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• Neuronal damage and loss are the pathological substrate of permanent disability in various 

acute and chronic neurologic disorders. 

• Levels of neurofilament proteins rise upon neuroaxonal damage in cerebrospinal fluid (CSF) 

and in the blood. 

• 1st generation (immunoblot) and 2nd generation (enzyme-linked immunosorbent assay) 

neurofilament assays only captured the tip of the ice-berg in disease. 

• 3rd generation (electrochemiluminescence) and 4th generation (single molecule array) 

assays permithighly sensitive longitudinal detection of blood neurofilament levels even in 

mild disease and from normal controls. [Au: Edited to reduce key point to word limit (30 

words). OK?]  

• Multicentre studies are underway to consolidate neurofilaments as biomarkers that reflect 

brain tissue damage, enabling longitudinal monitoring of disease activity and drug effects 

in clinical trials in neurological diseases. [Au: Edited to reduce key point to word limit (30 

words). OK?] 
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Abstract: 

[Au: Most of my edits to the abstract have been made to reduce the length - the limit is ~200 

words, and the original was 240. Please check that you are happy with how it reads and that no 

crucial information has been removed.]  

Neuroaxonal damage is the pathological substrate of permanent disability in various neurological 

disorders. Reliable quantification and longitudinal follow-up of such damage is important for 

assessing disease activity, monitoring treatment responses, facilitating treatment development 

and prognostic purposes. The neurofilament proteins have promise in this context because their 

levels rise upon neuroaxonal damage not only in the CSF, but also in  blood, and they indicate 

neuroaxonal injury independent of causal pathways. First-generation (immunoblot) and second-

generation (enzyme-linked immunosorbent assay) neurofilament assays were of limited 

sensitivity. Third-generation (electrochemiluminescence) and especially fourth-generation (single 

molecule array) assays enable reliable measurement of neurofilaments throughout the range of 

concentrations found in blood samples. This technological advancement has paved the way to 

investigate neurofilaments in a range of neurological disorders. Here, we review what is known 

about the structure and function of neurofilaments, discuss analytical aspects and knowledge of 

age-dependent normal ranges of neurofilaments and provide a comprehensive overview of 

studies on neurofilament light as a marker for axonal injury in different neurological disorders, 

including multiple sclerosis, neurodegenerative dementia, stroke, traumatic brain injury, 

amyotrophic lateral sclerosis and Parkinson disease. We also consider work needed to explore the 

value of this axonal damage marker in managing neurological diseases in daily practice. 
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[H1] Introduction 

Neuroaxonal damage and loss are the pathological substrate of many acute and chronic 

neurological disorders that result in accrual of permanent disability. [Au: Edited to avoid 

repetition. OK?] The ability to readily detect and follow such damage would be a great advantage 

in the assessment of disease activity, monitoring of treatment responses and prognosis. [Au: 

Edited for flow. OK?] Therefore, a biomarker that accurately reflects neuroaxonal injury would be 

invaluable for reaching individual therapeutic decision and measuring drug effects in clinical trials. 

Attempts to discover such a biomarker have involved investigation of several avenues, [Au: 

Beginning of the previous sentence edited to make clear that the avenues relate to the 

biomarker. OK?] from cerebrospinal fluid (CSF) proteins to MRI, magnetic resonance spectroscopy 

[Au: Changed to group imaging techniques together. OK?] and metabolic imaging, and have 

provided different insights with different limitations. 

Neurofilaments [Au: We prefer not to abbreviate one-word terms, so I think it’s best to 

not use the abbreviation for neurofilament when it’s used alone, but use the abbreviations for 

NfL, NfM and NfH. OK?] are gaining increasing attention as candidate biomarkers of neuroaxonal 

injury [Au: From here to the end of the paragraph, I have rearranged the information so that it’s 

clear that it’s the combination of the specificity and abnormal levels in CSF and serum that 

makes neurofilaments so attractive as biomarkers. Please check you are happy with how this 

reads.] because they are abundant structural scaffolding proteins that are exclusively expressed in 

neurons and that reach pathological levels as a result of axonal damage in neurodegenerative, 

inflammatory, vascular and traumatic diseases not only in the CSF, but also in serum. The 

specificity of neurofilaments in terms of cellular source and indication of pathomechanisms means 

they are highly specific for neuronal cell damage and eventual neuronal cell death, offering a key 

advantage over other possible biomarkers. 

Many, if not all, pathological processes that cause axonal damage release neurofilament 

proteins into the extracellular fluid, CSF and peripheral blood, depending on the extent of damage. 

High levels of neurofilaments, [Au: Addition of “high levels of” OK?] therefore, are general 

indicators of axonal damage irrespective of its cause and any clinical diagnosis, and blood levels of 

neurofilaments are useful for monitoring and prediction of progression in various acute and 

chronic neurological diseases and for assessing the efficacy and/or toxicity of treatment. 

Until recently, measurements of the most promising of the neurofilament proteins, neurofilament 

light levels in patients with neurological disorders could only be performed with CSF samples, 

mainly because assay sensitivity was insufficient for reliable quantification of neurofilament light 
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levels in the blood. Several studies of CSF [Au: Addition of “of CSF” OK, to relate to the previous 

sentence more clearly?] have demonstrated that levels of neurofilament proteins are increased in 

a wide range of neurological diseases1. However, given that lumbar puncture is a relatively 

invasive procedure, longitudinal analyses have been rare and not performed systematically. For 

the same reasons, neurofilaments have rarely been measured in diseases in which diagnostic 

lumbar punctures are infrequently indicated. Neurofilament levels in the blood can be quantified 

with enzyme-linked immunosorbent assay (ELISA)2, 3 and more-sensitive 

electrochemiluminescence (ECL) assay technology in many different diseases4, 5, but neither 

technique can detect small, disease-related changes. Only the introduction of single molecule 

array (SiMoA) [Au: This format has been used by other Nature journals for this abbreviation] 

assays has enabled reliable detection of neurofilament light proteins in blood samples across the 

whole range of concentrations, including those in healthy individuals6-8. Consequently, the past 

2 years have witnessed a surge in the number of publications on neurofilament blood levels in a 

broad range of neurological disorders. 

