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Abstract
The application of natural products to treat various diseases, such as cancer, has been an important area of research for many
years. Several phytochemicals have demonstrated anticarcinogenic activity to prevent or reduce the progression of cancer by
modulating various cellular mechanisms. However, poor bioavailability has hindered clinical success and the incorporation of
these drugs into efficient drug delivery systems would be beneficial. For lung cancer, local delivery via the pulmonary route
would also be more effective. In this article, recent in vitro scientific literature on phenolic compounds with anticancer activity
towards lung cancer cell lines is reviewed and nanoparticulate delivery is mentioned as a possible solution to the problem of
bioavailability. The first part of the review will explore the different classes of natural phenolic compounds and discuss recent
reports on their activity on lung cancer cells. Then, the problem of the poor bioavailability of phenolic compounds will be
explored, followed by a summary of recent advances in improving the efficacy of these phenolic compounds using
nanoparticulate drug delivery systems.
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Abbreviations
4-ACGC 4-O-(2″-O-acetyl-6″-O-p-coumaroyl-β-d-

glucopyranosyl)-p-coumaric acid
5HHMF 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone
5HPMF 5-hydroxy-3,7,8,3′,4′-pentamethoxyflavone
AP-1 activator protein-1
AIF apoptosis-inducing factor
ARRB2 arrestin beta 2
Bcl-2 B cell lymphoma 2
Bad Bcl-2-associated death promoter
Bax Bcl-2-associated X protein
JNK c-Jun N-terminal kinases
COX-2 cyclooxygenase
POLL DNA polymerase lambda
H69VP drug-resistant small-cell lung carcinoma
H69 drug-sensitive small-cell lung carcinoma

DPIs dry powder inhalers
ER endoplasmic reticulum
EGFR epidermal growth factor receptor
EGFR-TKIs epidermal growth factor receptor tyrosine

kinase inhibitors
EGCG Epigallocatechin 3-gallate
EMT Epithelial-Mesenchymal Transition
ERK1/2 extracellular signal-regulated kinase 1 and 2
GRP78 glucose-regulated protein 78
GADD 153 growth arrest- and DNA damage-inducible

gene 153
GADD 45 growth arrest- and DNA damage-inducible

gene 45
A549 human lung adenocarcinoma cell line
SPC-A-1 human lung cancer cell line
NSCLC human non-small cell lung cancer
iNOS inducible nitric oxide
IC50 inhibitory concentration 50%
mTOR mammalian target of rapamycin
MMP-9 matrix metalloproteinase-9
MMP-2 matrix metalloproteinase-2
miRNA microRNA
MAPK1 mitogen-activated protein kinase 1
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MAPK14 mitogen-activated protein kinase 14
MEK mitogen-activated protein kinase and ERK
MAPK3/6 mitogen-activated protein kinase kinases 3/6
MAPK mitogen-activated protein kinases
MLK3 mixed lineage protein kinase 3
MDM2 mouse double minute 2
MAP mucoadhesive particles
MPP mucus-penetrating particles
MUTYH MutY DNA Glycosylase
Mcl-1 myeloid cell leukemia-1
NAR/CS NPs nar ingen in encapsu la t ed ch i tosan

nanoparticles
H2122, H358,
H460, H1650,
H1975, and
H1993

NSCLC cell lines

NFKB1 nuclear factor kappa b subunit 1
NF-κB nuclear factor kappa-light-chain-enhancer

of activated B cells
P-OA-CTS paclitaxel- oleic acid-conjugated chitosan

nanoparticles
PI3K/Akt phosphoinositide 3-Kinase/protein kinase B
PLGA poly (lactic-co-glycolic acid)
PARP poly(ADP-ribose) polymerase
PEG poly(ethylene glycol)
PVA poly(vinyl alcohol)
PVP polyvinylpyrrolidone
PCL polycaprolactone
PLA polylactic acid
PCNA proliferating cell nuclear antigen
PGE2 prostaglandin E2
PTK2 protein tyrosine kinase 2
Q-OA-CTS quercetin-oleic acid-conjugated chitosan

