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SUMMARY

To understand the role of FoxO family members
in hematopoiesis, we conditionally deleted
FoxO1, FoxO3, and FoxO4 in the adult hemato-
poietic system. FoxO-deficient mice exhibited
myeloid lineage expansion, lymphoid develop-
mental abnormalities, and a marked decrease
of the lineage-negative Sca-1+, c-Kit+ (LSK)
compartment that contains the short- and
long-term hematopoietic stem cell (HSC)
populations. FoxO-deficient bone marrow had
defective long-term repopulating activity that
correlated with increased cell cycling and apo-
ptosis of HSC. Notably, there was a marked
context-dependent increase in reactive oxygen
species (ROS) in FoxO-deficient HSC compared
with wild-type HSC that correlated with
changes in expression of genes that regulate
ROS. Furthermore, in vivo treatment with
the antioxidative agent N-acetyl-L-cysteine re-
sulted in reversion of the FoxO-deficient HSC
phenotype. Thus, FoxO proteins play essential
roles in the response to physiologic oxidative
stress and thereby mediate quiescence and en-
hanced survival in the HSC compartment,
a function that is required for its long-term
regenerative potential.

INTRODUCTION

The FoxO (Forkhead O) subfamily of transcription factors

plays an important role in diverse physiologic processes,

including induction of cell cycle arrest, stress resistance,

and apoptosis (Greer and Brunet, 2005). Four members

of the FoxO subfamily, FoxO1, FoxO3, FoxO4, and

FoxO6, are important downstream targets of the evolu-

tionarily conserved PI3K-AKT pathway that transduces

survival signals in response to growth factor stimulation.

Growth factors or insulin activate the serine/threonine ki-

nase AKT and trigger a spectrum of physiologic cellular re-

sponses, including cell proliferation, survival, growth, and

metabolism, through downstream effectors, including

BCL2 family members, caspases, NFkB, cell cycle regula-

tors, mTOR, and FoxO transcription factors (Accili and Ar-

den, 2004). AKT directly phosphorylates FoxO1, FoxO3,

and FoxO4 at three conserved residues (Biggs et al.,

1999; Brunet et al., 1999), resulting in nuclear exclusion

and subsequent degradation. In the absence of growth

factors or insulin, or with stress stimuli, FoxOs reside in

the nucleus and are active as transcription factors, result-

ing in proapoptotic signaling via induction of TRAIL, FasL,

and Bim (Brunet et al., 1999; Dijkers et al., 2000); cell cycle
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Figure 1. Loss of FoxO Leads to Myeloid Expansion in MxCre+;FoxO1/3/4L/L Animals

(A) Bar graphs of total white blood cell count (WBC); percentage of neutrophils and lymphocytes; and splenic, thymic, and liver weights representative

of Mx-Cre+ or Mx-Cre�;FoxO1/3/4L/L animals 4 weeks after pI-pC treatment. FoxO-deficient animals developed leukocytosis characterized by

a relative neutrophilia and lymphopenia, and a significant increase in spleen and liver weights. Mean values ± SEM are plotted for a cohort of Mx-Cre�

(n = 6) or Mx-Cre+ (n = 7) animals.
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arrest by activation of p27, p130, p21, and repression of

Cyclin D expression (G1/S arrest) (Kops et al., 2002b; Me-

dema et al., 2000; Seoane et al., 2004); activation of Cyclin

G2 (G0/G1 arrest) (Martinez-Gac et al., 2004); and activa-

tion of Cyclin B and polo-like kinase (G2/M arrest) (Alvarez

et al., 2001). In addition, the oxidative stress response is

regulated in part by FoxO induction of MnSOD, catalase,

and GADD45 (Kops et al., 2002a; Nemoto and Finkel,

2002; Tran et al., 2002), and has been linked to longevity

and dauer formation in C. elegans (Honda and Honda,

1999; Lee et al., 2003; Murphy et al., 2003).

In the hematopoietic system, unrestrained PI3K signal-

ing contributes to the pathogenesis of leukemia and auto-

immune disease, whereas impaired PI3K signaling may

result in immunodeficiency (Coffer and Burgering, 2004;

Deane and Fruman, 2004). The importance of FoxOs in tu-

morigenesis in this context is underscored by findings that

leukemia and lymphoma oncogenes, including BCR/ABL,

FLT3-ITD, and NPM/ALK, mediate proliferation and sur-

vival signaling in part by activation of the PI3K-AKT path-

way and inhibition of FoxOs (Gu et al., 2004; Komatsu

et al., 2003; Scheijen et al., 2004). In addition, FoxO3

and FoxO4 are fusion partners of MLL in acute myeloid

leukemias (AMLs) associated with t(6;11)(q21;q23) or

t(X;11)(q13;q23), respectively (Borkhardt et al., 1997; Hill-

ion et al., 1997; Parry et al., 1994). Furthermore, activation

of the PI3K-AKT pathway through disruption of PTEN

function results in AML in murine models (Yilmaz et al.,

2006; Zhang et al., 2006).

Physiologic regulation of the dynamic balance between

hematopoietic stem cell (HSC) self-renewal and differenti-

ation is not fully understood, though recent studies under-

score the importance of cell cycle, apoptosis, and oxida-

tive stress response (reviewed in Attar and Scadden,

2004; Ito et al., 2004, 2006; Passegue et al., 2005). Al-

though FoxOs influence each of these processes through

their downstream effectors, deficiency of any one of the

FoxO family members does not result in an overt hemato-

poietic phenotype. FoxO1-deficient animals show embry-

onic lethality at day E10.5 due to defects in angiogenesis

(Furuyama et al., 2004; Hosaka et al., 2004); FoxO3-defi-

cient animals become infertile due to global primordial

follicle activation with subsequent oocyte exhaustion

(Castrillon et al., 2003), as well as develop lymphoprolifer-

ation and inflammation in a FoxO3 gene-trap model (Lin

et al., 2004); and FoxO4-deficient animals are viable and

have no overt phenotype (Hosaka et al., 2004). We

hypothesized that FoxO family members are functionally
redundant in the hematopoietic system, and therefore

examined the effect of FoxO deficiency in hematopoietic

stem and progenitor cells using mice engineered with

conditional knockout alleles of FoxO1, FoxO3, and/or

FoxO4, respectively.

