
Signal and Information
Processing Laboratory

Institut für Signal- und
Informationsverarbeitung

Fachpraktikum Signalverarbeitung

SV6: Polynomial Regression and Neural
Networks

1 Introduction

Consider the situation in Figure 1 where some unknown function f(·) is embedded in a
black box together with a noise source Z. For some given value x we don’t have access to
the actual function value v = f(x) but observe a noisy value y = f(x) + Z.

Assume now that we want to construct a function ϕ(·) which should closely match
the unknown function f(·). In this approach we apply m values x(1), x(2), . . . , x(m) and
observe the corresponding outputs y(1), y(2), . . . , y(m). From this sample data we try to
adjust the parameters in ϕ(·).

When we somehow have built our function ϕ(·) we want to use it to predict v = f(x)
by an estimated value v̂ = ϕ(x) for some x.

f(·)

x yV

Z

black box

Figure 1: Model for Measuring a Function f(·).

In this experiment we will describe ϕ(·) as a polynomial or as a neural network and
try to find the respective coefficients such that the match is close and ϕ(·) has good
generalization properties.

2 Polynomial Regression

At first we try to approximate f(·) in Figure 1 by a polynomial ϕ(·) of degree n:

ϕ(x) = a0 + a1x+ a2x
2 + . . . + anx

n

It is the aim now to find the coefficients a0, a1, . . . , an. In principle this can be achieved
by minimizing the average squared error

ASE =
1

m

m∑

k=1

(y(k) − ϕ(x(k)))2 (1)

which leads to a so-called least squares problem.

1



The coefficients can be found by solving the following equation:

U
T
U a = U

T
y where , (2)

U =







1 x(1)
(
x(1)

)2
· · ·

(
x(1)

)n

...
...

...
...

1 x(m)
(
x(m)

)2
· · ·

(
x(m)

)n







, a =






a0
...
an




 and y =






y0
...
ym




 .

It is expected that as we increase the order n the better the fit will be, i.e. the ASE
will decrease as we increase n. In particular for n + 1 = m we can achieve an ASE of 0.
This is because we can fit a polynomial of order n through n+ 1 points.1

However, increasing n too much can result in over-fitting. We will explore this effect
later.

3 Neural Networks

A neural network is a special family of functions.2 In this experiment we consider a so-
called two-layer perceptron. To be a little more general, we assume that in Figure 1 the
input is a vector with two components x = (x1, x2). In this case we define ϕ(·) as:

ϕ(x) = g2




b0 +

L∑

l=1

bl · g1 (al0 + al1x1 + al2x2)
︸ ︷︷ ︸

rl(x)




 (3)

The parameter L is the number of internal dimensions of the perceptron, al0, . . . al2 are
coefficients in the first layer and b0, . . . bl are coefficients in the second (the output) layer.
g1(·) is a nonlinear function which can be chosen.

Figure 2 shows the block diagram of the function in Equation (3) for the case L = 3.
The network thus first forms three so-called hidden variables rl(x) by linearly combining
the input (x1, x2) in L different ways and passing the results through the nonlinear function
g1(·). The output v̂ is then formed by a linear combination of the hidden variables rl and
taking the output function g2(·).

A popular choice for g1(·) is the hyperbolic tangent tanh(t) = e
t
−e

−t

et+e−t .The output
function g2(·) is often a pure linear function g2(t) = t in which it can as well be omitted.
It has been shown that for this choice the neural network can represent any continuous
function f(·) to arbitrary accuracy provided L is large enough.

For some choice of L, g1(·) and g2(·) the question is now how to find the coefficients
al0, . . . al3 and b0, . . . bl. If g2(·) is linear then – for fixed al0, . . . al3 – finding b0, . . . bl is
again a least squares problem, but the coefficients of the first layer have to be found by
nonlinear methods.

These usually imply training the coefficients which is quite different from solving a
least squares problem. Assume some initial values for the coefficients. We then can ask
the question: How does the ASE change when we change the coefficients? This leads to a
concept called backpropagation, which computes the derivatives of the error with respect
to the coefficients3 and adjusts them such that the error decreases. This is done iteratively
until some criteria is achieved. The result need not be optimal however.

Despite the ability of the network to represent any function almost perfectly, over-
fitting can occur easily with backpropagation for large L.

1E.g. a line (polynomial of order n = 1) can be fitted through 2 points.
2which was originally inspired by the nervous system in animals, hence the name.
3For this to be possible we have to know the derivative of the nonlinearities g1(·) and g2(·).

2



a
11

a
12

a21 a22

a 3
1 a32

a10 a20 a30

b 1

b2 b
3

b0

x1 x2

r1 r2 r3

v̂

g1(·)g1(·)g1(·)

g2(·)

Figure 2: Two-Layer Perceptron.

4 Over-Fitting

The methods described above are both sensitive to what is called over-fitting. By training
the function ϕ(·) with m data points, it might reconstruct the values at these points very
accurately, but fail completely on new data. The function ϕ(·) has just “memorized” the
sample data but has poor generalization behavior.

