Advertisement
No access
Reports

Dynamic Disruptions in Nuclear Envelope Architecture and Integrity Induced by HIV-1 Vpr

Science
2 Nov 2001
Vol 294, Issue 5544
pp. 1105-1108

Abstract

Human immunodeficiency virus–1 (HIV-1) Vpr expression halts the proliferation of human cells at or near the G2cell-cycle checkpoint. The transition from G2 to mitosis is normally controlled by changes in the state of phosphorylation and subcellular compartmentalization of key cell-cycle regulatory proteins. In studies of the intracellular trafficking of these regulators, we unexpectedly found that wild-type Vpr, but not Vpr mutants impaired for G2 arrest, induced transient, localized herniations in the nuclear envelope (NE). These herniations were associated with defects in the nuclear lamina. Intermittently, these herniations ruptured, resulting in the mixing of nuclear and cytoplasmic components. These Vpr-induced NE changes probably contribute to the observed cell-cycle arrest.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (10639571a.mov)
File (10639571b.mov)
File (10639572.mov)
File (10639573a.mov)
File (10639573b.mov)
File (10639573c.mov)
File (10639573d.mov)
File (10639575a.mov)
File (10639575b.mov)
File (1063957s4a_large.jpeg)
File (1063957s4a_med.gif)
File (1063957s4a_thumb.gif)
File (1063957s4b_large.jpeg)
File (1063957s4b_med.gif)
File (1063957s4b_thumb.gif)
File (1063957s4c_large.jpeg)
File (1063957s4c_med.gif)
File (1063957s4c_thumb.gif)
File (1063957s6a_large.jpeg)
File (1063957s6a_med.gif)
File (1063957s6a_thumb.gif)
File (1063957s6b_large.jpeg)
File (1063957s6b_med.gif)
File (1063957s6b_thumb.gif)
File (1063957s6c_large.jpeg)
File (1063957s6c_med.gif)
File (1063957s6c_thumb.gif)
File (1063957s7a-d_large.jpeg)
File (1063957s7a-d_med.gif)
File (1063957s7a-d_thumb.gif)
File (1063957s7e-h_large.jpeg)
File (1063957s7e-h_med.gif)
File (1063957s7e-h_thumb.gif)
File (1063957s8_large.jpeg)
File (1063957s8_med.gif)
File (1063957s8_thumb.gif)

REFERENCES AND NOTES

1
Paxton W., Connor R. I., Landau N. R., J. Virol. 67, 7229 (1993).
2
Sherman M. P., de Noronha C. M., Heusch M. I., Greene S., Greene W. C., J. Virol. 75, 1522 (2001).
3
J. B. Jowett et al., J. Virol. 69, 6304 (1995).
4
Rogel M. E., Wu L. I., Emerman M., J. Virol. 69, 882 (1995).
5
W. C. Goh et al., Nature Med.4, 65 (1998).
6
von Schwedler U., Kornbluth R. S., Trono D., Proc. Natl. Acad. Sci. U.S.A. 91, 6992 (1994).
7
Gallay P., Stitt V., Mundy C., Oettinger M., Trono D., J. Virol. 70, 1027 (1996).
8
M. I. Bukrinsky et al., Nature365, 666 (1993).
9
Gallay P., Hope T., Chin D., Trono D., Proc. Natl. Acad. Sci. U.S.A. 94, 9825 (1997).
10
V. Zennou et al., Cell 101, 173 (2000).
11
M. Bouyac-Bertoia et al., Mol. Cell7, 1025 (2001).
12
Gibbs J. S., Regier D. A., Desrosiers R. C., AIDS Res. Hum. Retroviruses 10, 333 (1994).
13
J. W. Balliet et al., Virology200, 623 (1994).
14
N. K. Heinzinger et al., Proc. Natl. Acad. Sci. U.S.A. 91, 7311 (1994).
15
S. Mahalingam et al., Proc. Natl. Acad. Sci. U.S.A. 95, 3419 (1998).
16
Gragerov A., Kino T., Ilyina-Gragerova G., Chrousos G. P., Pavlakis G. N., Virology 245, 323 (1998).
17
Refaeli Y., Levy D. N., Weiner D. B., Proc. Natl. Acad. Sci. U.S.A. 92, 3621 (1995).
18
R. A. Fouchier et al., J. Virol. 72, 6004 (1998).
19
Vodicka M. A., Koepp D. M., Silver P. A., Emerman M., Genes Dev. 12, 175 (1998).
20
Pines J., Hunter T., J. Cell Biol. 115, 1 (1991).
21
Russell P., Nurse P., Cell 45, 145 (1986).
22
___, Cell 49, 559 (1987).
23
Reviewed in
Lew D. J., Kornbluth S., Curr. Opin. Cell Biol. 8, 795 (1996).
24
Reviewed in
Coleman T. R., Dunphy W. G., Curr. Opin. Cell Biol. 6, 877 (1994).
25
C. Y. Peng et al., Science277, 1501 (1997).
26
Supplementary Web material is available on Science Online at www.sciencemag.org/cgi/content/full/294/5544/1105/DC1.
27
M. Jackman, M. Firth, J. Pines, EMBO J.14, 1646. (1995).
28
C. M. de Noronha et al., unpublished data.
29
Nehrbass U., Rout M. P., Maguire S., Blobel G., Wozniak R. W., J. Cell Biol. 133, 1153 (1996).
30
Wente S. R., Blobel G., J. Cell Biol. 123, 275 (1993).
31
___, J. Cell Biol. 125, 955 (1994).
32
B. Lenz-Bohme et al., J. Cell Biol.137, 1001 (1997).
33
J. Liu et al., Mol. Biol. Cell11, 3937 (2000).
34
T. Sullivan et al., J. Cell Biol.147, 913 (1999).
35
Stafstrom J. P., Staehelin L. A., Eur. J. Cell Biol. 34, 179 (1984).
36
Paddy M. R., Saumweber H., Agard D. A., Sedat J. W., J. Cell Sci. 109, 591 (1996).
37
Terasaki M., Mol. Biol. Cell 11, 897 (2000).
38
Moir R. D., Spann T. P., Herrmann H., Goldman R. D., J. Cell Biol. 149, 1179 (2000).
39
D. Cecilia et al., J. Virol.72, 6988 (1998).
40
M. I. Bukrinsky et al., Proc. Natl. Acad. Sci. U.S.A. 89, 6580 (1992).
41
Connor R. I., Chen B. K., Choe S., Landau N. R., Virology 206, 935 (1995).
42
S. Popov et al., EMBO J. 17, 909 (1998).
43
Miller M. D., Farnet C. M., Bushman F. D., J. Virol. 71, 5382 (1997).
44
Dworetzky S. I., Feldherr C. M., J. Cell Biol. 106, 575 (1988).
45
Poon B., Grovit-Ferbas K., Stewart S. A., Chen I. S., Science 281, 266 (1998).
46
Hrimech M., Yao X. J., Bachand F., Rougeau N., Cohen E. A., J. Virol. 73, 4101 (1999).
47
We thank D. Morgan, T. Hunter, H. Piwnica-Worms, and H. Worman for the expression plasmids. We also thank R. Givens for administrative assistance and J. Carroll and S. Gonzalez for graphics assistance. This work was supported in part by NIH grant R01 AI145234 (to W.C.G.) and by core facilities provided by the UCSF–Gladstone Institute of Virology and Immunology, Center for AIDS Research, P30 MH59037. M.P.S. was supported by NIH/NIAID grant KO8 AI01866.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 294 | Issue 5544
2 November 2001