In this Review, we provide background on the structure and function of neurofilaments, 

consider the analytical aspects of neurofilament measurements and discuss current knowledge on 

age-dependent normal ranges of neurofilament concentrations. We also review the main 

neurological disorders in which neurofilament measurements could play a role in research or 

clinical settings, and highlight aspects that need to be addressed in future studies.  

 

[H1] Neurofilaments — structure and function [Au: Heading shortened to fit our character limits. 

OK?]  

Neurofilaments are classified as intermediate filaments according to their diameter (~10 nm), 

which is between that of actin filaments (6 nm) and myosin filaments (15 nm). Neurofilament 

heavy chain (NfH, 111 kDa), [Au: Molecular weights added here to avoid the need for repetition 

of the subunits later in the paragraph. OK?] neurofilament medium chain (NfM, 102.5 kDa), 

neurofilament light chain (NfL, 61.5 kDa) and α-internexin (55.4 kDa) belong to the class IV 

intermediate filaments, and peripherin (53.7 kDa) is a class III intermediate filament (Fig. 1). The 

molecular weights are higher in vivo owing to an abundance of negatively charged amino acids 

(glutamic acids) in their sequences and to post-translational modifications11. [Au: Statement 

about molecular weights in vivo moved to here to avoid it being disconnected from the 

molecular weights after they have been moved to the previous sentence. OK?] 
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The neurofilament proteins [Au: Correct, or do you did you mean that class III and IV 

intermediate filaments contain intrinsically unstructured regions?] contain intrinsically 

unstructured regions. One key feature of these unstructured regions is that a high proportion of 

residues are lysine9, 10; [Au: Additions for clarity. OK?] lysine and serine are the dominant amino 

acids in the neurofilament tail domain9. A relatively conserved, central α-helical rod region, a short 

variable head domain at the amino-terminal end, and a tail of highly variable length at the 

carboxy-terminal end are highly characteristic for the Nf protein subunits11 (Fig. 1). [Au: Subunit 

list deleted to avoid repetition of what is above. OK?] The head domain contains serine and 

threonine residues and O-linked glycosylation and phosphorylation sites. The tail domain contains 

abundant glutamic and lysine-rich stretches of variable length with multiple serine 

phosphorylation sites. The central rod domain contains hydrophobic repeats that facilitate 

formation of coil-to-coil dimers. 

Formation of neurofilament protein dimers is the first step in heteropolymer assembly. 

[Au: Sentence added to enable addition of a paragraph break. OK?] Antiparallel aggregation of 

these dimers leads to formation of tetramers, and eight laterally associated tetramers form the 

cylindrical unit-length filament (UFL) structure11,12. Annealing of UFLs leads to longitudinal 

elongation of neurofilaments, which is followed by radial compaction to form the final long 

neurofilaments with diameters of 10 nm (Fig. 1)12. 

Post-translational modifications of neurofilaments include addition of O-linked N-

acetylglucosamine (O-GlcNAc) to individual serine and threonine residues, nitration, oxidation, 

ubiquitination and most importantly phosphorylation11, 13. All subunits are phosphorylated on 

their head domain, but only NfM and NfH are extensively phosphorylated on their carboxy-

terminal domains, and this phosphorylation increases the resistance of these subunits to 

proteases14. [Au: Does this edit retain your meaning? Or do you mean that the fact these 

subunits are phosphorylated makes them more resistant to proteases than the other subunits?] 

Under normal conditions, neurofilaments are highly stable within axons, and their turnover is low. 

The filaments form a liquid crystal gel network with in diseases like ALS, Lewy-body-based 

dementia or Parkinson’s disease, neurofilament accumulation [Au: Please clarify what you mean 

by compartmental accumulation - where is this accumulation, and what compartments are 

being referred to?] related to subunit stoichiometry and the degree of phosphorylation14. 

The precise functions of neurofilaments remain unknown, but they are thought to be 

critical for radial growth and stability of axons, thereby enabling effective, high-velocity nerve 

conduction15,16. Several reports indicate that neurofilaments interact with other proteins and 
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organelles, including mitochondria and microtubules11, suggesting that they have important 

functions beyond preserving axonal stability. 

Several mutations identified in the genes that encode neurofilament proteins can lead to 

abnormal neurofilament aggregation and accumulation with the consequence of axonal 

dysfunction and neurodegeneration. For example, mutations in the NEFL gene, which encodes NfL, 

lead to Charcot-Marie-Tooth Neuropathy Type 2E/1F (CMT2E/1F) [Au: Please make clear what the 

two abbreviations mean specifically] disease. Mutations of the genes that encode peripherin 

(PRPH), NfH (NEFH) and NfM (NEFM) have been associated with increased susceptibility to 

amyotrophic lateral sclerosis (ALS) and familial Parkinson disease (PD). Mutations in genes other  

than those that encode neurofilament proteins can have secondary effects on neurofilament 

aggregation; such mutations include those in heat-shock 27-kDa protein 1 in CMT2F, gigaxonin in 

giant axonal neuropathy and superoxide dismutase 1 (SOD1) in ALS11,17. 