RESULTS

Generation of Mx-Cre+;FoxO1/3/4L/L Mice

Mice harboring the interferon-inducible transgene Mx-

Cre in a FoxO1/3/4LoxP/LoxP (hereafter FoxO1/3/4L/L) back-

ground, or other genotypic combinations thereof (Fig-

ure S1), were generated. Cre expression and subsequent

FoxO excision was induced in 4 week old mice, and

subsequent analyses were performed 4–5 weeks after

polyinosine-polycytidylic acid (pI-pC) treatment, at which

time there was full excision of all three alleles in bone mar-

row (Figure S2A). pI-pC was also administered to Mx-Cre�

littermate controls.

Loss of FoxO Perturbs Myeloid and Lymphoid

Lineages

Analysis of the peripheral blood 4 weeks after pI-pC in-

duction showed an �2-fold increase in the white blood

cell (WBC) count in Mx-Cre+;FoxO1/3/4L/L animals com-

pared with Mx-Cre� littermate controls that was attribut-

able to an absolute and relative increase in the number

of neutrophils (Figure 1A). There was also a significant in-

crease in reticulocytes (5.8-fold increase, p = 0.05) without

a significant difference in hemoglobin or hematocrit, and

a slight decrease in platelet number (28% decrease; p =

0.05, data not shown). There was an �2.5-fold increase

in spleen weight (p < 0.001) and an �1.5-fold increase in

liver weight (Figure 1A, p < 0.01) in FoxO-deficient animals

(see Table S1 in the Supplemental Data). Histopathologic

analysis of Mx-Cre+;FoxO1/3/4L/L showed mild to moder-

ate expansion of the red pulp by extramedullary hemato-

poiesis comprised of maturing myeloid and erythroid cells

(Figure 1B). Flow cytometry corroborated these findings,

showing a 3.5-fold increase in the Gr1+Mac1+ population

(p = 0.03) and an �6.1-fold increase in Ter119+CD45�

population (p = 0.04) in the spleen (Figure 1D). Spleno-

cytes derived from Mx-Cre+;FoxO1/3/4L/L mice showed

increased myeloid colony formation when plated in

methylcellulose supplemented with hematopoietic cyto-

kines compared with Mx-Cre�;FoxO1/3/4L/L controls

(Figure 1C). However, there was no serial replating activ-

ity, nor did colonies grow in the absence of growth factors.
(B) Splenic histology of representative Mx-Cre� or Mx-Cre+;FoxO1/3/4L/L mice 4 weeks after pI-pC treatment showed expansion of myeloid and ery-

throid elements in Mx-Cre+ animals. Arrow highlights maturing myeloid forms.

(C) Splenic cells from Mx-Cre+ excised animals (n = 3) at 4 weeks after pI-pC were more efficient at myeloid colony formation than Mx-Cre� nonex-

cised littermates (n = 3). Unfractionated bone marrow plated on M3434 showed a consistent decrease in number, but no significant differences in the

types, of colonies formed (GM, granulocyte macrophage; M, macrophage; G, granulocyte; BFU-E, burst-forming unit-erythroid; GEMM, granulocyte,

erythroid, macrophage, megakaryocyte). Mean values ± SEM shown. A representative experiment is shown.

(D) Flow cytometric analysis of spleens from representative Mx-Cre� or Mx-Cre+;FoxO1/3/4L/L mice 4 weeks after pI-pC treatment confirmed an in-

creased population of mature myeloid and erythroid cells in Mx-Cre+ animals [3.5-fold increase in Gr1+Mac1+, p = 0.03; 6.1-fold increase in

Ter119+CD45�, p = 0.04; n = 7(Mx-Cre+), n = 5 (Mx-Cre�)].
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Figure 2. Reduced Size of HSC and CLP Compartments and Impaired Myeloid Colony-Forming Activity In Vitro in FoxO-Deficient

Animals

(A) Multiparameter flow analysis showed a decrease in the size of the HSC(LSK) and CLP, but not myeloid progenitor, compartments in a represen-

tative Mx-Cre+;FoxO1/3/4L/L mouse 4 weeks after pI-pC treatment.

(B) FoxO-deficient bone marrow exhibited a 4.6-fold decrease in the size of the HSC (Lin� Sca-1+ c-Kit+/LSK) compartment without a significant

effect on the size of the myeloid progenitor (Lin� c-Kit+ Sca-1�) compartment. LT-LSK (Lin� Sca-1+ c-Kit+ Flk2�) population was more reduced in

size than ST-LSK (Lin� Sca-1+ c-Kit+ Flk2+) population (8- versus 3-fold, respectively). n = 8 (Mx-Cre+), n = 3 (Mx-Cre�); mean values ± SEM are

shown.
328 Cell 128, 325–339, January 26, 2007 ª2007 Elsevier Inc.



Although similar, findings in the bone marrow were more

subtle than in the spleen (Figure S3). Long-term FoxO de-

ficiency resulted in the development of a nonfatal myelo-

proliferative phenotype (see Supplemental Text and

Figure S9 in the Supplemental Data).

There was aberrant differentiation in the B and T lym-

phoid compartments, including a relative and absolute de-

crease in peripheral blood lymphocytes in Mx-Cre+;

FoxO1/3/4L/L animals compared with Mx-Cre� littermate

controls (Figure 1A). Flow cytometry showed a significant

decrease in mature B cells in the bone marrow (�12 fold;

p = 0.02) and spleen (�5 fold; p < 0.0001), respectively, of

Mx-Cre+;FoxO1/3/4L/L animals, with reduced numbers of

pre-B and pro-B cells (Figure S4). There was a corre-

sponding decrease in pre-B colony-forming activity

in vitro in bone marrow cells derived from Mx-Cre+;

FoxO1/3/4L/L animals (2.7-fold decrease, p < 0.001, data

not shown). In the T cell compartment, there was mild

expansion of single positive CD4+CD3+ cells, reduction

of double positive CD4+CD8+ cells, an increase in DN1

positive cells, and a decrease in DN3 positive cells, sug-

gesting a modest block in T cell maturation at the

DN1/DN2 stage transition (Figure S5). Thus, loss of

FoxO resulted in abnormalities in both myeloid and lym-

phoid compartments.