Submission history

Received: 2 July 2001
Accepted: 31 August 2001
Published in print: 2 November 2001

Permissions

Request permissions for this article.

Authors

Affiliations

Carlos M. C. de Noronha
Gladstone Institute of Virology and Immunology,
Michael P. Sherman
Gladstone Institute of Virology and Immunology,
Department of Medicine and
Harrison W. Lin
Gladstone Institute of Virology and Immunology,
Marielle V. Cavrois
Gladstone Institute of Virology and Immunology,
Robert D. Moir
Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA.
Robert D. Goldman
Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA.
Warner C. Greene*
Gladstone Institute of Virology and Immunology,
Department of Medicine and
Department of Microbiology and Immunology, University of California, San Francisco, CA 94103, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Current Methods and Pipelines for Image-Based Quantitation of Nuclear Shape and Nuclear Envelope Abnormalities, Cells, 11, 3, (347), (2022).https://doi.org/10.3390/cells11030347
    Crossref
  2. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus, Frontiers in Cell and Developmental Biology, 10, (2022).https://doi.org/10.3389/fcell.2022.989217
    Crossref
  3. The nuclear lamina binds the EBV genome during latency and regulates viral gene expression, PLOS Pathogens, 18, 4, (e1010400), (2022).https://doi.org/10.1371/journal.ppat.1010400
    Crossref
  4. The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor–Guillermo progeria syndrome cells, Nucleic Acids Research, 50, 16, (9260-9278), (2022).https://doi.org/10.1093/nar/gkac726
    Crossref
  5. Advances in understanding the mechanisms of repairing damaged nuclear envelop, The Journal of Biochemistry, 171, 6, (609-617), (2022).https://doi.org/10.1093/jb/mvac012
    Crossref
  6. Mechanics and functional consequences of nuclear deformations, Nature Reviews Molecular Cell Biology, 23, 9, (583-602), (2022).https://doi.org/10.1038/s41580-022-00480-z
    Crossref
  7. Genome instability from nuclear catastrophe and DNA damage, Seminars in Cell & Developmental Biology, 123, (131-139), (2022).https://doi.org/10.1016/j.semcdb.2021.03.021
    Crossref
  8. The multifaceted role of micronuclei in tumour progression: A whole organism perspective., The International Journal of Biochemistry & Cell Biology, 152, (106300), (2022).https://doi.org/10.1016/j.biocel.2022.106300
    Crossref
  9. Impact of Nuclear Envelope Stress on Physiological and Pathological Processes in Central Nervous System, Neurochemical Research, 47, 9, (2478-2487), (2022).https://doi.org/10.1007/s11064-022-03608-x
    Crossref
  10. Gene Amplification and the Extrachromosomal Circular DNA, Genes, 12, 10, (1533), (2021).https://doi.org/10.3390/genes12101533
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media