 

[H1] Assays to detect soluble neurofilaments 

In the past three decades, impressive advances have been made in the development of sensitive 

immunoassay technologies. With these advances, detection of neurofilaments has improved 

(Fig. 2), [Au: See my suggestion for making Figure 1c a separate Figure 2] moving towards 

evermore clinically useful capabilities. [Au: I have added the previous sentence firstly because I 

felt it was helpful to relate the advances to neurofilament in a general sense at the outset, and 

also because I think it would be nice to have each generation discussed in its own paragraph, but 

breaking the paragraph here left one sentence in the first paragraph, which is not ideal. Addition 

OK?]  

First-generation [Au: Unfortunately, our style does not allow use of italics for emphasis] 

immunoassays were semi-quantitative at best. Immunoblots based on electrophoretic protein 

separation or dot blots were, however, consistent in that they reliably demonstrated the presence 

of neurofilament isoforms in the CSF and blood of patients with a range of diseases10. 

Second-generation sandwich ELISA technology produced the first reliable quantitative data 

that enabled assessment of the prognostic and diagnostic value of NfH and NfL in the CSF in 

human disease2,18-20. Human body fluid compartments that were analysed with this technique 

extended to the interstitial and extracellular fluid21, serum and plasma, amniotic fluid and the 

vitreous body22. Meta-analyses and international validation studies demonstrated that high 

precision could be achieved in expert laboratories, but also highlighted the need for improved 

assay standardization23,24. [Au: Standardization of what? Please clarify]  
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Third-generation ECL technology led to a substantial improvement in the analytical 

sensitivity4, 5, 25-27. ECL based assays are known to be highly sensitive, exhibit a broad dynamic 

range and require small sample volume, however we found the SiMoA technology to be 126- and 

25-fold more sensitive than ELISA and the ECL assay, respectively, to quantify NfL7. [Au: Is it 

possible to expand on this statement to explain more about the technology, why it improved 

sensitivity and the limitations it still had?]  

Finally, fourth-generation SiMoA technology improved analytical sensitivity to an extent 

that reliable quantification of NfL levels in blood became possible across the range of 

concentrations that are observed in disease and in physiological conditions6-8,28. This cutting-edge 

method is based on single-molecule arrays and the simultaneous counting of singulated capture 

microscopic beads (2.7 µm diameter) carrying sandwich antibody complexes. [Au: Please clarify 

for non-experts what these microbeads are - presumably neurofilament proteins bind to them?] 

The analytical sensitivity is manifold higher than with use of the same antibodies in the ELISA 

format designed for CSF measurements19, and enables reliable measurement of the low NfL 

concentrations in blood samples from young healthy individuals6, 8 so that minor changes in levels 

of this protein that occur in normal ageing or after mild injury [Au: Change from “concussion” to 

mild injury OK?] can be monitored. Close correlation between NfL levels in the serum or plasma 

with levels in the CSF, which has been demonstrated in numerous studies and various neurological 

diseases, allows conclusions about the degree of ongoing neuroaxonal injury to be drawn from 

blood levels without the need to obtain CSF by lumbar puncture4, 8, 29-36. Investigations of NfM 

have been sparse37, but commercial SiMoA kits for detection of NfL and phosphorylated NfH are 

available.  

 

[H1] Neurofilaments in ageing [Au: Edited to fit our character limits for headings and also 

because only ageing is discussed in this section. OK?]  

Normal ageing is associated with neurodegenerative processes that can be detected with various 

markers such as volumetric loss of brain tissue [Au: Here, I think the wording raises the question 

for the reader of why neurofilaments are needed as a marker if neurodegeneration can be 

detected with other markers. I assume the existing markers, such as imaging, are more difficult 

and more costly and the neurofilament could be detected with a simple blood test - correct? If 

so, I think it would be helpful to explain this so that the reader is clear about the need for 

neurofilament.] but also by increased levels of a range of fluid biomarkers comprising 

neurofilaments. The advantage of an easy to access body fluid biomarker, such as neurofilament in 
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the blood is to provide a real-time signal on neuro-axonal damage of the entire CNS, paralleled by 

lower costs and the ability of repeated measurements in a relatively non-invasive manner (Barro 

et al. Brain 2018).  In CSF, the normal upper reference value for NfL levels increases 2.5-fold 

between the ages of 20 years and 50 years, and doubles further by the age of 70 years38. This age-

related increase in levels in the lumbar CSF could be due to reduced CSF turnover39, as a general 

physiological phenomenon39 [Au: Did you mean that reduced CSF turnover is a general 

physiological phenomenon? I have removed on the basis of this, as I felt it was not necessary, 

but if you meant a general physiological phenomenon to be a separate item in the list, please 

clarify] but could also indicate slow, ongoing axonal injury. The latter possibility is supported by 

the finding that CSF levels of NfL in cognitively healthy elderly individuals correlate with 

hippocampal atrophy independently of age and AD biomarkers40. However, a detailed 

understanding of the mechanisms that underlie age-related increases in neurofilament levels is 

lacking. Besides structural damage and loss of neurons, metabolic alterations in the turnover of 

neurofilament proteins might play a role: experimental evidence demonstrates complex changes 

in the expression of mRNA, post-translational mRNA modification  [Au: “post translation” 

removed from here because it did not seem to relate to anything. If it is necessary, please clarify 

what it meant.] and neurofilament protein turnover41. 