Quantitative and Qualitative Defects

in the Hematopoietic Stem and Progenitor

Compartments in FoxO-Deficient Mice

Abnormalities in both the myeloid and lymphoid compart-

ments in Mx-Cre+;FoxO1/3/4L/L animals prompted an ex-

amination of hematopoietic progenitor populations using

multiparameter flow cytometry (Figure 2A). Wild-type

stem cells and myeloid progenitors expressed FoxO1,

FoxO3, and FoxO4 as assessed by RT-PCR and qRT-

PCR (Figure S2B). Although there was normal bone mar-

row cellularity in Mx-Cre+;FoxO1/3/4L/L animals 4 weeks

after pI-pC treatment, we observed a marked decrease

in the HSC-enriched LSK compartment, defined as

Lin�Sca-1+c-Kit+ (4.6-fold, p < 0.0001), with minimal

change in the size of the common myeloid progenitor

(CMP), granulocyte-monocyte progenitor (GMP), or

megakaryocyte-erythrocyte progenitor (MEP) subpopula-

tions (Figure 2B). The LSK population (hereafter referred to

as HSC) includes both long-term and short-term HSC

(LT-HSC and ST-HSC, respectively), as well as multipo-

tent progenitors (MPP). FoxO loss resulted in a preferential

decrease in the size of the LT-HSC compartment (Flk2�

LSK, 8-fold decrease; versus 3-fold decrease in number

of Flk2+ LSK, containing ST-HSC and MPP; Figure 2B)

and in the common lymphoid progenitor (CLP) population
(3-fold, p = 0.001, Figures 2A and 2D), whereas there was

an increase in the number of myeloid progenitors in both

spleen and peripheral blood (Figure 2C). Prospectively pu-

rified HSC, GMP, and CMP showed a statistically signifi-

cant quantitative decrease in colony-forming activity in

methylcellulose medium supplemented with hematopoi-

etic cytokines (Figure 2E). Full excision was demonstrated

for all three FoxO alleles in all colonies derived from sorted

Mx-Cre+;FoxO1/3/4L/L LSK cells (Figure S2C). Thus, loss

of FoxO had profound effects on the size of the HSC

and CLP compartments and caused qualitative defects

in colony-forming activity in both stem cell and progenitor

compartments.

FoxO-Null Bone Marrow Is Deficient in Long-Term

Repopulating Ability In Vivo

Although there was complete excision of all FoxO alleles 4

weeks after pI-pC induction, there was reemergence of

cells with unexcised FoxO alleles after 9 weeks in all line-

ages (data not shown). This finding suggested a competi-

tive advantage for the rare hematopoietic progenitors in

which excision did not occur. To test this hypothesis, non-

competitive and competitive repopulation assays were

performed. We compared the repopulating ability of a

congenic CD45.2 test population (Mx-Cre+ or Mx-

Cre�;FoxO1/3/4L/L) and a wild-type FVB CD45.1 support

population transplanted into lethally irradiated F1 FVB/

C57BL/6 CD45.1/CD45.2 recipients. Noncompetitive re-

population assays, in which 100% of FoxO-deficient or

FoxO-wild-type bone marrow was transplanted into le-

thally irradiated recipients, showed a subtle increase in

short-term repopulating activity of Mx-Cre+;FoxO1/3/4L/L

cells 4 weeks after transplantation. However, analysis of

both the peripheral blood and bone marrow of recipients

16 weeks after transplant showed a statistically significant

decrease in the long-term repopulating ability of these

cells (Figure 3A, �5-fold decrease, p = 0.003). These find-

ings correlated with a dramatic reduction in the amount of

HSC derived from Mx-Cre+;FoxO1/3/4L/L bone marrow

(Figure 3A, �27-fold decrease, p < 0.001). The repopula-

tion defect in FoxO-deficient cells was further accentu-

ated by subsequent emergence of cells with wild-type

FoxO alleles derived from the recipient. Enhanced short-

term, but deficient long-term, repopulating ability of Mx-

Cre+;FoxO1/3/4L/L cells was also evident in competitive

repopulation assays, in which test FoxO-deficient or

FoxO-wild-type bone marrow was mixed with congeni-

cally distinct control wild-type bone marrow cells

(Figure 3B). Taken together, these findings indicate that

FoxO1/3/4 deficiency results in perturbations in normal

hematopoietic homeostasis. In addition, the response to
(C) Myeloid progenitors were expanded in both spleen and peripheral blood, and LSK population was modestly expanded in spleen. n = 5 (Mx-Cre+),

n = 3 (Mx-Cre�); mean values ± SEM are shown.

(D) Number of CLP was 3-fold reduced in FoxO-deficient mice. n = 5 (Mx-Cre+), n = 4 (Mx-Cre�); mean values ± SEM shown.

(E) Plating of 200 sorted LSK or 1000 sorted progenitor (CMP and GMP) cells from Mx-Cre� or Mx-Cre+;FoxO1/3/4L/L mice 5 or 9 weeks after pI-pC

on M3434 medium showed a marked decrease in myeloid colony-forming ability of FoxO-deficient cells on Day 10. n = 3 (LSK; Mx-Cre� or Mx-Cre+);

n = 6 (GMP; Mx-Cre+); n = 3 (GMP; Mx-Cre�); n = 3 (CMP; Mx-Cre� or Mx-Cre+); mean values ± SEM shown.
Cell 128, 325–339, January 26, 2007 ª2007 Elsevier Inc. 329



Figure 3. FoxO-Deficient Bone Marrow Shows Enhanced Short-Term and Deficient Long-Term Repopulating Ability In Vivo

Recipient mice (CD45.1+/CD45.2+) were analyzed for contribution of the Mx-Cre+ or Mx-Cre�;FoxO1/3/4L/L (test, CD45.2+) population-derived and

wild-type (support, CD45.1+) population-derived cells in peripheral blood and bone marrow at 4, 8, and 16 weeks after transplantation in (A) noncom-

petitive or (B) competitive repopulation assays. FoxO-deficient bone marrow showed increased short-term (weeks 4, 8) and decreased long-term

(week 16) repopulating ability, with decreased numbers of FoxO-deficient bone marrow-derived HSC cells 16 weeks post-transplant. n = 4 (nonc.;

4 or 8 wk); n = 8 (nonc., 16 wk); n = 4 (comp.; 4 or 8 or 16 wk); mean values ± SEM shown.
certain stressors, even noncompetitive transplantation

into secondary congenic recipient mice, is severely im-

paired in the HSC compartment.