nanoparticles
ROS reactive oxygen species
RTK receptor tyrosine kinases
R-GNPs r e s v e r a t r o l e n c ap su l a t e d g e l a t i n

nanoparticles
STAT5A signal transducer and activator of transcrip-

tion 5a
STAT3 signal transducer and activator of transcrip-

tion protein 3
STATs signal transducer and activator of transcrip-

tion proteins
SCLC small-cell lung carcinoma
TGF-β1 transforming growth factor beta 1
TSA trichostatin A
TNF tumour necrosis factor
TNFR-1 tumour necrosis factor receptor-1
TP53 Tumour protein p53
TAM Tyro3, Axl, MerTK
TKI tyrosine kinase inhibitors
u-PA urokinase-type plasminogen activator

FDA US Food and Drug Administration
VEGF Vascular Endothelial Growth Factor
VEGFA vascular endothelial growth factor A

Introduction

According to Cancer research UK, lung cancer is the third most
common cancer in the UKwith around 46,700 new cases report-
ed each year, accounting for 21% of all cancer deaths and it has
the second lowest ten-year survival rate (5%) of all cancers [1] .
This is despite the fact that 89% of all lung cancers are linked to
lifestyle or environmental risk factors and hence preventable [1].
Cancer chemoprevention consist of the chronic use of a synthet-
ic, natural or biological agent to reduce or inhibit the formation
and progression of cancer, in which oxidative stress is a key
factor [2]. Plants and fungi produce secondary metabolites, such
as phenolic compounds, as a protective measure against oxida-
tive stress caused by ultraviolet light, insects, viruses, and bacte-
ria [3]. Therefore, it is postulated that these same metabolites
could be applied to help protect humans from diseases, such as
cancer, caused by oxidative stress. A review on the link of oxi-
dative stress in cancer is beyond the scope of this review, but can
be found in several sources [4, 5]. It should be noted that current
literature is divided as to whether or not phenolic compounds
used in conjunction with chemotherapy and/or radiation therapy
reduces the efficacy of cancer treatment [6–8]. It is the intention
that the phenolic compounds discussed in this review be consid-
ered for use as a treatment for lung cancer, in and of itself, and not
to be used in conjunction with current cancer chemotherapy and/
or radiation treatment. Several different techniques are used to
extract, separate, and identify phenolic compounds from natural
sources in a pure form required for clinical use, including liquid-
liquid extraction, solid-liquid extraction, supercritical fluid ex-
traction, high performance liquid chromatography, supercritical
fluid chromatography, mass spectrometry, nuclear magnetic res-
onance spectroscopy, amongst others [9, 10].

A previous systematic review discovered that eating fruits
and vegetables can confer up to an 18% decrease in the risk of
developing lung cancer [11]. It is hypothesised that the reason
behind the decreased lung cancer risk is due to the high
amounts of flavonoids, and other phenolic compounds, pres-
ent in the fruits and vegetables [12, 13].

The following section will list and describe the categories
of the different phenolic compounds and examples of them
that have been shown to have anticancer properties.

Phenolic compounds

Phenolic compounds are diverse in structure, but are identified
as having at least one aromatic ring possessing one or more
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hydroxyl groups [14]. Several classes of phenolic compounds
exist, namely, flavonoids, phenolic acids, phenolic alcohols,
stilbenes and lignans [10, 15]. Phenolic compounds are ubiq-
uitous, being present in almost all of the foods we consume,
from plant derived foods, including fruits, vegetables, le-
gumes and cereals to beverages such as beer, coffee, tea, wine
and also in spices and herbs, such as cinnamon, curcumin,
sage, and thyme [16–19].