A highly significant correlation is also seen between age and NfL blood levels: use of  [Au: 

“fourth generation” removed from here because it implied that there have been four 

generations of SiMoA technology.] SiMoA technology has shown that NfL levels in the blood 

increase by 2.2% per year between the ages of 18 years and 70 years8,42. The strong correlation 

between CSF and blood levels of NfL at the group level suggests that the two measures reflect 

similar physiological processes4, 8, 29-36. [Au: Change from “factors” to “physiological processes” 

OK?] Nevertheless, important to acknowledge is the possibility that degenerative processes in the 

PNS contribute to neurofilament levels in peripheral blood4, 43, 44. 

Important for further development of neurofilaments as a biomarker is to establish 

universal reference values for healthy controls by analysis of samples under standardized and 

controlled conditions in reference laboratories. These reference values would enable correct 

interpretation of levels seen in various pathological conditions, thereby maximizing the potential 

of neurofilaments in the management of [Au: Addition of “the management of” OK?] diseases 

that involve neuroaxonal injury.  
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[H1] Neurofilaments in neurological disease [Au: Edited to fit our character limits for headings. 

OK?]  

 

CSF and blood levels of neurofilament proteins have been measured in various neurological 

disease (Box 1), and evidence has accumulated that they can be clinically useful biomarkers in 

many of these. Below, we discuss the evidence in each of the studied diseases. [Au: I have added 

this paragraph to provide a short introduction to this main section and also to provide an 

opportunity to cite Box 1. Please see my suggestion for converting Figure 2 to Box 1 below.]  

 

[H2] Multiple sclerosis 

Multiple sclerosis (MS) is a chronic disease of presumed autoimmune origin that is, at least 

initially, characterized by episodes of focal inflammation in the brain and spinal cord  that 

predominantly involve the white matter but can involve the grey matter45. Formation of new 

lesions can be visualized with MRI, the only established biomarker of disease activity used in 

routine clinical practice today. However, MRI primarily detects lesions in the white matter, and 

grey matter damage is largely missed with standard imaging techniques46, 47. In addition, MRI does 

not allow selective detection of neuroaxonal degeneration, which seems to be the most important 

determinant of long term disability48-50. Several MRI-based volumetric measures, including analysis 

of cortical thickness, have been used to assess neuronal degeneration, but the specificity and 

sensitivity of these measures at the individual level are limited51. 

Use of second-generation immunoassays to measure NfL, pioneered by Rosengren et 

al.18,52, revealed three key aspects of disease associated with CSF levels of NfL: [Au: Edited for 

clarity about what the relationships are between. OK?] the degree of disability, disease activity, 

and the time since the last relapse in patients with relapsing–remitting MS (RRMS)52. These initial 

findings were replicated and extended by subsequent, larger studies of clinical aspects associated 

with CSF levels of NfL53-56 and NfH26, 54, 57, 58. 

Use of third-generation immunoassays further revealed that CSF levels of NfL reduce as a 

consequence of disease-modifying therapy (DMT). For example, initiation of the high-efficacy DMT 

natalizumab resulted in normalization of CSF NfL levels to those seen in healthy controls within 6–

12 months59, suggesting that NfL can be used to monitor therapeutic efficacy. Similar observations 

were made in placebo-controlled60 and observational61, 62 studies of fingolimod in patients with 

RRMS and in studies of mitoxantrone and rituximab63 and of natalizumab64 in progressive MS. 
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Despite the promising results in MS, a major barrier to widespread adoption of NfL analysis 

in MS research and clinical practice has been the requirement of CSF sampling, but this problem 

has finally been overcome by use of fourth-generation immunoassays. Of particular interest is the 

demonstration that serum levels of NfL can be used to separate not only patients with MS from 

healthy controls, but also patients with MS who have enhancing MRI lesions from patients without 

such lesions8. Furthermore, serum NfL levels in patients with MS have been independently 

associated with disability and relapse status8, Barro et al., Brain 2018, [Au: Please cite the appropriate 

reference(s) to support this statement] and the risk of future relapses and disability worsening is 

higher among patients with high serum levels of NfL than those with lower levels8, Barro et al Brain 2018 . 

[Au: Please cite the appropriate reference(s) to support this statement] Finally, patients with 

ongoing DMT had lower serum NfL concentrations than did untreated patients8. Yet another study 

found that patients who switched from injectable therapies to [Au: Edited because it wasn’t clear 

what injectable therapies are less effective in comparison to until you continued, whereas this 

wording makes clear that fingolimod is more effective than injectables. OK?] fingolimod had 

significantly lower serum NfL levels than when they were on injectables [Au: Lower than levels 

when they were on injectables, or lower than patients who continued on injectables? Please 

clarify] over a 2-year period30. Associations with disease activity and treatment-related reductions 

in serum NfL levels were confirmed by another observational study in which a fourth-generation 

immunoassay was used in a large, independent cohort of patients with RRMS36. Recently, a 

longitucinal observational study demonstrated that patients with increased serum NfL at baseline, 

independently of other clinical and MRI variables, experience significantly more brain and spinal 

cord volume loss over 2 and 5 years of follow-up (Barro et al., Brain, 2018). 

Collectively, the findings described (Table 1) make a strong case for bringing fourth-

generation serum NfL assays from the bench to the clinics in the management of MS. Further 

studies are required to show how these assays can be used for monitoring disease activity and for 

therapeutic decision-making. 