It seems that the following factors have an impact:

• The relation between m of f(·) and the number of adjustable parameters in ϕ(·) –
the order of the model ϕ(·). Fitting a model with many parameters to few sample
points generated by a simple function can result in over-fitting.

• The choice of the abscissae x(k) of the sample data points.

• The method of finding the parameters in ϕ(·). If this method considers that ϕ(·)
should have a high generalization capabilities, over-fitting can be prevented.

• The target function f(·).

In the case of polynomial fitting, choosing n lower than m− 1 is crucial. Furthermore
choosing x(k) such that they are more crowded toward the endpoints of the interval of
interest reduces over-fitting. Given a target interval [α, β] on the x-axis, the optimal

3



choice for x(k) has been shown to be:

x(k) =
1

2
(α+ β) +

1

2
(α− β) cos

(
π(2k − 1)

2m

)

, k = 1, 2, . . . ,m. (4)

For neural networks one approach is called regularization. The cost to be minimized
is not simply the ASE but also includes the sum of the squared coefficients.

Cost = λ ASE + (1− λ)

(

1

L

L∑

l=0

b2l +
1

L

L∑

l=1

1

K

K∑

k=0

a2lk

)

︸ ︷︷ ︸

“average squared coefficient”

, 0 < λ < 1 (5)

In this way the absolute value of the coefficients are kept low on average.
A general approach to finding the order of ϕ(·) is as follows. Use a portion of the

samples for training and the remaining ones serve as test for the generalization capabilities
of the trained ϕ(·). Then different model orders can be tried and generalization can be
assessed.

References

H.-A. Loeliger, Introduction to Estimation and Machine Learning, ETH, Lecture Notes,
2020.

J.G. Proakis und D.G. Manolakis, Digital Signal Processing, 4th Edition, Prentice Hall,
2006.

5 Experiments

Copy /home/isistaff/glf/fachprak_isi/SV6 to your home directory:
(cp -irL /home/isistaff/glf/fachprak_isi/SV6 ./)
In these experiments you will use the Matlab command line and complete some Matlab
script files (.m files) which are located in the SV6/matlab directory. Furthermore, we will
have a look at the Matlab “Deep Learning Toolbox”. Start Matlab from a shell by
switching into the directory SV6/matlab and invoking matlab &.

1. The script funny.m provides a funny target function f(·) for our black box in
Figure 1. Have a look at it by typing on the Matlab command line:
> x = linspace(-1.5, 1.5); plot(x, funny(x));

funny consists of pieces of an inverse quadratic, linear and sinusoidal function.

2. The noise Z in Figure 1 is also implemented. This is done by giving the noise

variance as a second parameter:
> plot(x, funny(x, 0.005), ’.’);

5.1 Polynomial Curve Fitting

The script mypolyfit.m generates sample data of the funny function for a given noise
variance var. The column vector xS holds the linearly spaced abscissae x(k) and the
column vector yS holds the corresponding values y(k) = f(x(k)) + Zk. The script plots
the sample data in blue, the actual funny function f(·) in black and the polynomial
function ϕ(·) in red.

4



3. Implement the solution to the system of equations given in Equation (2) in
mypolyfit.m. You can test your implementation by typing > mypolyfit();

Hints: The construction of the matrix U is already implemented in the script.
The standard routine in Matlab for solving a system of equations is the
backslash operator ’\’. For information on its usage type > help mldivide.
The transposition A

T is written in Matlab as A’.
An even simpler way to solve the least squares problem is to use Matlabs
backslash operator for the over-determined equation system Ua = y.4

4. Run the script for different polynomial orders n, number of samples m and noise
variances var. All three parameters can be passed to the function, e.g:
> mypolyfit(20, 100, 0.001);

The following observations can be made:

• The greater m and the lower the variance, the better the fit. More information
about the funny function is obtained.

• If n is too low the fit will be poor, e.g. if n = 1 then ϕ(·) is a straight line fitted to
the sample data.

• If n is too high then over-fitting occurs, especially if m is low, e.g n = 27 , m = 50.
If n+ 1 ≥ m and m is moderate, the fit will go through the sample points but
otherwise be very bad, e.g. n = 12, m = 9. The former effect disappears for larger
m. This is because the rank5 of the matrix U does not increase arbitrarily but – in
this specific example – saturates at about 34. For even larger values m numerical
problems can arise depending on the solution of Equation (2).

The script autopolyfit.m does the polynomial fitting successively with increasing order
n = 1, . . . , 50.6

5. Try the following: > autopolyfit(25) to see how polynomials with increasing
orders are fitted to m = 25 data points.7

The upper plot in the figure shows the fit in a similar way as mypolyfit did. The lower
plot shows ASE1 in blue and ASE2 in black for increasing order n. While ASE1 is taken
with respect to the sample data as in Equation (1), ASE2 is the ASE with respect to a
huge number of noiseless samples and visualizes how the fit will perform on new data.
At the end autopolyfit makes a choice on n such that n ≤ m− 1 and ASE2 is minimal.
The result is shown as a green line in the upper plot and the choice is written in the title
of the lower plot.
Notice that the occurrence of over-fitting can be detected in the rise of ASE2. We try
now to lessen the over-fitting even for few samples m by choosing the sample data points
as in Equation (4).