FoxO-Deficient HSC, but Not Myeloid Progenitor

Cells, Show Abnormal Cell Cycle Regulation

To further characterize the quantitative and qualitative de-

fects in the HSC compartment of Mx-Cre+;FoxO1/3/4L/L
330 Cell 128, 325–339, January 26, 2007 ª2007 Elsevier Inc.
mice, cell cycle analysis was performed. There was a strik-

ing HSC-restricted phenotype, with a marked increase in

the number of Mx-Cre+;FoxO1/3/4L/L HSC in S/G2/M

(�2-fold; p < 0.001) compared with Mx-Cre� control HSC

populations (Figures 4A and 4B). This was accompanied

by a significant reduction in the G0/G1 fraction of Mx-

Cre+;FoxO1/3/4L/L HSC (�2-fold; p < 0.001). There was

also a significant increase in the number of HSCs in G1



Figure 4. FoxO Deficiency Results in an Increased HSC-Specific Entry into the S/G2/M and G1 Phases of the Cell Cycle and

Increased Apoptosis in HSC and Myeloid Progenitor Compartments In Vivo

(A and B) Bone marrow isolated from Mx-Cre+ (n = 7) or Mx-Cre� (n = 3) FoxO1/3/4L/L animals 5 weeks after pI-pC was stained for stem and progenitor

markers, and cell cycle status was determined using Hoechst 33342 and Pyronin Y staining. (A) Representative flow cytometry data showing that

FoxO-deficient HSC(LSK), but not myeloid progenitors, exhibit an increased entry into S/G2/M, with a proportional decrease in the G0/G1 phase.

(B) FoxO-deficient HSC(LSK), but not myeloid progenitors, have a 2-fold increased entry into S/G2/M, a concomitant 2-fold decrease in the fraction

of G0/G1 cells, and a 2-fold increased entry into the G1 phase.

(C) Bone marrow cells from two sets of pooled Mx-Cre+ or Mx-Cre�;FoxO1/3/4L/L animals 4 weeks after pI-pC were sorted as HSC(LSK) and myeloid

progenitors, and RNA was isolated and used to synthesize cDNA. The results represent the mean ± SEM of triplicate measurements performed on

three sorted sets of HSC populations. Levels of expression were standardized to b-actin and expression level in the Mx-Cre�HSC or progenitors was

set to 1 for each gene examined. p130/Rb, Cyclin G2, p21, and Cyclin E1 had markedly altered expression levels in the HSC compartment. (*) denotes

p < 0.05, D denotes p = 0.08 and 0.06 for CyclinD2 HSC and p27 HSC, respectively.

(D) Bone marrow isolated from Mx-Cre+ (n = 6) or Mx-Cre� (n = 6) FoxO1/3/4L/L animals 5 weeks post pI-pC was stained for stem and progenitor

markers, and apoptosis was assessed using 7-AAD and Annexin-V staining. Representative flow cytometry data showed that FoxO-deficient

HSC and myeloid progenitors had increased levels of apoptosis relative to wild-type littermates. FoxO-deficient HSC and progenitors exhibited

an �4-fold increased entry into apoptosis. n = 6 (Mx-Cre+ or Mx-Cre�); mean values ± SEM are shown.
phase (�2-fold; p = 0.03), suggesting their increased exit

from quiescence (Figure 4B). In contrast, myeloid progen-

itor populations showed no cell cycle differences between

Mx-Cre+ and Mx-Cre�;FoxO1/3/4L/L animals (Figures 4A

and 4B). These findings were maintained over 13 weeks af-

ter induction with pI-pC, and were reproduced when FoxO-

deficient bone marrow was transplanted into wild-type
recipients (data not shown), indicating a cell-autonomous

effect of FoxO deficiency on cell cycle regulation in HSC.

Stem Cell-Specific Entry into S/G2/M Is Correlated

with Altered Expression of FoxO Target Genes

Expression analysis of cell cycle intermediates regulated

by FoxOs correlated with observed HSC-specific cell
Cell 128, 325–339, January 26, 2007 ª2007 Elsevier Inc. 331



cycle abnormalities. For example, in the Mx-Cre+;FoxO1/

3/4L/L animals, there was an HSC-specific downregulation

of Cyclin G2, p130/Rb, p27, and p21; and upregulation of

Cyclin D2 (Figure 4C). Thus, the abnormalities in cell cycle

observed in vivo correlate with changes in expression of

FoxO cell cycle regulatory targets.

Increased Apoptosis in FoxO-Deficient HSC

and Myeloid Progenitors

Mx-Cre+;FoxO1/3/4L/L HSC and myeloid progenitor cells

exhibited increased rates of apoptosis (Figure 4D; �4-

fold for both HSC and progenitors, p = 0.01 and p =

0.04, respectively). Increased apoptosis was maintained

for at least 13 weeks after excision and was reproduced

when FoxO-deficient bone marrow was transplanted into

wild-type recipients, indicating that these are, at least in

part, cell-autonomous effects of FoxOs that regulate

genes governing cellular survival. However, unlike cell cy-

cle abnormalities, increased apoptosis was not restricted

to the HSC compartment, but was also present in mature,

lineage-positive myeloid populations (data not shown).