 
 
[H2] Dementias 

Dementia — defined in this context as cognitive disturbances that are severe enough to interfere 

with activities of daily living — can be caused by several different neurodegenerative disorders, of 

which Alzheimer disease (AD) is the most prevalent, frontotemporal dementia (FTD) is the second-

most prevalent among people aged <60 years, and dementia with Lewy bodies (DLB) is the 

second-most prevalent among patients aged >60 years. [Au: Edited to define “older” on the basis 
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of the definition of “younger” in the previous sentence. OK?] Currently, clinical diagnosis of the 

different types of dementia relies largely on documenting cognitive decline or on post-mortem 

evaluation. However, it is becoming clear that early brain damage occurs decades before the onset 

of clinical symptoms. This observation opens a window of opportunity for secondary prevention 

and suggests the value of [Au: Change of wording OK?] a shift from using clinical hallmarks for 

diagnosis to monitoring of biological measures that reflect ongoing pathological processes. Several 

studies have addressed the question of whether neurofilaments can provide such a biological 

measure (Table 2). [Au: Sentence added to enable citation of Table 2. OK?]  

An early study in 1999 demonstrated a mild increase in CSF levels of NfL in AD, and 

substantially higher levels in FTD66. These findings were confirmed in a subsequent study that also 

showed that the increase in CSF levels of NfL in AD is seen only in patients with late-onset disease, 

[Au: Edit to avoid referring to patients as “cases”] whereas NfL levels are not significantly 

different from normal controls [Au: Edited to specify controls - correct?] in patients with early 

onset AD67. 

Subsequent meta-analyses of findings obtained with second-generation immunoassays 

consistently demonstrated that CSF levels of NfL are increased in the mild cognitive impairment 

and dementia stages of AD23, 68 and are independent of Aβ load68,69. [Au: Edited for clarity. OK?] 

The diagnostic specificity of NfL levels was lower than the hallmark AD biomarkers of Aβ1–42 levels, 

[Au: OK?] Aβ1–42:Aβ1–40 ratio and phosphorylated tau levels68,70. Nevertheless, evidence indicates 

that NfL levels correlate with and are predictive of brain atrophy and worsening of cognition 

independently from  Aβ pathology69, 71. Moreover, NfL levels in the blood have some predictive 

value for progression to AD dementia in patients with subjective memory complaints42, so the 

potential for use of NfL levels in combination with clinical evaluation and other biomarkers to 

detect the earliest stage of the disease should be assessed. Furthermore, the greatest value of NfL 

in AD dementia could be in monitoring responses to treatment, as in MS, as reductions in plasma 

NfL [Au: Please explain what was observed - presumably NfL levels decreased?] were observed 

in animal models of AD when treated with a BACE-inhibitor31. 

Measurement of NfL levels is also likely to be of value in the diagnosis of FTD, in which 

CSF23,67  and serum35,75 levels of NfL [Au: CSF levels of NfL correct?] are high and approach those 

observed in ALS (see Amyotrophic lateral sclerosis section below). Indeed, among the chronic 

dementias, the highest CSF NfL concentrations are observed in FTD and vascular dementia, 

followed by AD23, 72. Among patients with FTD, CSF levels of NfL are higher in those with TAR DNA-

binding protein 43 (TDP-43) inclusions than in those with tau pathology (confirmed by genetic 
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testing or post-mortem evaluation)73. Moreover, CSF levels of NfL increased when symptoms 

developed in patients with genetic FTD, and these levels were inversely correlated with survival35. 

Several studies have confirmed a strong relationship between CSF and serum levels of NfL and the 

time to death in patients with FTD35,73.  

The results of fourth-generation immunoassays74 for detection of neurofilaments reflect 

neuroaxonal damage in neurodegenerative dementias, including FTD75, familial and sporadic AD42, 

76 and atypical parkinsonian disorders77. In sporadic AD, plasma NfL concentrations are already 

increased in the mild cognitive impairment stage, and correlate with cognitive, biochemical and 

imaging hallmarks of the disease42. In familial AD, blood NfL concentrations start to increase 

~10 years before the expected onset76. 

Very high CSF and blood levels of NfL [Au: This is a little confusing, because CJD has not 

been mentioned earlier in the section, and earlier in the section, it’s stated that the highest 

levels of NfL are seen in FTD among the dementias. This conflict either needs to be resolved, or 

the discussion of CJD needs to be omitted. Also, does “highest” here mean within dementias, or 

the highest in any condition?] have been observed in patients with sporadic and familial 

Creutzfeldt–Jakob disease. In this condition, CSF levels of NfL were increased before symptom 

onset, and the sensitivity and specificity of serum NfL concentration for diagnosis of Creutzfeldt –

Jakob disease [Au: Addition correct, to ensure it’s clear what the sensitivity and specificity relate 

to?] were 100% and 85.5%, respectively78. Elevated serum levels of NfL have also been described 

in patients with primary progressive aphasia79; [Au: Please cite the appriopriate reference(s) to 

support the previous statement] higher levels were identified in patients with the non-fluent or 

agrammatic and semantic variants than in those with the logopenic variant. NfL levels correlated 

with clinical progression and brain volume loss in all patients with primary progressive aphasias79. 

[Au: Does the last sentence relate to all three variants, or only the non-fluent and semantic 

variants? Please clarify.]  

 

[H2] Stroke 

Most existing data on neurofilaments in stroke are CSF measurements in subarachnoid 

haemorrhage (SAH). Studies have shown that NfH and NfL levels are higher among patients with 

aneurysmal SAH than among healthy controls or patients free of neurological disease80-82. [Au: 

Please define the controls more specifically - were they healthy?] The exact causes of 

neurofilament elevation in SAH in the absence of associated focal lesions (parenchymal 

haematoma or ischaemia owing to vasospasm) are not entirely clear, but are presumably 
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attributable to diffuse neuroaxonal injury or iatrogenic following for eaxample placement of an 

external ventricular drain. [Au: Please clarify what you mean by “neurosurgical procedures”] 

Regardless, evidence suggests that neurofilament levels consistently correlate with the clinical 

severity and extent of morphological brain damage80, 81.  