Flavonoids

Flavonoids, the largest and most widely studied class of phe-
nolic compounds, can be subdivided into flavonols, flavones,
flavanones, isoflavones, anthocyanidins, and catechins [10].
Tannins are flavonoids that, as a result of the plants themselves
or from food processing, are polymerised into large molecules
[20]. There are two types of tannins, namely hydrolysable
tannins and condensed tannins. Hydrolysable tannins (which
contain glucose or another polyol as their central core) are
subclassed as gallotannins (core esterification by gallic acid)
or ellagitannins (core esterification by hexahydroxydiphenic
acid) [21]. Condensed tannins are also known as
proanthocyanidins and are polymeric or oligomeric com-
pounds made from flavan-3-ol [21]. The chemical structures
of the main classes of flavonoids and the examples listed be-
low are presented in Figs. 1 and 2, respectively. Refer to
Table 1 for the list of studies discussed below.

Epigallocatechin 3-gallate (EGCG) is the most abundant cat-
echin (flavonoid) present in both black- and green tea (Camellia
sinensis) (refer to Fig. 2 for structure). It has been shown to have
several actions, inter alia, anti-oxidative [22], anti-inflammatory
[23], anticancer [24], promotion of cell cycle arrest [25], inhibi-
tion of cellular proliferation [26], proapoptotic [27],
antimetastatic and anti-angiogenic [28]. The antitumour activity
of EGCG is postulated to be due to its interaction with several
signalling pathways. The pathways include protein kinase sup-
pression, inhibition of transcription factors such as nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB), epi-
dermal growth factor receptor (EGFR), activator protein-1 (AP-
1) and signal transducer and activator of transcription proteins
(STATs), and mechanisms such as induction of apoptosis or cell
cycle arrest and prevention ofmetastasis [29–32]. A study by Jin
et al. [29] found that treating three human lung cancer cell lines
(A549, H1650 and H460) with 20 μM EGCG inhibited
anchorage-independent growth of all three cell lines via upreg-
ulation of p53 expression, increased phosphorylation of tumour
protein p53 (TP53) at anti-phospho-p53 (Ser15) and anti-
phospho-p53 (Ser20) and enhancement of its transcriptional ac-
tivity, as well as inhibition of mouse double minute 2 (MDM2)-
mediated TP53 ubiquitination. Another study found that treat-
ment of EGCG (5–50 μM) resulted in increased expression of
miR-210, leading to growth inhibition of human non-small cell
lung cancer cell lines, H1299 and H460 [30]. The effect of

EGCG on drug-sensitive (H69) and drug-resistant (H69VP)
small-cell lung carcinoma (SCLC) cells was studied. It was
found that exposure of both cell lines to 70 μM EGCG for
24 h resulted in a 50–60% reduction in telomerase activity with
initiation of apoptosis through decreased activity of caspases-3
and -9, DNA fragmentation in cells, and cell-cycle arrest [31]. A
similar study assessed the effect of EGCG on various human
non-small cell lung cancer (NSCLC) cell lines (H2122, H358,
H460, H1975, and H1993) that were either erlotinib-sensitive,
erlotinib-resistant, showed c-Met overexpression and/or had ac-
quired erlotinib resistance. Exposure of the cell lines to 2.5–
40μmol/L of EGCG resulted in a dose-dependent inhibition
of cell proliferation [32]. EGCG co-administered with the anti-
lung cancer drug, leptomycin, showed a synergistic increase in
cytotoxicity of the human lung cancer A549 cells [33].

Tw o f l a v o n o i d s , 5 - h y d r o x y - 3 , 7 , 8 , 3 ′ , 4 ′ -
pentamethoxyflavone (5HPMF), and 5-hydroxy-3,6,7,8,3′,4′-
hexamethoxyflavone (5HHMF), are found in sweet orange
(Citrus sinensis) (refer to Fig. 2 for structures). These two
flavonoids were shown to initiate apoptosis through activation
of caspase-3 and cleavage of poly(ADP-ribose) polymerase
(PARP) (a substrate of activated caspase-3) as well as down-
regulating oncogenic proteins, such as inducible nitric oxide
(iNOS), cyclooxygenase (COX-2), myeloid cell leukemia-1
(Mcl-1), and K-ras in human lung carcinoma H1299 cells
[34]. The inhibitory concentration (IC50) values for the two
flavonoids after 24 h was recorded as 16.5 μM.