Loss of All Three FoxO Alleles Is Required

for Full Potentiation of the Cell Cycle

and Apoptosis Phenotypes

To determine which member(s) of the FoxO subfamily me-

diated cell cycle and apoptosis defects observed in the

stem cell compartment of triply-deficient FoxO animals,

we analyzed animals deficient in single or all combinations

of two of the three members of the FoxO subfamily

5 weeks after pI-pC, respectively (Mx-Cre+;FoxO1L/L,

Mx-Cre+;FoxO3L/L, Mx-Cre+;FoxO4L/L, Mx-Cre+;FoxO1/

3L/L, Mx-Cre+;FoxO1/4L/L, or Mx-Cre+;FoxO3/4L/L). There

were no phenotypic differences between pI-pC-treated

Mx-Cre+ and Mx-Cre� littermates of single-knockout

mice (Figure 5A). Similarly, double-knockout mice showed

no HSC abnormalities, with the exception of Mx-Cre+;

FoxO1/3L/L mice, which showed increased levels of apo-

ptosis (Figure 5B). These data indicate that loss of all three

FoxO alleles is necessary to fully manifest the cell cycle

and apoptosis phenotypes. This functional redundancy

demonstrates a critical role for FoxOs in the hematopoi-

etic system, and explains why overt hematopoietic pheno-

types were not observed in single-knockout animals.

An HSC-Restricted Increase in Reactive Oxygen

Species in FoxO-Deficient Mice

We next assessed whether the FoxO-deficient HSC phe-

notype was associated with increased levels of reactive

oxygen species (ROS) (Kops et al., 2002a). HSC was puri-

fied by multiparameter flow cytometry from Mx-Cre+ or

Mx-Cre�;FoxO1/3/4L/L animals 6 weeks after pI-pC induc-

tion, and the intracellular concentration of ROS was mea-

sured by 20-70-dichlorofluorescein diacetate (DCF-DA)

staining. We noted a marked increase in ROS levels in

HSC derived from Mx-Cre+;FoxO1/3/4L/L animals com-

pared with that derived from Mx-Cre� animals (�2.5

fold, p < 0.0001, Figures 6A and 6B).
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To gain insight into the basis for increased levels of ROS

in the HSC compartment, we performed global gene ex-

pression microarray analysis on prospectively purified

HSC derived from Mx-Cre+ or Mx-Cre�;FoxO1/3/4L/L ani-

mals, respectively. We first generated a list of genes in-

volved in ROS metabolism, including those responsive

to oxidative stress, ROS, hydrogen peroxide, oxygen rad-

icals, and to superoxide, respectively (ROS gene list, see

Supplemental Materials and Methods and Table S2). We

then analyzed the gene expression data using gene set

enrichment analysis (GSEA; Krivtsov et al., 2006; Subra-

manian et al., 2005), a computational method that deter-

mines if a defined gene set shows differential expression

between two biological states (http://www.broad.mit.

edu/gsea/). When comparing HSC derived from Mx-Cre+

or Mx-Cre�;FoxO1/3/4L/L animals (Figure S6A), we ob-

served enrichment in expression of ROS genes in wild-

type HSC compared with FoxO-deficient HSC. A subset

of the ROS gene list, defined as the ‘‘leading edge’’ set

of genes, accounted for the enrichment (Figure S6A; Sub-

ramanian et al., 2005). Leading edge genes more highly

expressed in wild-type HSC than FoxO-deficient HSC in-

cluded superoxide dismutase genes Sod1 and Sod3

(Figure S6A). These findings indicate that FoxO deficiency

in the HSC compartment results in aberrant expression of

genes that regulate ROS.

To determine whether the increase of ROS in FoxO-

deficient HSC was restricted to the stem cell compart-

ment, we measured ROS levels in myeloid progenitors.

In contrast to the HSC compartment, there was no differ-

ence in ROS levels between FoxO-deficient and wild-type

myeloid progenitors (Figures 6A and 6B). Thus, the aber-

rant increase of ROS in FoxO-deficient mice was re-

stricted to the stem cell compartment.

However, levels of ROS in myeloid progenitor cells were

much higher than those in HSC, in both wild-type and

FoxO-deficient animals (Figure 6A). One explanation for

the marked increase in ROS in myeloid progenitors relates

to the function of their terminally differentiated progeny,

neutrophils and monocytes. These cells are professional

generators of ROS, which is a part of their physiologic

role in initial host defense mechanisms against infection.

Thus, the increase in ROS in myeloid progenitors might

be the consequence of a developmental program that en-

ables ROS production associated with commitment to dif-

ferentiation in the myeloid lineage. This could be enacted

mechanistically either by downregulation of FoxO with the

transition from HSC to myeloid progenitors, or by engage-

ment of a developmental transcriptional program that is

FoxO-independent.

To delineate between these possible explanations, we

first analyzed FoxO expression by qRT-PCR, and ob-

served no statistically significant differences in the levels

of expression of FoxO1, FoxO3, or FoxO4 between wild-

type HSC and myeloid progenitors (Figure S2B). Thus,

the difference in ROS levels between HSC and myeloid

progenitors was not explained as a consequence of

decreased FoxO family member expression. We next

http://www.broad.mit.edu/gsea/
http://www.broad.mit.edu/gsea/


Figure 5. Loss of All Three FoxO Alleles Is Required for Full Potentiation of the Cell Cycle and Apoptosis Phenotypes in the HSC

Compartment
Bone marrow cells isolated from Mx-Cre+ or Mx-Cre� single- (A) or double- (B) floxed FoxO animals 5 weeks after pI-pC were stained for HSC or

progenitor markers, and cell cycle and apoptosis were measured with Hoechst 33342 and Pyronin Y, and 7-AAD/Annexin-V staining, respectively.

n = 3 in each group; mean values ± SEM shown.
analyzed the microarray data sets derived from wild-type

or FoxO-deficient HSC and myeloid progenitors to explore

the possibility that myeloid progenitors employ a FoxO-

independent developmental transcriptional program to

regulate ROS. We first compared expression of the ROS

gene set described above in wild-type HSC with that of

wild-type myeloid progenitors using GSEA. There was

enrichment of a subset of ROS leading edge genes,

consistent with engagement of a developmental program

associated with the transition from HSC to myeloid
progenitors (Figure S6B and Figure 6C). We next com-

pared FoxO-deficient HSC with FoxO-deficient myeloid

progenitors and observed similar ROS gene set enrich-

ment (Figure S6C). When we compared the genes whose

expression was enhanced during the transition from HSC

to myeloid progenitors in wild-type cells to the genes

with increased expression during the same transition in

FoxO-deficient cells, there was a high degree of overlap

(Figures 6D and 6F). This observation is consistent with

a ROS developmental program that is activated with
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Figure 6. GSEA Analysis of the HSC-Restricted Increase of ROS in FoxO-Deficient Mice

(A and B) HSC or myeloid progenitors from Mx-Cre+ or Mx-Cre�;FoxO1/3/4L/L were stained with DCF-DA to measure intracellular ROS. FoxO-defi-

cient HSC, but not myeloid progenitors, showed increased levels of ROS. Mean values ± SEM shown; n = 3 in each group.