The ability to analyse neurofilament light levels in blood samples with fourth-generation 

immunoassays has facilitated the study of this marker in stroke in which a lumbar puncture is 

usually not indicated. [Au: Please clarify. Do you mean that lumbar puncture is not indicated in 

some subtypes, or do you mean that lumbar puncture is not indicated in stroke generally? And 

by “not indicated”, do you mean it is contra-indicated, or there is just no reason to do it?] This 

approach has been used to show that serum levels of NfL are higher among patients with 

spontaneous cervical artery dissection who had an ischaemic stroke than among those with 

transient ischaemic attacks or isolated local symptoms83. [Au: Change to “isolated” OK?] Similarly, 

serum NfL concentration was found to be increased in patients with a single, recent, small 

subcortical infarct compared with concentration in age-matched and sex-matched healthy 

controls84. In the same study, assessment of the temporal dynamics of NfL at 3 months and 

15 months after stroke revealed especially high levels in patients with new, clinically silent brain 

lesions related to small vessel disease detected with MRI during follow-up, suggesting that NfL 

levels indicate active small vessel disease. Interestingly, serum NfL levels increased during the first 

few days after stroke onset and remained elevated in a follow-up assessment at 3 months. 

Comparable findings of neurofilament dynamics have been reported in other studies5, 83, 85. 

Prolonged release of NfL into the blood after acute neuronal injury might be caused by persistent 

blood–brain barrier breakdown, but ongoing post-ischaemic immunological or inflammatory 

processes could also explain these findings. 

 

[H2] Traumatic brain injury 

Mild traumatic brain injury (TBI), also called concussion, is caused by non-penetrating head trauma 

and is increasingly recognized as a major health problem86. Most patients with mild TBI recover 

within hours to days, but a percentage have symptoms for weeks to months after the head 

impact, a condition called post-concussive syndrome. Furthermore, an unknown proportion of 

people who are exposed to repeated concussions, primarily contact sports athletes such as boxers 

and American football players and soldiers who are exposed to explosive blasts, develop a chronic 

neurodegenerative disease called chronic traumatic encephalopathy (CTE)87, previously known as 

dementia pugilistica88. 
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Mild TBI and post-concussive syndrome are vaguely defined clinical entities and their 

diagnosis is based only on the presence of one or several unspecific symptoms (such as loss of 

consciousness, dizziness, headache and poor concentration), causing a major issue in research, 

clinical management and drug development in this field86. Consequently, sensitive biomarkers are 

needed to identify and grade neuronal injury in individuals with mild TBI and post-concussive 

syndrome. Furthermore, biomarkers that enable grading of severity of neuronal injury after a mild 

TBI might be important as objective tools for guiding sports physicians with return-to-play 

decisions for their athletes.  

Studies of contact sports athletes with mild TBI show that CSF levels of NfL increase more 

than levels of tau, suggesting that minor head injuries affect long myelinated white-matter axons 

more than they affect shorter cortical axons89,90. In severe TBI, fourth-generation NfL 

immunoassays6 have demonstrated a marked increase in blood NfL levels that also predicted 

clinical outcome91, thereby confirming earlier findings from third-generation immunoassay studies 

of CSF and blood samples92. Interestingly, marked increases in blood NfL levels have been 

detected in amateur boxers after a bout; higher NfL levels were seen in boxers who had received 

more head impacts, and levels approached normalization after 3 months of rest from boxing93. 

Similarly, blood levels of NfL were found to increase during the course of a season in American 

football players94. Taken together, these results (Table 3) support the idea that the blood level of 

NfL is a sensitive indicator of axonal injury after mild TBI and is a promising candidate for clinical 

application and contact sports medicine. 

 

[H2] Amyotrophic lateral sclerosis  

Motor neuron diseases are neurodegenerative disorders characterized by degeneration of the 

upper and lower motor neurons, and the most common form is ALS95. Given that axonal 

impairment can be seen early in the disease, measurement of neurofilaments in the CSF of 

patients with ALS was an obvious and straightforward experiment and led to the observation that 

NfL levels are increased in this condition18,96,97. 

Several independent studies have confirmed that neurofilament levels are significantly 

elevated in patients with ALS compared with several other disorders (Table 4); the largest 

prospective study included 455 patients34, 98-103. Diagnostic sensitivities and specificities were up to 

~80%. Higher levels were also associated with faster disease progression. Increases in NfL and NfH 

levels were also observed in the early clinical phase of patients with genetic ALS and in patients 

with sporadic ALS33, 104-107. The first clinical sign of the disease seems to be associated with a 



16 

 

massive increase of neurofilament levels in the CSF33, and a corresponding increase in NfL levels 

has been observed in the blood33. Furthermore, increased levels of blood NfH have been seen in 

patients with sporadic ALS 100, 102, 108.The difference in dynamics of higher NfL levels if compared to 

NfH levels in ALS and controls may partly be explained by earlier assay sensitivity issues. A new 

hypothesis, adaptive protein stoichiometry, suggests that the neurodegenerative process itself 

alters the quantitative relationship of neurofilament subunits. This leads to a relative over 

expression of NfL compared to NfM and NfH in order to minimise ATP requirements for subunit 

translation in the motorneuron [Zucchi et al. Journal Neurochemistry, 2018]. [Au: Edited for 

clarity. OK?]  

