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Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of membrane proteins.
Various roles in different cellular compartments have been proposed for prohibitin proteins. Recent
experiments, however, identify large assemblies of two homologous prohibitin subunits, PHB1 and PHB2, in
the inner membrane of mitochondria as the physiologically active structure. Mitochondrial prohibitin
complexes control cell proliferation, cristae morphogenesis and the functional integrity of mitochondria. The
processing of the dynamin-like GTPase OPA1, a core component of the mitochondrial fusion machinery, has
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prghibitin been defined as a key process affected by prohibitins. The molecular mechanism of prohibitin function,
OPA1 however, remained elusive. The ring-like assembly of prohibitins and their sequence similarity with lipid
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raft-associated SPFH-family members suggests a scaffolding function of prohibitins, which may lead to
functional compartmentalization in the inner membrane of mitochondria.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A screen for potential regulators of cell proliferation led to the
identification of a gene with apparently anti-proliferative activity
which hence was termed prohibitin [1]. Although this activity was
later attributed to the 3’ untranslated region of the gene [2], prohibitin
became the founding member of a conserved protein family, with two
highly homologous members, termed prohibitin 1 (PHB1) and
prohibitin 2 (PHB2), ubiquitously expressed in eukaryotic cells [3,4].
A diverse array of cellular roles have been attributed to prohibitins
since then, linking their function to aging [5,6] and a variety of disease
states, like inflammation [7,8], obesity [9] and cancer [10,11]. Their
molecular activity, however, remained largely elusive. PHB2 was
identified as a binding partner of the IgM isotype of the B-cell receptor
in the plasma membrane (and termed BAP37) [12] and, independently
of PHB1, as a repressor of nuclear estrogen receptor activity (and
termed REA) [13]. Besides the initially proposed role in cell cycle
progression [1,14], prohibitins have also been implicated in transcrip-
tional regulation [13,15], the regulation of sister chromatid cohesion
[16], cellular signaling [12,17], apoptosis [18,19] and mitochondrial
biogenesis [20-23]. How such a diverse range of functions can be
exerted by evolutionary conserved proteins remained poorly under-
stood and is controversially discussed, even more as prohibitins were
localized to different cellular compartments, the plasma membrane,
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the nucleus and mitochondria in different studies. Recent functional
studies, however, emphasize the role of mitochondria-localized
prohibitins for cellular homeostasis. Here, we will review mitochon-
drial functions of prohibitins and the emerging evidence that the
majority of cellular functions, if not all, can be attributed to prohibitin
complexes localized in the inner membrane of mitochondria.

2. Functional prohibitin complexes in the inner membrane
of mitochondria

Two members of the prohibitin family, PHB1 and PHB2, which are
highly homologous to each other and share more than 50% identical
amino acid residues, are expressed in eukaryotic cells and were
localized to the mitochondrial inner membrane in various organisms
[24,5,20,23]. Hydrophobic stretches at the amino terminal end anchor
PHB1 and PHB2 to the membrane, while large carboxy terminal
domains of ~30 kDa are exposed to the intermembrane space. These
domains consist of a so-called PHB domain, characteristic of the SPFH-
family of membrane proteins (see below), and a predicted coiled-coil
region at the carboxy terminal end, which is crucial for the assembly of
prohibitin complexes in yeast [25] (Fig. 1A).

Large membrane-bound complexes of PHB1 and PHB2 have been
identified in various organisms. These structures are composed of
multiple copies of PHB1 and PHB2 subunits and possess a native
molecular mass of >1 MDa [21-23]. As first noted in yeast and later
confirmed in Caenorhabditis elegans and mammalian cells, deletion of
one prohibitin gene leads to the loss of both prohibitin proteins
[20,23,26-28]. This does not reflect transcriptional co-regulation of
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Fig. 1. Complex assembly of prohibitin subunits in mitochondria. Schematic representa-
tion of prohibitin subunits PHB1 and PHB2, the ring-shaped prohibitin complex and its
topology in the mitochondrial inner membrane. (A) Domain structures of mammalian
prohibitins. Gray boxes indicate hydrophobic stretches; blue, PHB domains (also termed
SPFH domains); violet, coiled-coil domains. Numbers in corresponding colours refer to
the respective amino acid residues in murine PHB1 and PHB2. (B) Dimers of PHB1 and
PHB2 as building blocks of prohibitin complexes. Heterodimers assemble into ring-like
prohibitin complexes with alternating subunit composition. The average stoichiometry of
the complex is speculative. The average diameter of ring complexes is ~20-25 nm. (C) The
prohibitin complex is anchored to the mitochondrial inner membrane via N-terminal
hydrophobic stretches. Carboxy terminal PHB (SPFH) and coiled-coil domains are exposed
to the intermembrane space (IMS). IM = inner membrane.