(C) A comparison of log-transformed gene expression data is shown for wild-type myeloid progenitors (MP) versus wild-type LSK(HSC). GSEA as-

sessed enrichment of genes involved in ROS metabolism (Figure S6B). There was enrichment of a subset of genes in the myeloid progenitors. The

enriched genes (the leading edge in Figure S6B) are shown as green circles.

(D) GSEA performed using the ROS gene set on data from FoxO-deficient MP versus FoxO-deficient HSC. There was enrichment in a subset of genes

in the FoxO-deficient MP that were similar to those in Figure 6C. The enriched genes (leading edge of the GSEA in Figure S6C) are shown as yellow

circles. The yellow circles with a black outline are enriched in FoxO-deficient MP and wild-type MP. The green circles are enriched only in wild-type MP.

(E) GSEA performed using the ROS gene set on data from FoxO-deficient HSC versus wild-type HSC. There is enrichment of a subset of genes in the

wild-type HSC. The enriched genes (leading edge of Figure S6A) are shown in red. The genes enriched in MP are shown in green.

(F) Venn diagram of the enriched genes in all three comparisons. Note that the genes whose expression is increased in wild-type and FoxO-deficient

MP as compared with HSC are largely the same, whereas genes enriched in the wild-type HSC compared with FoxO-deficient HSC are unique.
334 Cell 128, 325–339, January 26, 2007 ª2007 Elsevier Inc.



Figure 7. Antioxidant Treatment of FoxO-Deficient Mice In Vivo Reverses Increased ROS Levels as well as Quantitative and Qual-

itative Defects of FoxO-Deficient HSC

(A) In vivo NAC treatment resulted in rescue of the HSC phenotype, including restoration of the levels of ROS, HSC pool size, HSC cycling profile, and

apoptosis in the HSC compartment.

(B) In vivo NAC treatment restored Day 10 myeloid colony-forming ability of HSC(LSK) sorted from Mx-Cre+;FoxO1/3/4L/L animals. Two hundred HSC

cells isolated from Mx-Cre� or Mx-Cre+;FoxO1/3/4L/L mice after a 5 week long treatment with NAC in vivo were plated on M3434 in duplicate. n = 2

(Mx-Cre�/saline or NAC); n = 3 (Mx-Cre+/saline); n = 4 (Mx-Cre+/NAC); mean values ± SEM shown.

(C) Long-termcobblestone area-forming cell (CAFC) assay showedrescueof CAFC production inbone marrowcells isolated from Mx-Cre+;FoxO1/3/4L/L

mice after a 5 week long treatment with NAC in vivo. n = 2 (Mx-Cre�/saline); n = 2 (Mx-Cre+/saline); n = 2 (Mx-Cre+/NAC); actual and mean values shown.

(D) CFU-S colony-forming ability was restored in HSC cells isolated from Mx-Cre+;FoxO1/3/4L/L mice after 2 week long NAC treatment in vivo. Spleens of

animals in a representative experiment are shown. n = 2 (Mx-Cre�/saline); n = 2 (Mx-Cre+/saline); n = 4 (Mx-Cre+/NAC); n = 2 (Mx-Cre�/NAC). Duplicate

recipient mice were transplanted with 500 HSC cells from each donor. Frequency of CFU-S is calculated as 1/(number of cells transplanted/number of

colonies observed).
the transition from HSC to myeloid progenitors and is

independent of FoxO. Examples of genes in this category

include myeloperoxidase, eosinophil peroxidase, and

glutathione peroxidase 3 (Figures S6B and S6C). In con-

trast, there was little overlap among ROS genes that

demonstrated decreased expression in FoxO-deficient

HSC and the genes activated as part of the develop-

mental program in myeloid progenitors (Figures 6E and

6F). Taken together, these data indicate that there is

an HSC-restricted requirement for FoxO for regulation of

response to physiologic oxidative stress, and that FoxO-

independent, ROS-associated transcriptional programs

are engaged in the transition from HSC to myeloid

progenitors.
Reduction of ROS Levels In Vivo Using Antioxidants

Rescues the FoxO-Deficient HSC Phenotype

We next asked whether increased ROS was causally im-

plicated in the severe phenotypic defects in the HSC com-

partment. We attempted rescue of the FoxO-deficient

HSC phenotype in vivo using antioxidants. Mx-Cre+ or

Mx-Cre�;FoxO1/3/4L/L animals were treated daily with

the antioxidant N-acetyl-L-cysteine (NAC) or control saline

solution for 5 weeks immediately after the last pI-pC ad-

ministration, and then analyzed for qualitative and quanti-

tative changes in the stem cell compartment. Reduction of

ROS in the HSC compartment (Figure 7A) resulted in re-

version of the HSC phenotype, including restoration of

the HSC compartment size, reestablishment of normal
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stem cell cycling, and normalization of HSC apoptosis

(Figure 7A). Measurement of ROS levels as a quantitative

pharmacodynamic metric of NAC efficacy showed varia-

tion in response, as anticipated from the use of a chemi-

cally reactive antioxidant administered in vivo by subcuta-

neous injection. However, variance in pharmacodynamic

response enabled analysis of the dose-response relation-

ship between the degree of restoration of ROS levels and

the attenuation of the phenotypic defects in HSC. There

was a highly statistically significant relationship between

NAC-mediated restoration of ROS levels and restoration

of the phenotype in HSC (p = 0.0072, Figure S7), providing

further support that increased ROS is responsible for the

FoxO-deficient HSC phenotype.