Genistein, also known as 5,7-dihydroxy-3-(4-
hydroxyphenyl)-4H-1-benzopyran-4-one and 4′,5,7-

Fig. 1 Chemical structure of flavonoids
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trihydroxyisoflavone, is the most abundant isoflavone found
in soybean (Glycine max) (refer to Fig. 2 for structure). Shiau
et al. [35] exposed A549 cells to a combination of 10 μM
genistein and 50 ng/mL of trichostatin A (TSA), resulting in
enhanced inhibition of growth and increased apoptosis,
thought partly to be due to increased caspase-3 activity. A
subsequent study revealed that the same combination aug-
mented the anticancer effect of TSA by increasing tumour
necrosis factor (TNF) receptor-1 (TNFR-1) death receptor sig-
nalling [36]. Gadgeel et al. [37] studied the effect of genistein
in combination with epidermal growth factor receptor tyrosine
kinase inhibitors (EGFR-TKIs), erlotinib and gefitinib on
NSCLC cell lines with various EGFR mutations and sensitiv-
ities to EGFR-TKIs, H3255, H1650, and H1781 (wild-type
EGFR). Genistein (25 μM) in combination with erlotinib/
gefitinib increased the growth inhibition and apoptosis in all
three cell lines postulated to be due to decreased DNA-binding
activity of NF-κB and a reduction in COX-2, pAkt, EGFR and
prostaglandin E2 (PGE2) expression [37]. Exposure of the
human lung adenocarcinoma SPC-A-1 cell line to 20–
40 μM genistein resulted in cell-cycle arrest, antiproliferation
and induction of apoptosis via regulation of genes related to
apoptosis, especially genes from the B cell lymphoma 2 (Bcl-
2) family and TNF ligand and receptor family [38]. Treatment
of H460 cells with 15–30 μmol/L genistein combined with
cisplatin, docetaxel or doxorubicin resulted in a greater syner-
gistic effect cell-growth inhibition and induction of apoptosis
than compared with either one by itself [39]. It was found that
the pre-exposure of the cells to the genistein inactivated
NF-κB thereby nullifying the NF-κB-inducing activity of cis-
platin, docetaxel and doxorubicin [39].

The flavonoid, fisetin (3,7,3′,4′-tetrahydroxyflavone) is nat-
urally found in several foods including grape, persimmon,
strawberry apple, onion, and cucumber [40] (refer to Fig. 2
for structure). Khan et al. [41] exposed A549 cells to 5–
20 μM fisetin causing a dose-dependent inhibition of both
phosphoinositide 3-Kinase/protein kinase B (PI3K/Akt) and
mammalian target of rapamycin (mTOR) signaling through at-
tenuating PI3K protein expression, inhibiting Akt and mTOR
phosphorylation. Fisetin (1, 5 and 10μM) was shown to inhibit
the ability of A549 cells to adhere, migrate, and invade, by
interfering with the regulation of extracellular signal-regulated
kinase 1 and 2 (ERK1/2), matrix metalloproteinase-2 (MMP-
2), and urokinase-type plasminogen activator (u-PA) at both the
protein and microRNA (miRNA) levels [42]. There was also a
concentration-dependent inhibitory effect on NF-κB and AP-1
binding with a significant decrease in the nuclear levels of
NF-κB, c-Fos, and c-Jun [42].