6. Locate the generation of the samples abscissae xS in autopolyfit and replace it
by an implementation of Equation (4).

4Note that different implementations of the solution to this equation can yield quite differing results
due to differing numerical stability.

5The number of independent columns or rows, whichever is smaller.
6autopolyfit.m invokes Matlabs polyfit.m function, which essentially uses the same procedure as we

did, but makes use of the QR-decomposition to achieve higher numerical stability.
7If you want to have a slower or faster display then edit the pause(0.2); statement (last line in the

for-loop) in autopolyfit.m to your needs.

5



Hint You can directly implement a vectorized version of the equation by noting
that the Matlab statement (1:m) produces a vector (1, 2, . . . m).

7. Again try: > autopolyfit(25). Note the new spacing of the sample data points.
Try other choices of m.

For high values m the spacing of the sample data x(k) does not seem to play a great role
anymore.
Next we are going to see whether we still can do the fit with noisy observations.
autopolyfit takes the noise variance as a second argument and returns ASE2 for the
chosen polynomial order n.

8. Vary m and var but keep the ratio m/var constant, e.g.
> autopolyfit(50, 0.005), . . .(500, 0.05), . . .(5000, 0.5).

Note that the resulting minimal ASE2 and the visual fit are similar in all cases similar,
even for large noise variances. Also notice that ASE1 approaches the noise variance as n
increases, whereas ASE2 usually takes on much smaller values.
You might have observed that for orders n & 38 both ASE1 and ASE2 sometimes
suddenly increase or fluctuate strongly. This is because the solution to the equation
system (2) is not numerically stable.8

5.2 Regression with a Two-Layer Perceptron

The script myneuralfit.m implements a two-layer perceptron as in Figure 2, but with
only one input and a flexible number L of hidden variables. It takes L, the number of
sample data points m and the noise variance as arguments. Training is done using a
so-called conjugate gradient algorithm which relies on the error gradients obtained from
backpropagation.

9. Look at how the neural network is implemented and trained in myneuralfit.m.
Note the following three statements which make use of Matlab’s neural network
toolbox: newff(. . .) creates a feed forward network – a two-layer perceptron in our
case, train(. . .) trains the network coefficients and sim(. . .) calculates the
network response to some input.

As the network is trained, the ASE (which is to be minimized) is displayed. Once the
training is done9, the network response is displayed in red together with the sample data
points (blue) and the actual values of the funny function (black). If a fourth argument of
−1 is given then a polynomial fit with order n = L is displayed in green.

10. Run > myneuralfit(20, 100, 0.001, -1); (compare with step number 4). This
might take some seconds.10

Both the polynomial and the neural network fit visually perform quite similar. Since m

is large compared to L (and n) the fit is ok.
Now we make the fitting task more difficult by choosing the abscissae x(k) of the sample
points randomly, i.e. uniformly distributed over the interval of interest.

8Normally Matlab issues warnings under such conditions but these have been suppressed in this example.
9The training can be stopped early by clicking on the “Stop Training” button in the figure.

10As with all neural network training methods, the result depends on the initial values of the weights.
Since these are usually chosen somewhat randomly, individual runs might lead to bad results. Remember:
there is no guarantee for optimality. In rare occasions you might have to run scripts twice to get a good
impression.

6



11. Change the generation of xS in the script by commenting out the respective line
with % and uncommenting the next line.

12. Fitting now to few sample data points can result in over-fitting.
Run e.g: > myneuralfit(20, 30, 0.001, -1);. Experiment to get a feeling of
how the network and the polynomial fit are behaving.

13. Reduce the effect of over-fitting by decreasing the model order:
> myneuralfit(9, 30, 0.001, -1);.

14. Actually, fitting to many noisy sample points results in over-fitting too.
> myneuralfit(40, 800, 0.1, -1);.

Next we make use of regularization as in Equation (5), more precisely we use Bayesian

regularization which chooses the parameter λ automatically. We do this by applying a
different training method from the Matlab neural network toolbox.

15. On the line where the network is created change the last parameter given to the
newff function to ’trainbr’. This tells Matlab to use the Bayesian regularization
based training function trainbr instead of the conjugate gradient based training
function traincgf.

16. Now try again: > myneuralfit(20, 30, 0.001, -1); and
> myneuralfit(40, 800, 0.1, -1);.

Notice that training now takes longer but over-fitting is reduced considerably.
As a last experiment we do a two dimensional fitting and let f(·) be the Matlab function
peaks(). The network is the one shown in Figure 2 with two inputs (x and y

coordinate), one output (z coordinate of a point) and L = 50 hidden variables. This time
the sample data does not have any additive noise.

17. Have a look at the peaks (close open figures first):
> x = linspace(-1, 1, 50); y = x;

> [xx, yy] = meshgrid(x, y); surf(xx, yy, peaks(50));

18. Train the network and display the result:
> neuralpeaks();

19. In the neuralpeaks.m script change the training function back to ’traincgf’, run
again and look what happens.

Congratulation, you have reached the end of the experiments. If there is still time left,
feel free to play around with the functions provided in the Matlab “Deep Learning
Toolbox”.

7