Although helpful for diagnostic purposes, the reason for the very high CSF levels of 

neurofilaments in ALS is still not entirely clear, even under the assumption that neurofilament 

levels reflect neuroaxonal damage. One small study showed a correlation of NfL levels with axonal 

impairment assessed with diffusion tensor imaging (DTI)109, [Au: Edited to streamline. OK?] but 

this correlation was not seen in a similar study that included 75 patients101. [Au: Edited to clarify 

and simplify. Is there a significance to the number of patients in the second study - is it much 

larger than the number in the first study? Please make this clear, because I think it is important 

to indicate to the reader which of these two studies is likely to be more reliable.] NfL 

concentrations in the blood seem to be stable at a very high level during follow-up of patients with 

ALS, whereas DTI values increase34, 79; only [Au: Addition of “only” OK?] a slight increase in blood 

levels of NfH has been described99. One mechanistic explanation is based on evidence that TDP-43, 

the major neuropathological hallmark of ALS, directly interacts with neurofilament production and 

causes [Au: This wording suggests that the protein causes the release. Do you mean the 

aggregation of TDP-43 causes the release, or another aspect of TDP-43 function/pathology?] the 

sudden and massive release of neurofilaments in ALS110. More prospective studies of 

neurofilament levels in ALS, especially in the blood, are needed. [Au: Please expand on this 

sentence to say why they are needed - to determine the mechanisms, or for translation of the 

findings to clinical use?]  

 

[H2] Parkinson disease 

Although Parkinson disease (PD) is one of the most common neurodegenerative disorders, no 

validated neurochemical biomarkers are currently available to aid clinical diagnosis. In PD and 

other synucleinopathies, α-synuclein is the main component of [Au: OK?] neuronal inclusions. 

Many studies have been performed to assess whether α-synuclein in the CSF could be an effective 
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biomarker of PD; ELISA has been used in most of these studies, which have produced 

contradictory results112,113. [Au: Sentence edited for clarity. OK?]  

In 1998, NfL was first investigated in the CSF of 49 patients [Au: Number of patients added 

here. OK?] undergoing differential diagnosis for a Parkinsonian syndrome, including patients with 

atypical parkinsonian syndromes such as progressive supranuclear palsy (PSP) and multiple system 

atrophy (MSA). These investigations demonstrated increased CSF NfL levels in PSP and MSA 

compared with the PD group patients114. [Au: Correct that the levels were increased in all of 

these patients?] This increase in PSP and MSA versus PD was also seen for NfH115. In a larger study 

that included >450 patients with PSP, MSA or PD, almost no overlap was seen between CSF levels 

of NfL in patients with atypical parkinsonian disease and those with PD; NfL levels were increased 

mainly in the atypical disorders116. The finding was validated in an independent cohort117. 

In a study published in 2016, high levels of NfL were observed in blood of patients with PSP, 

and this difference persisted at one year follow-up. [Au: Correct that the follow-up was after 

treatment? How long was the follow-up period? How were they treated? Please add more detail 

so that findings are clearer] Patients with higher NfL levels had more severe neurological, 

functional, and neuropsychological deterioration over 1 year. Higher baseline NfL predicted 

greater whole-brain and superior cerebellar peduncle volume loss118. On the basis of these 

findings, the investigators concluded that NfL could be used not only to aid diagnosis, but also to 

monitor pharmacodynamic effects, especially in clinical trials. The findings of this study were also 

validated in three independent cohorts, leading to the suggestion that NfL could be used in both 

primary care and specialized clinics77. 

 

[H2] Huntington disease [Au: I didn’t see any reason to group HD and bipolar disorder together.]  

Huntington disease (HD) is a progressive neurodegenerative disorder caused by CAG repeat 

expansions in the HTT gene, leading to the formation of mutant huntingtin (mHTT). No proven 

disease-modifying treatments yet exist119. The slow and insidious progression of 

neurodegeneration in HD has made it challenging to detect disease-related changes in the levels 

of neurofilament proteins in the blood120. However, increased CSF levels of NfL have been 

demonstrated in patients with HD121, 122, and fourth-generation technology has revealed a strong 

relationship between plasma levels of NfL, HD onset and subsequent progression of 

neurodegeneration119. If confirmed, blood NfL levels could be included as a secondary outcome 

measure in future clinical trials in HD.  
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[H2] Bipolar disorder [Au: We don’t generally cover psychiatric conditions, but I do feel it is 

interesting to include this because the fact that there are some changes in a disease associated 

with some degeneration reinforces the association of the marker with neuronal injury. 

However, I have suggested some changes to wording to emphasize the aspects that will 

probably be of most interest to our audience. Please check that you are happy with these 

changes.]  

Some evidence suggests that neurodegeneration and neuroaxonal injury can be associated with 

some subtypes of bipolar disorder123. Although these aspects are not prominent features of the 

condition, CSF levels of NfL were slightly increased in a subset of patients, particularly those who 

are treated with atypical antipsychotics124, presumably reflecting a not yet fully understood 

disease-associated or treatment-associated effect. [Au: Addition made to emphasize the focus on 

the biological/mechanistic aspects. OK?] However, no clear relationship was seen between NfL 

levels and clinical outcomes, such as manic or hypomanic and depressive episodes (cross-sectional 

data), suicide attempts, psychotic symptoms or inpatient care125. Although the current evidence 

for detection of neuroaxonal injury in bipolar disorder by measuring neurofilaments is limited, the 

available results warrant longitudinal studies of well-characterized patients to examine how 

neurofilament concentrations change over time in relation to disease activity and phase 

(depression and mania) and whether neurofilaments can indicate adverse effects of treatments. 

Fourth-generation measurement technology will facilitate such studies by enabling measurements 

to be taken from blood samples.  