P h l o r e t i n , 3 - ( 4 - h y d r o x y p h e n y l ) - 1 - ( 2 , 4 , 5 -
trihydroxyphenyl), is a flavonoid from several sources includ-
ing apples and plants, such asHoveniae Lignum, Pieris japon-
ica, and Loiseleuria procumbens [43] (refer to Fig. 2 for
structure). It was found that administration of 125–150 μg/
mL of phloretin to NSCLC cell lines A549, Calu-1, H838
and H520 caused a dose-dependent decrease in proliferation
and induction of apoptosis through suppressing the expression
of Bcl-2, increasing cleaved-caspase-3 and -9 protein expres-
sion, and downregulating MMP-2 and -9 expression on gene
and protein levels [43]. Min et al. [44] showed that phloretin
(25, 50, 100 and 200 μM) caused a dose- and time-dependent
inhibition of migration and an increase in apoptosis of A549
cells through upregulating ERK, c-Jun N-terminal kinases
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436 DARU J Pharm Sci (2019) 27:433–449



Table 1 List of flavonoids with potential anticancer activity against various lung cancer cell lines

Flavonoid Concentration Cell line Mechanisms Reference

EGCG 20 μM A549 H1650 H460 Upregulation of TP53 causing growth inhibition [29]

5–50 μM H1299 H460 Increased expression of miR-210, leading to growth inhibition [30]

70 μM H69
H69VP

Reduced tolomerase activity, apoptosis induction, DNA fragmentation,
and cell cycle arrest

[31]

2.5–40μmol/L H2122 H358 H460
H1975 H1993

Inhibition of cell proliferation [32]

5HPMF 16.5 μM H1299 Apoptosis through activation of caspase-3 [34]

5HHMF 16.5 μM H1299 Apoptosis through activation of caspase-3 [34]

Genistein 10 μM+ 50 ng/mL
trichostatin A

A549 Enhanced inhibition of growth and increased apoptosis by increasing
TNFR-1 death receptor signalling

[35]

25μM H3255 H1650 H1781 Decreased DNA-binding activity of NF-κB and a reduction in COX-2,
pAkt, EGFR and PGE2 expression

[37]

20–40 μM SPC-A-1 Cell-cycle arrest, antiproliferation, induction of apoptosis via regulation
of genes related to apoptosis

[38]

15–30 μmol/L H460 Nullified the NF-κB-inducing activity of cisplatin, docetaxel and
doxorubicin increasing cell-growth inhibition and inducing of apoptosis

[39]

Fisetin 5–20μM A549 Inhibition of both PI3K/Akt and mTOR signalling through attenuating
PI3K protein expression, inhibiting Akt and mTOR phosphorylation

[41]

1, 5,10μM A549 Downregulation of ERK1/2, MMP-2, and u-PA. Inhibition of NF-κB
and AP-1 binding. Decrease in the nuclear levels of NF-κB, c-Fos,
and c-Jun

[42]

Phloretin 125–150 μg/mL A549 Calu-1
H838 H520

Decreased proliferation, induction of apoptosis, Bcl-2 expression
suppression, increased cleaved-caspase-3 and -9 protein expression,
MMP-2 and -9 downregulation

[43]

25, 50, 100 and
200 μM

A549 Inhibit migration, increase apoptosis via upregulating ERK, JNK, Bax
and P38 MAPK and activating caspase-3 and -9, and TP53 while
downregulating Bcl-2 and NF-κB

[44]

Quercetin 0.74–4.40 μmol/L A549 Dose-dependent decrease in cell growth and an increase in apoptosis [45]

Kaempferol 10–140 μM A549 Dose-dependent antiproliferative activity and impaired metastasis via
suppression of EMT

[56]

25 μM A549 EMT suppression induced by inhibiting the phosphorylation of Smad3 at
Threonine-179 by Akt1

[57]

30, 50 and 80 μM H460 Apoptosis via induction caspase-3, AIF, and increasing antioxidant enzymes [58]

Luteolin 20–80 μM A549 Cell cycle arrest and inducing apoptosis through activating JNK, increasing
Bax, promoting procaspase-9 cleavage, and activating caspase-3

[51]

25–100 μM A549 Apoptotic effect and reduction of cell motility and cell migration.
Upregulation of caspase-3 and caspase-9, downregulation of Bcl-2,
increase in expression of Bax, phosphorylation of mitogen-activated
protein kinase and extracellular regulated protein kinase (MEK), and
activation of Akt

[52]

10–100 μM A549
H460

Inhibition of cell proliferation and increased apoptosis via upregulation of
a microRNA (miR-34a-5p) that targets an oncogene (MDM4)