both genes, but rather degradation of prohibitin subunits in the
absence of the respective assembly partner. Hence, complexes formed
by PHB1 and PHB2 subunits represent the physiologically active
structure and functional defects observed upon deletion or inactiva-
tion of individual prohibitin genes must be attributed to the loss of
these complexes. This is also in agreement with coimmunoprecipita-
tion experiments in human fibroblasts which revealed a quantitative
assembly of PHB1 and PHB2 subunits [29].

Although detailed structural information is still lacking, studies in
yeast provided first insight into the subunit arrangement of prohibitin
complexes in the inner membrane of mitochondria (Fig. 1). Single
particle electron microscopic images of purified yeast prohibitin com-
plexes revealed a ring-like shape with a diameter of ~20-25 nm [25].
This is consistent with earlier crosslinking studies which detected only
heteromeric crosslink adducts and therefore pointed to a ring-like
assembly of alternating PHB1 and PHB2 subunits [30]. Heterodimers of

PHB1 and PHB2 appear to represent building blocks for larger ring
assemblies. PHB1 newly imported into yeast mitochondria associates
first with Tim8/13 complexes in the intermembrane space, which
function as molecular chaperones during the biogenesis of inner and
outer membrane proteins [31]. The subsequent insertion into the inner
membrane is mediated by the TIM23 translocase and accompanied by
the assembly with PHB2 subunits into ~120 kDa complexes, before
large ring complexes are formed [25]. Evidence for homomeric
interactions between prohibitin subunits were not obtained in these
studies further corroborating the notion that prohibitin subunits are
active only in heterooligomeric assemblies.

3. Mitochondria-localized prohibitin complexes and
cell proliferation

Severe phenotypes are associated with the loss of prohibitin
subunits in multicellular organisms. Prohibitins are required for the
embryonic development of C. elegans [23] and mice [32,27,28],
hampering further functional studies on mammalian prohibitins on
the organismal level. Knock-down experiments on a cellular level,
however, revealed essential functions of PHB1 and PHB2 for cell
proliferation [28,33]. Deletion of Phb2 leads to the loss of both PHB1 and
PHB2 proteins and impairs cell proliferation of mouse embryonic
fibroblasts (MEFs) [28]. These findings are in striking contrast to the
previously proposed anti-proliferative role of PHB1 [1,14] and the
predicted function as a negative regulator of E2F-mediated transcrip-
tion [34-36].

Despite compelling evidence for a mitochondrial localization of
prohibitins, PHB1 and PHB2 have also been localized to the nucleus and
the plasma membrane in certain cell types [19,9,37,7,17,26]. This raises
the possibility that the requirement of prohibitins for cell proliferation
reflects non-mitochondrial activities. Therefore, a functional comple-
mentation assay was developed to assess the dependence of cell
proliferation on mitochondrial targeting of PHB2 [28]. Unconventional
non-cleavable presequences at the amino terminal end of yeast
prohibitins as well as murine PHB2 ensure mitochondrial sorting and
insertion into the inner membrane [25,26]. Replacement of arginine
residues by alanine within the sorting signal of murine PHB2 impairs
targeting to mitochondria [28]. Expression of various mutant PHB2
variants in Phb2-deficient MEFs revealed a striking correlation
between cell growth and mitochondrial targeting of PHB2: only
those PHB2 variants that were correctly targeted to mitochondria were
capable of maintaining cell proliferation [28]. At the same time, the
growth of MEFs was not affected by mutations in predicted nuclear
localization signals in PHB2. These findings suggest strongly that cell
proliferation depends on prohibitin functions within mitochondria.

