634–1658.
Herrero E., Aragon M.C., Gimenez C., and Valdivieso F. 1983. Inhibition by L-phenylalanine of tryptophan transport by synaptosomal plasma membrane vesicles: implications in the pathogenesis of phenylketonuria. J. Inherit. Metab. Dis. 6(1): 32–35.
Horster F., Schwab M.A., Sauer S.W., Pietz J., Hoffmann G.F., Okun J.G., Kolker S., and Kins S. 2006. Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr. Res. 59(4): 544–548.
Huttenlocher P.R. 2000. The neuropathology of phenylketonuria: human and animal studies. Eur. J. Pediatr. 159(Suppl. 2): S102–S106.
Iarosh A.K., Goruk P.S., and Luk’ianov E.A. 1987. Comparative characteristics of the functioning of brain structures exposed to morphine and D-phenylalanine. Farmakol. Toksikol. 50(2): 20–23.
Martinez-Cruz F., Pozo D., Osuna C., Espinar A., Marchante C., and Guerrero J.M. 2002. Oxidative stress induced by phenylketonuria in the rat: prevent by melatonin, vitamin E and vitamin C. J. Neurosci. Res. 69(4): 550–558.
Migliore L., Fontana I., Colognato R., Coppede F., Siciliano G., and Murri L. 2005. Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol. Aging, 26(5): 587–595.
Pietz J., Rupp A., Ebinger F., Rating D., Mayatepek E., Boesch C., and Kreis R. 2003. Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr. Res. 53(4): 654–662.
Reznick A.Z. and Packer L. 1994. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233: 357–363.
Schulpis K.H., Tsakiris S., Karikas G.A., Moukas M., and Behrakis P. 2003. Effect of diet on plasma total antioxidant status in phenylketonuric patients. Eur. J. Clin. Nutr. 57(2): 383–387.
Schulpis K.H., Tsakiris S., Traeger-Synodinos J., and Papassotiriou I. 2005. Low total antioxidant status is implicated with high 8-hydroxy-2-deoxyguanosine serum concentrations in phenylketonuria. Clin. Biochem. 38(3): 239–242.
Scriver, C.R., and Kaufman, S. 2001. Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In The Metabolic and Molecular Bases of Inherited Disease. 8th ed. Edited by C.R. Scriver, A.L. Beaudet, D. Valle, and W.S. Sly. McGraw-Hill: New York, pp. 1667–1724.
Sierra C., Vilaseca M.A., Moyano D., Brandi N., Campistol J., Lambruschini N., Cambra F.J., Deulofeu R., and Mira A. 1998. Antioxidant status in hyperphenylalaninemia. Clin. Chim. Acta, 276(1): 1–9.
Singh N.P., McCoy M.T., Tice R.R., and Schneider E.L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175(1): 184–191.
Sirtori L.R., Dutra-Filho C.S., Fitarelli D., Sitta A., Haeser A., Barschak A.G., Wajner M., Coelho D.M., Llesuy S., Bello′-Klein A., Giugliani R., Deon M., and Vargas C.R. 2005. Oxidative stress in patients with phenylketonuria. Biochim. Biophys. Acta, 1740(1): 68–73.
Sitta A., Barschak A.G., Deon M., Terroso T., Pires R., Giugliani R., Dutra-Filho C.S., Wajner M., and Vargas C.R. 2006. Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab. Brain Dis. 21(4): 287–296.
Sitta A., Barschak A.G., Deon M., Barden A.T., Biancini G.B., Vargas P.R., Souza C.F., Netto C., Wajner M., and Vargas C.R. 2009a. Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int. J. Dev. Neurosci. 27(3): 243–247.
Sitta A., Barschak A.G., Deon M., Mari J.F., Barden A.T., Vanzin C.S., Biancini G.B., Schwartz I.V., Wajner M., and Vargas C.R. 2009b. L-carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell. Mol. Neurobiol. 29(2): 211–218.
Sitta A., Manfredini V., Biasi L., Treméa R., Schwartz I.V., Wajner M., and Vargas C.R. 2009c. Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutat. Res. 679(1–2): 13–16.
Smith I. and Knowles J. 2000. Behaviour in early treated phenylketonuria: a systematic review. Eur. J. Pediatr. 159(Suppl. 2): S89–S93.
Stadtman E.R. and Levine R.L. 2003. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25(3–4): 207–218.
Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J.C., and Sasaki Y.F. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35(3): 206–221.
Wilke B.C., Vidailhet M., Favier A., Guillemin C., Ducros V., Arnaud J., and Richard M.J. 1992. Selenium, glutathione peroxidase (GSH-Px) and lipid peroxidation products before and after selenium supplementation. Clin. Chim. Acta, 207(1–2): 137–142.
Wyse A.T.S., Sarkis J.J.F., Cunha Filho J.S., Teixeira M.V., Schetinger M.R., Wajner M., and Wanmacher C.M.D. 1994. Effect of phenylalanine an its metabolites on ATP diphosphohydrolase activity in synaptosomes from rat cerebral cortex. Neurochem. Res. 19(9): 1175–1180.
Wyse A.T.S., Sarkis J.J.F., Cunha-Filho J.S., Teixeira M., Schetinger R.M.C., Wajner M., and Wannmacher C.M.D. 1995. ATP diphosphohydrolase activity in synaptosomes from cerebral cortex of rats subjected to chemically induced phenylketonuria. Braz. J. Med. Biol. Res. 28(6): 643–649.
Wyse A.T.S., Noriler M.E., Borges L.F., Floriano P.J., Silva C.G., Wajner M., and Wanmacher C.M.D. 1999. Alanine prevents the decrease of Na+, K+-ATPase activity in experimental phenylketonuria. Metab. Brain Dis. 14(2): 95–101.
Yang X.W., Gu X.F., and Chen R.G. 2000. Toxic effects of phenylacetic acid to cultured rat cortical neurons. Chinese J. Neurosci. 16: 330–332.
Zhang H.W. and Gu X.F. 2005. A study of gene expression profiles of cultured embryonic rat neurons induced by phenylalanine. Metab. Brain. Dis. 20(1): 61–72.