[53]

20–80 μM A549
H460

Decrease in cell proliferation by downregulation of the Tyro3, Axl, MerTK
(TAM) receptor tyrosine kinases (RTK)

[54]

20–160 μM H460 Antiproliferative effects via Sirt1-mediated apoptosis [55]

Isorhamnetin 16 μM A549 Inhibition of cellular proliferation and colony formation and an increase in
apoptosis via the mitochondria-dependent pathway with caspase activation

[47]

25 μM A549 Synergistically increase the antiproliferative and proapoptotic effects of the
anticancer drugs via disruption of the mitochondrial membrane potential
and activation of caspases and PARP

[48]

Hesperidin 5–50 μM A549 NCIH358 Inhibition of proliferation and induction of apoptosis via loss of
mitochondrial membrane potential, activation of caspase-3, and affecting
the fibroblast growth factor and NF-κB signal transduction pathways

[60]

5–100 μM H1993 Suppression of cell viability [61]

Acacetin 1–30 μM A549 Inhibition of cell viability, invasion and migration via disruption of several
signalling pathways and kinases including AP-1, NF-κB, c-Fos, c-Jun,
MLK3, MAPK3/6, and p38a MAPK

[62]
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(JNK), Bcl-2-associated X protein (Bax) and P38 mitogen-
activated protein kinases (MAPK) and activating caspase-3
and -9, and TP53 while downregulating Bcl-2 and NF-κB.

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is the most
common flavonol distributed in various plants and plant foods
(refer to Fig. 2 for structure). Zheng et al. [45] studied the effect
of quercetin (0.74–4.40 μmol/L) administration on A549 cells.
It was found that quercetin caused a dose-dependent decrease in
cell growth and an increase in apoptosis.

Isorhamnetin is a flavonoid that is an immediate metabolite
of quercetin in mammals [46] (refer to Fig. 2 for structure).
Ruan, Hu and Chen [47] showed that administration of 16μM
isorhamnetin to A549 cells resulted in inhibition of cellular
proliferation and colony formation and an increase in apopto-
sis via the mitochondria-dependent pathway with caspase ac-
tivation. Isorhamnetin (25 μM) when combined with 0.5 μM
each of cisplatin and carboplatin, synergistically increased the
antiproliferative and proapoptotic effects of these anticancer
drugs in A549 cells via disruption of the mitochondrial mem-
brane potential and activation of caspases and PARP [48].

Luteolin, 3′,4′,5,7-tetrahydroxyflavone, is a flavone found
naturally in its glycosylated form in various green vegetables
including artichoke, broccoli, cabbage, celery, cauliflower,
green pepper, and spinach [49, 50] (refer to Fig. 2 for
structure). Administration of 20–80 μM luteolin to A549 lung
cancer cells caused a dose- and time-dependent cytotoxic effect
by causing cell cycle arrest and inducing apoptosis through
activating JNK, increasing Bax, promoting procaspase-9 cleav-
age, and activating caspase-3 [51]. Meng et al. [52] showed that
luteolin (25–100 μM) had a dose- and time-dependent antipro-
liferative and apoptotic effect on A549 lung cancer cells, also
significantly reducing cell motility and cell migration. Luteolin
was shown to upregulate caspase-3 and caspase-9, downregu-
late Bcl-2, increase expression of bax, phosphorylate mitogen-
activated protein kinase and ERK (MEK), and activate Akt
[52]. Jiang et al. [53] caused a dose- and time-dependent inhi-
bition of cell proliferation and increased apoptosis when admin-
istering luteolin (10–100 μM) to human lung cancer A549 and
H460 cells. The mechanism of action was found to be the
upregulation of a microRNA (miR-34a-5p) that targets an on-
cogene (MDM4) [53]. Luteolin (20–80 μM) caused a decrease
in cell proliferation by downregulation of Tyro3, Axl, MerTK
(TAM) receptor tyrosine kinases (RTK) in parental and
cisplatin-resistant human lung cancer A549 and H460 cells
[54]. Ma et al. [55] showed that luteolin (20–160 μM) caused
antiproliferative effects in human lung cancer NCI-H460 cells
through Sirt1-mediated apoptosis.