4. Prohibitin and the morphogenesis of mitochondrial cristae

Mitochondria constitute a reticulated network of interconnected
tubules which is constantly remodelled by balanced fusion and fission
events [38-40]. This dynamic behaviour depends on conserved
protein machineries in the outer and inner membrane, including
mitofusins and OPA1, dynamin-like GTPases in the outer and inner
membrane of mitochondria, respectively [41,42]. The loss of prohibi-
tins in MEFs or HeLa cells has severe consequences for the reticular
mitochondrial network and leads to the accumulation of fragmented
mitochondria [26,28]. Similarly, an abnormal mitochondrial morphol-
ogy was observed in body wall muscle cells of C. elegans upon down-
regulation of prohibitins [23]. These phenotypic alterations are most
easily explained by an impaired fusion of mitochondrial membranes
and concomitantly ongoing fission events and hence suggest that
the prohibitins are essential components of the mitochondrial fusion
machinery.

A detailed ultrastructural analysis in prohibitin-deficient MEFs
revealed a defective morphogenesis of cristae in the absence of
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prohibitins [28]. Lamellar-shaped cristae were either almost comple-
tely absent or vesicular-shaped structures accumulated within
prohibitin-deficient mitochondria. These structural alterations were
attributed to the loss of long isoforms of OPA1 [28], which is not only
required for mitochondrial fusion but also for cristae maintenance
[43,44]. The activity of OPA1 depends on the balanced formation of
long (L-OPA1) and short (S-OPA1) isoforms, the latter being derived
from long isoforms by proteolytic processing [45,46,92]. The selective
loss of long OPA1 isoforms in the absence of prohibitins suggests
therefore an accelerated OPA1 processing and is sufficient to ratio-
nalize the aberrant mitochondrial ultrastructure in prohibitin-defi-
cient cells. Consistently, expression of a non-cleavable OPA1 variant in
these cells restored the tubular mitochondrial morphology demon-
strating that prohibitins regulate mitochondrial morphology via OPA1
[28].

An impaired processing of OPA1 also explains the observed link of
prohibitin function to apoptotic processes. Prohibitin-deficient MEFs
did not undergo apoptosis, but exhibited an increased susceptibility
towards various stimuli of apoptosis [28]. Notably, knock-down of
individual prohibitin genes in HeLa or human T cells was observed to
induce apoptosis [26,47] indicating cell-type specific differences. The
induction of apoptosis requires restructuring of mitochondrial cristae
at early stages of apoptosis to facilitate cytochrome c release from the
intermembrane space [48,49], a process controlled by OPA1 [50]. A
current model suggests that a complex containing L- and S-OPA1
controls mitochondrial cristae junctions and prevents the redistribu-
tion of cytochrome c from the cristal lumen to the peripheral inter-
membrane space [50]. Accordingly, the loss of L-OPA1 in prohibitin-
deficient MEFs might facilitate cytochrome c release from intracristal
compartments and allow the progression of the apoptotic programme.
Consistently, expression of a non-cleavable L-OPA1 variant substitutes
for the absence of prohibitins and protects prohibitin-deficient MEFs
against apoptosis, demonstrating that prohibitins exert their anti-
apoptotic function via OPA1 [28]. The processing of OPA1 thus appears
to represent the key cellular process controlled by prohibitins. This
notion is further substantiated by the observation that the growth of
prohibitin-deficient MEFs is at least partially restored upon expression
of L-OPA, suggesting a coupling of cell proliferation to mitochondrial
morphogenesis [28].