Several assays confirmed functional rescue of HSC from

NAC-treated, FoxO-deficient animals. First, there was res-

toration of levels of expression of FoxO targets in prospec-

tively purified HSC from MxCre+;FoxO1/3/4L/L animals

after in vivo treatment with NAC, including cell cycle inter-

mediates (Figure S8A). Second, NAC treatment of MxCre+;

FoxO1/3/4L/L animals resulted in statistically significant

rescue of myeloid colony-forming activity of purified HSC

(Figure 7B). Third, NAC treatment rescued long-term

HSC function in the cobblestone area-forming cell assay

(CAFC; Figure 7C). Fourth, in vivo assays of colony-form-

ing units in the spleen (CFU-S) that measure short-term re-

populating activity in the HSC compartment of FoxO-defi-

cient animals showed a statistically significant functional

rescue with NAC treatment (Figure 7D), whereas NAC

had no effect on CFU-S of wild-type HSC (data not shown).

Taken together, these data indicate that FoxOs play

critical and functionally redundant roles in the mainte-

nance of the HSC compartment, and that the HSC pheno-

type in FoxO-deficient animals can be attributed at least in

part to impaired detoxification of ROS.

DISCUSSION

Loss of three members of the FoxO subfamily of transcrip-

tion factors, FoxO1, FoxO3, and FoxO4, results in a severe

defect in the HSC compartment. Although a semblance of

hematopoietic homeostasis can be achieved by FoxO-de-

ficient HSC, there is a striking decrease in HSC number,

and even the relatively modest stress of transplantation

into secondary recipient mice results in rapid extinction

of FoxO-deficient HSC.

To investigate the mechanistic basis for the defect in

FoxO-deficient HSC, we first assessed the effect of

FoxO deficiency on the cell cycle. Flow cytometric data

and qRT-PCR data indicate that FoxO-deficient HSC are

driven out of quiescence into the cell cycle. Taken to-

gether with the reduced number of HSC and impaired

long-term repopulating activity, these findings suggest

that FoxO deficiency enforces cell fate decisions in which

HSC are driven into cycle and terminal differentiation at

the expense of self-renewal.

There was also an aberrant increase in ROS in the HSC

compartment of FoxO-deficient animals. GSEA confirmed
336 Cell 128, 325–339, January 26, 2007 ª2007 Elsevier Inc.
a decrease in expression of a subset of ROS genes in

FoxO-deficient HSC compared with wild-type HSC. To

determine whether aberrant ROS was causally implicated

in the FoxO-deficient HSC phenotype, we assessed rever-

sion of phenotype with in vivo administration of NAC.

Remarkably, NAC rescued the FoxO-deficient HSC

phenotype, restoring the size and function of the HSC

compartment as well as correcting the abnormalities in

cell cycle and apoptosis. Thus, most, if not all, phenotypic

manifestations of FoxO deficiency are the consequence of

increased ROS in the HSC compartment. Taken together,

these genetic data show that FoxOs are essential and

functionally redundant in the maintenance of quiescence

and integrity of the HSC compartment. Furthermore, these

data demonstrate a genetic link between FoxOs and pro-

tection from physiologic oxidative stress in the hemato-

poietic compartment, and the essentiality of ROS regula-

tion for a spectrum of cellular functions that include cell

cycle control and regulation of apoptosis.

In contrast with the HSC compartment, myeloid pro-

genitors were normal in number and showed no cell cycle

defects or differences in ROS levels in FoxO-deficient an-

imals. Increased apoptosis in the absence of increased

ROS suggests that apoptotic effects may be ROS-inde-

pendent in this compartment. Thus, the FoxO-deficient

phenotype is restricted to the HSC compartment, and

therefore the effect of FoxO deficiency is highly context-

dependent—even the most immediate progeny of the

HSC compartment, the myeloid progenitors, no longer re-

quire FoxO for most physiological functions.

There was also a marked increase in ROS levels with

the transition from HSC to myeloid progenitors that was

not affected by FoxO deficiency, suggesting a FoxO-inde-

pendent developmental program that regulates ROS

levels in myeloid progenitors. GSEA supports the exis-

tence of a developmentally regulated program that is

engaged with the transition from HSC to myeloid progen-

itors. In particular, FoxO-deficient or wild-type myeloid

progenitors show enrichment for the same subset of

ROS genes; this gene set is different from that observed

in the HSC compartment. These data suggest that there

is a subset of ROS genes that are regulated by FoxO in

the HSC compartment and serve to decrease levels of

ROS and their deleterious effects on HSC survival and

function. With the transition to myeloid progenitors, a de-

velopmentally regulated transcriptional program is acti-

vated that enables differentiation of myeloid progenitors

into professional ROS-generating cells. These findings

thus provide new insights into developmental regulation

of ROS during hematopoietic development and highlight

the delicate balancing act in myeloid progenitors between

activation of ROS for professional purposes and the

deleterious effects of ROS on cell survival, and may

explain in part why myeloid cells are the shortest-lived

of all hematopoietic constituents.

We also observed decreased expression of ATM and

increased expression of its target, p16, in FoxO-deficient

HSC (Figure S8B). Furthermore, ATM levels were restored



with NAC treatment in vivo (Figure S8B). It has been re-

ported that ATM may influence HSC integrity through reg-

ulation of p16 and ROS (Ito et al., 2004). Our data further

suggest a link between FoxO and ATM, and that ATM

and its target, p16, may lie downstream of FoxO. In addi-

tion, increased levels of ROS have been reported to

mediate association of b-catenin and FoxO; b-catenin is

purported to enhance FoxO’s role in inhibiting cell cycle

progression (Essers et al., 2005). It is thus possible that

ROS-enhanced binding of FoxO to b-catenin is an effector

of FoxO-induced quiescence in the HSC compartment,

and serves to counteract the deleterious effects of ROS

on HSC self-renewal.

These data also have interesting implications for recent

reports of the HSC phenotype in Pten-deficient mice,

which is nearly identical to the phenotype in FoxO-defi-

cient mice (Yilmaz et al., 2006; Zhang et al., 2006). Rapa-

mycin reverts the phenotype of Pten-deficient HSC,

suggesting that mTOR signaling is responsible for the

HSC phenotype (Yilmaz et al., 2006). However, genetic

data in this report indicate that the HSC phenotype is

most likely attributable to loss of function of FoxO, rather

than activation of mTOR, in the setting of Pten-deficiency.