Kaempferol (3, 4′,5,7-tetrahydroxyflavone) is another com-
mon dietary flavonoid (refer to Fig. 2 for structure). Hang et al.
[56] administered 10–140 μM kaempferol to A549 cells and
show that it had dose-dependent antiproliferative activity, with
an IC50 value of 72 μM after 24 h of incubation, and impaired
metastasis of the cells via suppression of Epithelial-

Mesenchymal Transition (EMT). Another study pretreated
A549 cells with 25 μM kaempferol and found the EMT sup-
pression induced by kaempferol was a result of inhibition of the
phosphorylation of Smad3 at Threonine-179 by Akt1 [57].
Exposure of H460 cells to 30, 50 and 80 μM kaempferol re-
sulted in a dose-dependent increase in apoptosis via induction
of caspase-3, apoptosis-inducing factor (AIF) and increasing
antioxidant enzymes [58].

Hespe r id in ( (2S ) -5 -hydroxy-2 - (3 -hydroxy-4 -
methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-
6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-
yl]oxymethyl]oxan-2-yl]oxy-2,3-dihydrochromen-4-one) is a
flavanone that is found in many citrus fruits [59] (refer to Fig.
2 for structure). A study by Cincin et al. [60] found that 5–
50 μM hesperidin caused a dose- and time-dependent inhibi-
tion of proliferation and induction of apoptosis via loss of
mitochondrial membrane potential, activation of caspase-3,
and affecting the fibroblast growth factor and NF-κB signal
transduction pathways in A549 and NCI-H358 cells.
Hesperidin (5–100 μM) showed a significant inhibitory effect
on tyrosine kinase inhibitors (TKI)- resistant cell line, H1993,
while almost having no effect on the TKI- sensitive cell line,
H2073 [61]. The study did not speculate on the method of this
inhibitory effect.

Acacetin (5,7-dihydroxy-40 -methoxyflavone) is a flavo-
noid that has been studied for its effect on lung cancer cells
(refer to Fig. 2 for structure). Chien et al. [62] administered
10–30 μM acacetin to A549 which resulted in significant
inhibition of cell viability. Further exposure of the A549 cells
to 0, 1, 2.5, and 5 μM acacetin showed an inhibition of inva-
sion and migration thought to be due to disruption of several
signalling pathways and kinases including AP-1, NF-κB, c-
Fos, c-Jun, mixed lineage protein kinase 3 (MLK3), mitogen-
activated protein kinases 3/6 (MAPK3/6), and p38a MAPK.

Phenolic acids

Phenolic acids can be subdivided into two major subgroups,
namely hydroxybenzoic acids and hydroxycinnamic acids [3].
Refer to Fig. 3 for the structures of phenolic compounds
discussed below and refer to Table 2 for the list of studies
discussed below.

The hydroxycinnamic acid derivatives, tatariside B, C and
D, are isolated from tartary buckwheat (Fagopyrum
tataricum) [63]. The tatarisides B-D showed significant cyto-
toxicity effects against human lung adenocarcinoma A-549
cells, with recorded IC50 values of 18.3 μg/mL, 6.44 μg/mL,
and 2.83 μg/mL, respectively [63].

A study of the effect of 4-O-(2″-O-acetyl-6″-O-p-
coumaroyl-β-d-glucopyranosyl)-p-coumaric acid (4-ACGC)
against several lung cancer cell lines, including A549, NCI-
H1299, and HCC827 showed that 4-ACGC caused dose-de-
pendent, anti-proliferative activity between 10 and 100 μg/
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mL, with IC50 values of 37.73 μg/mL (A549), 50.6 μg/mL
(NCI-H1299), and 62.0 μg/mL (HCC827) [64]. This suggests
that 4-ACGC causes upregulation of caspase-3 & 9, Bcl-2-
associated death promoter (Bad), and Bax while also down-
regulating Bcl-2 [64].