5. Prohibitins and the respiratory chain

Loss of the prohibitin complex in MEFs or in yeast does not affect
the mitochondrial membrane potential and respiratory activity
[5,20,28] excluding an essential role of prohibitins for the biogenesis
of the respiratory chain. However, cell-type specific differences are
likely to exist. Recently, a crucial role of PHB1 for angiogenesis was
revealed [33]. A reduced mitochondrial membrane potential and com-
plex I activity was observed upon knock-down of PHB1 in endothelial
cells, which was associated with a senescent-like phenotype [33].
Similarly, loss of prohibitins in yeast shortens replicative life span
[20,6]. While this has been attributed to a defective mitochondrial
segregation in old mother cells in yeast [51], the senescent phenotype
of prohibitin-deficient endothelial cells was correlated with an
increased production of reactive oxygen species (ROS) in these cells
[33]. Overexpression of PHB1 in intestinal endothelial cells decreased
the accumulation of ROS suggesting that prohibitins protect against
oxidative stress [8]. As PHB1 but not PHB2 was overexpressed in these
experiments, it will be of interest to examine the requirement of PHB2
for the apparently protective function of PHB1.

How prohibitins may affect complex I activity and ROS production
in endothelial cells is currently not understood. Interestingly, an
increase in ROS production and mitochondrial fragmentation was
recently reported in a Drosophila model for optic atrophy caused by
mutations in Opal [52], raising the possibility that prohibitins act also
in this process via OPA1. Moreover, it is noteworthy in this context that

prohibitins have been co-purified with mitochondrial DNA nucleoids
from Xenopus oocytes and HelLa cells [53,54]. Evidence for a reduced
copy number and an altered status of mtDNA upon RNAi-mediated
depletion of PHB1 from HeLa cells was provided, which was accom-
panied by reduced protein levels of transcription factor A (TFAM) [55],
a DNA binding protein with essential functions for mtDNA metabolism
[56]. Although a potentially suppressive effect of OPA1 has not been
examined in these experiments, PHB1 appears to affect mtDNA
organization in an OPA1-independent manner, as down-regulation of
OPA1 did not recapitulate the effect of a PHB1 depletion on mtDNA
[55].

6. Prohibitins as regulators of proteolytic processes in the
inner membrane

While the regulation of mitochondrial dynamics and the proces-
sing of OPA1 have been identified as central processes controlled by
prohibitins in mammalian cells, their activity remains poorly defined
ata molecular level. The accelerated processing of OPA1 in the absence
of prohibitins links their function to proteolytic processes in the inner
membrane. This is reminiscent of earlier findings in yeast, which
identified prohibitins in large assemblies with the m-AAA protease, a
conserved ATP-dependent protease in the inner membrane (Fig. 2)

PHB complex

m-AAA
protease

PHB complex

m-AAA
protease

Fig. 2. Supercomplex of prohibitins with the ATP-dependent m-AAA protease. In
contrast to prohibitins, m-AAA protease subunits expose their catalytic domains to the
matrix space. The binding of the m-AAA protease to the inner or outer surface of ring-
shaped prohibitin complexes remains to be established. (A) Side view of the assembled
supercomplex. (B) Potential arrangement of prohibitins and m-AAA protease within the
supercomplex. IMS = intermembrane space, IM = inner membrane.
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[21]. m-AAA proteases ensure protein quality control in the inner
membrane and control crucial steps during mitochondrial biogenesis
[57,58]. Loss of functionally conserved mammalian proteases results in
neurodegeneration and impairs axonal development [59-61]. Dele-
tion of prohibitins in yeast results in an accelerated proteolysis by the
m-AAA protease suggesting a regulatory role of prohibitins during the
degradation of membrane proteins [21]. Accordingly, the absence of
prohibitins in mammalian cells may promote OPA1 processing by m-
AAA proteases. Indeed, m-AAA proteases were proposed to mediate
processing of OPA1 [45]. Reconstitution experiments in yeast revealed
that various isoforms of the m-AAA protease differing in their subunit
composition are able to cleave OPA1 [62]. However, direct evidence for
a role of m-AAA proteases for OPA1 processing in mammalian cells
still needs to be awaited. Notably, deletion of prohibitin genes in yeast
does not affect the processing of the OPA1-homologue Mgm1, which is
mediated by the rhomboid protease Pcp1 in the inner membrane [63-
65]. Although functionally conserved and linked to OPA1 processing
|64,66], the mammalian rhomboid protease PARL is not required for
the cleavage of OPA1 [62,67]. It is therefore an attractive possibility
that the role of prohibitins in this process is directly related to the
peptidase involved in processing.