The basis for the rapamycin effect in the Pten-deficient

background is not clear, but it could be due to off-target

effects of rapamycin that affect FoxO function, or differen-

tial effects of rapamycin on the mTORC1 versus mTORC2

complexes that influence AKT activity (Sarbassov et al.,

2006).

Finally, it is of interest to relate these effects of FoxO de-

ficiency in the hematopoietic system to other contexts.

For example, isolated FoxO3 deficiency results in oocyte

exhaustion and infertility due to global activation of the pri-

mordial ovarian follicle (Castrillon et al., 2003). These phe-

notypic attributes are similar to those observed in the he-

matopoietic system, and suggest that FoxOs may play an

important role in the maintenance and integrity of stem cell

compartments in a broad spectrum of tissues. In addition,

there are similarities between the role of FoxOs in regula-

tion of quiescence and longevity of HSC in vertebrates and

regulation of dauer diapause and life span determination

in C. elegans by the FoxO ortholog DAF-16. Together,

these findings provide strong support for the relevance

of FoxO in longevity of HSC and perhaps in the broader

spectrum of adult tissue stem cells in invertebrates and

vertebrates.

FoxO transcription factors thus play a critical role in he-

matopoietic homeostasis by regulating the HSC compart-

ment. We propose that under homeostatic conditions,

FoxO transcription factors maintain self-renewal of HSC.

Our data are consistent with the hypothesis that FoxOs

cooperate to affect quiescence of HSC by regulation of

the cell cycle, inhibition of apoptosis, and mediation of re-

sistance to physiologic oxidative stress. These findings

suggest that FoxOs are important in maintaining the

long-term regenerative potential of the HSC compart-

ment, and that analysis of the role of FoxOs in other adult

and embryonic stem cell compartments may yield insights
into the physiology and diseases of the renewing organ

systems of long-lived species, including humans.

EXPERIMENTAL PROCEDURES

Generation of Mx-Cre+;FoxO1/3/4L/L Mice

See the Supplemental Data.

Flow Cytometry

LSK, CMP, GMP, MEP, and CLP populations were analyzed and

sorted with a FACSAria instrument (Becton Dickinson, Mountain

View, CA) (Akashi et al., 2000; Kondo et al., 1997). Apoptosis was as-

sayed by staining freshly harvested bone marrow cells with lineage,

stem, and progenitor markers, followed by Annexin-V and 7-AAD

staining. Cell cycle analysis was assessed as previously reported

(Cheng et al., 2000). ROS levels were measured by sorting 5000

LSKs or 50,000 myeloid progenitors and staining with 5 mM DCF-DA

(20-70-dichlorofluorescein diacetate, Molecular Probes) for 30 min at

37�C followed by flow cytometric analysis (Ito et al., 2004). Additional

details are provided in the Supplemental Data.

Colony Assays

Myeloid and pre-B colony-plating assays were performed in methyl-

cellulose-based medium M3434 and M3630 (Stem Cell Technologies,

Vancouver, BC, Canada) with 2 3 104 bone marrow and spleen cells

and 5 3 104 bone marrow cells, plated in duplicate and scored for col-

ony formation at 10 and 14 days, respectively. Serial replating was

performed 7 days after plating. For CFU-S assays, 500 LSK cells

were isolated from Mx-Cre+ and Mx-Cre�;FoxO1/3/4L/L animals that

were treated daily with NAC or saline for 2 or 4 weeks, and injected

into lateral tail veins of lethally irradiated F1 FVB/C57BL/6 recipient

mice in duplicate, which were subsequently treated with NAC (600

mg/kg; i.p.) or saline once a day. Day 12 CFU-S assay was carried

out as described (Morrison and Weissman, 1994).

Transplantation Assays

Bone marrow cells from Mx-Cre� or Mx-Cre+;FoxO1/3/4L/L mice (both

CD45.2 at the CD45 locus) alone (noncompetitive transplants) or

mixed with bone marrow cells from wild-type FVB mice (CD45.1) (com-

petitive transplants) were injected into lateral tail veins of lethally irradi-

ated F1 FVB/C57BL/6 recipient animals (CD45.1/CD45.2; 2X600rad).

Peripheral blood collected at 4, 8, and 16 weeks, and bone marrow

from mice at 16 weeks was analyzed for contribution of CD45 congenic

and lineage markers by flow cytometry. Noncompetitive and compet-

itive transplants were carried out with three and two sets of donor mice

in independent experiments, respectively, with four to eight recipient

mice per group in each experiment.

N-acetyl-L-cysteine Administration In Vivo

Five-week-old Mx-Cre+ and Mx-Cre�;FoxO1/3/4L/L animals were

treated daily with NAC (100 mg/kg; Sigma) or saline solution by subcu-

taneous administration, starting 1 day after last pI-pC induction, and

were subsequently analyzed after 5 weeks of treatment.

Gene Expression Analysis

qRT-PCR was performed as previously described (Passegue et al.,

2005) and primers are available upon request (FoxO1, FoxO3,

FoxO4). All reactions were performed in an ABI-7000 sequence detec-

tion system using SYBR Green PCR Core reagents according to the

manufacturer’s instructions (Applied Biosystems). Details of the micro-

array and GSEA analysis are provided in the Supplemental Data.

CAFC Assay

Assays were performed as described (Moore et al., 1997). Briefly, bone

marrow cells isolated from Mx-Cre+ and Mx-Cre�;FoxO1/3/4L/L ani-

mals after 5 weeks of in vivo treatment with saline or NAC were plated
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on AFT024 stromal monolayers in limiting dilutions in 96-well plates

and maintained for 4 weeks with weekly medium hemi-depletion. Cul-

tures containing bone marrow cells isolated from NAC-treated animals

were supplemented with NAC (100 mM) daily. CAFC frequency was de-

termined using L-Calc software (StemCell Technologies). Statistical

significance of differences between parameters measured for Mx-

Cre+ or Mx-Cre�;FoxO1/3/4L/L animals was assessed using a two-

tailed unpaired t test.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.cell.com/cgi/content/full/128/2/325/DC1/.
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