Information & Authors

Information

Published In

cover image Biochemistry and Cell Biology
Biochemistry and Cell Biology
Volume 91Number 5October 2013
Pages: 319 - 324

History

Received: 26 February 2013
Revision received: 3 May 2013
Accepted: 23 May 2013
Accepted manuscript online: 20 June 2013
Version of record online: 20 June 2013

Permissions

Request permissions for this article.

Key Words

  1. phenylketonuria
  2. phenylalanine
  3. DNA damage
  4. comet assay
  5. oxidative stress

Mots-clés

  1. phénylcétonurie
  2. phénylalanine
  3. dommage à l’ADN
  4. dosage COMET
  5. stress oxidant

Authors

Affiliations

Kellen R. Simon
Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, 88806-000 Criciúma, SC, Brazil.
Rosane M. dos Santos
Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, 88806-000 Criciúma, SC, Brazil.
Giselli Scaini
Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
Daniela D. Leffa
Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
Adriani P. Damiani
Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
Camila B. Furlanetto
Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, 88806-000 Criciúma, SC, Brazil.
Jéssica L. Machado
Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, 88806-000 Criciúma, SC, Brazil.
José H. Cararo
Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, 88806-000 Criciúma, SC, Brazil.
Tamires P. Macan
Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, 88806-000 Criciúma, SC, Brazil.
Emilio L. Streck
Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
Gustavo C. Ferreira
Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, 88806-000 Criciúma, SC, Brazil.
Vanessa M. Andrade
Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
Patrícia F. Schuck
Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, Bloco S, Sala 6, 88806-000 Criciúma, SC, Brazil.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Thiol/Disulfide Balance in Induced Phenylketonuria Model
2. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus of rats subjected to chemically-induced phenylketonuria
3. Engineering Organoids for in vitro Modeling of Phenylketonuria
4. Oxidative stress in phenylketonuria—evidence from human studies and animal models, and possible implications for redox signaling
5. Insights from Animal Models on the Pathophysiology of Hyperphenylalaninemia: Role of Mitochondrial Dysfunction, Oxidative Stress and Inflammation
6. Mitochondrial dysfunction in inborn errors of metabolism
7. White matter disturbances in phenylketonuria: Possible underlying mechanisms
8. The toxic effect of triclosan and methyl-triclosan on biological pathways revealed by metabolomics and gene expression in zebrafish embryos
9. Tryptophan hydroxylase and serotonin synthesis regulation
10. Brain bioenergetics in rats with acute hyperphenylalaninemia
11. Subacute onset leukodystrophy and visual-spatial disorders revealing phenylketonuria combined with homocysteinmia in adulthood
12. Effect of natural PAL-enzyme on the quality of egg white and mushroom flour and study its impact on the expression of PKU related genes and phenylalanine reduction in mice fed on
13. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II
14. Protective effect of L-carnitine on Phenylalanine-induced DNA damage
15. Evidence that 3-hydroxy-3-methylglutaric and 3-methylglutaric acids induce DNA damage in rat striatum
16. Phenylalanine-free taste-masked orodispersible tablets of fexofenadine hydrochloride: development, in vitro evaluation and in vivo estimation of the drug pharmacokinetics in healthy human volunteers
17. Brain Serotonin Signaling Does Not Determine Sexual Preference in Male Mice
18. Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Biochemistry and Cell Biology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media