7. Prohibitins — organizers in the inner membrane
of mitochondria?

Prohibitins have been proposed to exert chaperone activity [22].
However, in the absence of evidence for an association of prohibitin
complexes with non-native polypeptides or assembly intermediates,
alternative activities of prohibitins appear more likely. The size and
the ring shape of prohibitin complexes suggest that they may act as
scaffolds defining functional subcompartments, important for specific
processes in the inner membrane. Such an activity of prohibitins may
explain synthetic lethal interactions of prohibitins with a diverse set of
genes in yeast [20,21,68,69]. These include ATP10 and ATP23, which
code for substrate-specific chaperones in the assembly of the F,Fo-ATP
synthase [69]. The genetic interaction of prohibitins with these
assembly factors identifies the assembly of the Fo-particle as a process
critically depending on prohibitin function and may reflect the
hazardous effect of Fp-assembly intermediates in the absence of
prohibitins [69]. Interestingly, processes in the outer membrane
appear to be affected by prohibitins as well. Prohibitins are essential in
cells lacking Mmm1, Mdm10 and Mdm12 [20], which were identified
originally to affect mitochondrial morphology and inheritance, but
recently were linked to the assembly of 3-barrel proteins in the outer
membrane [70].

A function of prohibitins as membrane scaffolds is further
suggested by their sequence similarity to a group of distantly related
membrane proteins found in prokaryotes and eukaryotes, termed the
SPFH-family (for stomatin/prohibitin/flotillin/HfIK) (Fig. 3) [71-74].
Members of this widespread family form large assemblies in
membranes and show an increased sequence similarity in predicted
C-terminal coiled-coil regions. They are characterized by the presence
of a PHB domain (also termed SPFH domain), which was proposed to
have evolved independently in different proteins by convergent
evolution [75]. The function of this domain is presently unclear but
may be to facilitate partitioning into functional membrane domains
[73,4,74]. Several members of this family have been found in
association with lipid rafts [76-78] or to directly interact with lipids
[79]. It should be noted, however, that such evidence does not exist for
prohibitins nor has the existence of lipid microdomains been
demonstrated in mitochondria. Nevertheless, it is conceivable that
prohibitins may not only act as protein scaffolds but also affect the
lateral partitioning of lipids in the inner membrane. This may explain
the genetic interaction of prohibitin genes in yeast with PSD1 coding
for a mitochondrial phosphatidyl serine decarboxylase [68]. Moreover,
increasing evidence points to an important role of lipids and lipid
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Fig. 3. Phylogenetic analysis of SPFH protein family members. Unrooted dendrogram
depicting the relationship of 31 SPFH (PHB) domain containing proteins inferred from
the neighbour-joining method. Supporting bootstrap values are indicated at node
positions. Phylogenetic analyses were conducted with MEGA4 software [91].

microdomains in various cellular fusion events [80-83] and apoptotic
processes [84]. Surrounding membrane lipids may affect the vectorial
membrane dislocation of OPA1 or the proteolytic activity of m-AAA
proteases, hence providing a rationale for the control of mitochondrial
morphology by prohibitins.

8. Concluding remarks

Increasing evidence highlights the importance of high structural
organization of the inner membrane for proper functioning of
mitochondria. While protein import has been recognized early on to
occur at contact sites between inner and outer membrane [85,86], a
functional compartmentalization of other processes, like the fusion
and fission of mitochondrial membranes, is just emerging. Respiratory
supercomplexes are thought to increase the efficiency of oxidative
phosphorylation by promoting substrate channelling [87,88]. Even
more, higher oligomers may exert additional functions, as exemplified
by higher oligomers of the F;Fo-ATP synthase that contribute to the
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shaping of cristae to sustain efficient ATP synthesis [89,90]. Prohibitins
acting as protein or even lipid scaffolds may offer another means to
ensure the functional integrity of the inner membrane. In view of their
critical role for mitochondrial morphogenesis and functionality, a
detailed characterization of their scaffolding function may broaden
our understanding of how a functional compartmentalization of the
inner membrane helps to maintain mitochondrial integrity.
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