 

 

[H1] Conclusions and future aspects [Au: The last section of all our Reviews must contain the 

word “conclusions”. Change of heading OK?]  

In summary, highly sensitive neurofilament measurements have the potential to fill a gap in the 

assessment of neuroaxonal damage in various neurological disorders. For the first time, this 

approach provides a sensitive assessment of the consequences of brain tissue damage with only a 

blood sample, an important advance to aid research and towards use of the assays in clinical 

practice. [Au: Edited to give the importance of the advance a little more weight?] In relation to 

clinical trials, the reviewed characteristics of neurofilaments, especially of NfL, make these 

proteins optimal candidates as markers of outcome in phase II trials in neurological disorders. 

Definitive phase III trials must use clinical endpoints (clinical events with a clear effect on the 

duration or quality of life) to confirm a clinical benefit, but the aim of phase II trials is to identify 
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drugs with sufficient activity to continue to phase III, so earlier end points are preferable. [Au: 

Information about trial end points edited to improve flow. OK?]  [Au: The previous sentence has 

been removed, as this passage felt a bit repetitive. OK?] 

To validate neurofilament measurements as phase II trial end points, two additional 

properties must be verified: a correlation with the clinical end points used in phase III trials, and an 

ability to detect a treatment effect. To verify these properties, a promising approach is 

retrospective analysis of data from randomized clinical trials in which blood samples suitable for 

measurement of neurofilaments have been collected. Comparison of neurofilament levels 

between subgroups of patients enrolled in the trials would determine whether the drug tested 

had an effect on the neurofilament biomarker. Moreover, neurofilament levels and their 

stoichiometry could be correlated with all the other relevant clinical and para-clinical measures 

collected in the trial. 

The main factors limiting application of neurofilament measurements to disease 

monitoring individuals are the lack of normal values of neurofilament across all age groups, a 

detailed understanding of how comorbidities affect blood neurofilament measurements, and the 

need for thorough multicentre analytical assay validation to achieve standardized and reliable 

measurements across different sites. In light of the effect of ageing on neurofilament levels, 

generation of normative data in large collections of controls is a priority. Co-ordinated multicentre 

research activities are already ongoing to tackle these obstacles.  
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Figure 1 | Structure, assembly and release of neurofilaments. [Au: The figure needs an overall 

title. Suggestion OK?] a | Domain structure and post-translational modifications of neurofilament 

subunits11. Neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament 
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heavy chain (NfH), α-internexin and peripherin are the subunits of neurofilaments in the mature 

nervous system. All neurofilament subunits include a conserved α-helical rod domain that 

comprises several coiled–coils, and variable amino-terminal globular head regions and carboxy-

terminal tail domains. NfM and NfH subunits are unique among the intermediate filament proteins 

in that they have long carboxy-terminal domains with multiple lys–ser–pro repeats that are heavily 

phosphorylated. Phosphorylation and O-linked glycosylation sites on neurofilament subunits are 

shown. E segment, glutamic-acid-rich segment; E1, glutamic-acid rich segment 1; E2, glutamic-

acid-rich segment 2. [Au: We will use the three-letter amino acid codes in the figure, so the one-

letter codes do not need to be in the legend.] b | Neurofilament assembly. Neurofilament protein 

monomers form parallel coiled-coil heterodimers11. Two dimers form staggered antiparallel 

tetramers through interactions between coil domains 1a, 1b and 2a12. The lateral association of 

eight tetramers results in formation of cylindrical structures known as unit-length filaments that 

have a diameter of ~16 nm and a length of ~60 nm. Gradual end-to-end annealing of these unit-

length filaments results in filament elongation, which is followed by radial compaction to form the 

mature, long neurofilament polymer with a diameter of ~10 nm. Tail domains of NfM and NfH 

radiate outwards from the filament core because of the extensive negative charges from large 

numbers of glutamic acid and phosphorylated serine and threonine residues. 

[Au: I suggest that part c is a separate figure, because it deals with a slightly different aspect to 

the structure, and this avoids adding to what is already a very long figure legend.]  

Figure 2 | Neurofilament release after axonal damage. When an axon is damaged, cytoskeletal 

proteins, including neurofilaments, are released into the extracellular space and subsequently into 

the CSF and, at lower concentrations, into the blood. First-generation (immunoblots) and second-

generation (ELISA) immunoassays can typically detect neurofilament in the CSF. Third-generation 

(electrochemiluminescence) and, in particular, fourth-generation (Single molecue array) 

immunoassays can reliably measure blood levels of neurofilament light which was not possible 

from the blood with ELISA. 

 

[Au: I think the information in your figure 2 would be better presented in a text box because it is 

really just text. I have suggested a format for this below.]  

 

Box 1 | Relevance of neurofilaments to neurological disorders 
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Neurofilaments have been studied in several neurological disorders, and in many, good evidence 

indicates their diagnostic and prognostic value and/or their use for monitoring treatment 

responses. The disorders reviewed here are: 

- Multiple sclerosis 

- Dementia 

- Stroke 

- Traumatic brain injury 

- Amyotrophic lateral sclerosis 

- Parkinson disease 

- Huntington disease 

- Bipolar disorder (limited evidence for clinical utility). 

In addition, neurofilaments could be of relevance in many other neurological disorders, but their 

association with these disorders has not been studied. Such disorders include: 

- Epilepsy 

- Encephalitis 

- Meningitis 

- Hypoxic brain injury 

- Optic neuropathies 

- Intracranial pressure 

- Neurotoxicity 

- Peripheral neuropathies including Guillain-Barré Syndrome, CIDP and CMT. 

 