p-Coumaric acid (4-hydroxycinnamic acid) is biologically
synthesised through the shikimate pathway with phenylala-
nine and tyrosine as precursors [65]. p-Coumaric acid (50–

100 μM) showed a significant inhibitory effect on the prolif-
eration of the TKI-resistant cell line, H1993, while only mod-
erately affecting the TKI- sensitive cell line, H2073 [61]. The
study did not speculate on the method of this inhibitory effect.
Nasr Bouzaiene et al. [66] found that p-Coumaric acid (50–
1000 μM) caused up to a 55% reduction in the proliferation of
A549 cells in a dose-dependent manner. p-Coumaric acid (50–
200 μM) also caused a significant decrease in the production

Table 2 List of phenolic acids

Phenolic acid name Concentration Cell line Mechanisms Reference

Tatariside B
Tatariside C
Tatariside D

18.3 μg/mL
6.44 μg/mL
2.83 μg/mL

A549 Inhibition of proliferation of cell line [63]

4-ACGC 37.73 μg/mL
50.6 μg/mL
62.0 μg/mL

A549
NCI-H1299
HCC827

Upregulation of caspase-3 & 9, Bad, and Bax
down-regulation of Bcl-2

[64]

p-Coumaric acid 50–100 μM H1993 Suppression of cell viability [61]

50–1000 μM A549 Decreased proliferation, superoxide anion production, cell adhesion,
and cell migration

[66]

Salicylic acid 6.0 mM A549 Proapoptotic, antiproliferative, and cytotoxic effects [68]

Gallic acid 10–50 μM
100–200 μM

Calu 6
A549

Depletion of glutathione and increasing ROS levels [70]

50 μM H1975 Inhibition of Src-mediated STAT3 phosphorylation, leading to downregulation
of STAT3 target genes (Bcl2 and cyclin D) causing apoptosis and cell cycle arrest

[71]

5 μM H1993 Inhibition of Src-mediated STAT3 phosphorylation, leading to downregulation of
STAT3 target genes (Bcl2 and cyclin D) causing apoptosis and cell cycle arrest

[61]

Caffeic acid 50–1000 μM A549 Decreased proliferation, superoxide anion production, cell adhesion, and cell migration [66]

Ferulic acid 50–1000 μM A549 Decreased proliferation, superoxide anion production, cell adhesion, and cell migration [66]
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of superoxide anion, cell adhesion, and tumour cell migration
in A549 cells in a dose-dependent manner [66].

Salicylic acid (2-Hydroxybenzoic acid) is a phenolic acid
that was first isolated from white willow (Salix alba) and has
demonstrated anti-inflammatory properties [67]. Vejselova
and Kutlu [68] discovered that salicylic acid had proapoptotic,
antiproliferative, and cytotoxic effects on A549 cells with a
recorded IC50 of 6.0 mM after 24 h.

Gallic acid (3,4,5-trihydroxybenzoic acid) is a phenolic
acid from various sources such as green tea, raspberries,
blueberries, bananas, and grapes [69]. Gallic acid has been
shown to inhibit cell growth and induce cell death in Calu
6 (IC50 10–50 μM) and A549 (IC50 100–200 μM) cells by
depleting glutathione and increasing reactive oxygen spe-
cies (ROS) levels [70]. Gallic acid was also found to have
an anti-proliferative effect on TKI-resistant cell line,
H1975, at 50 μM while not affecting TKI- sensitive cell
lines [71]. Another study also found that gallic acid (5 μM)
showed a strong inhibitory effect on the TKI- resistant cell
line, H1993, while sparing the TKI- sensitive cell lines
[61]. Both studies suggest that gallic acid inhibits TKI-
resistant cell line proliferation through inhibition of Src-
mediated signal transducer and activator of transcription
protein 3 (STAT3) phosphorylation, leading to downregu-
lation of STAT3 target genes (Bcl2 and cyclin D) causing
apoptosis and cell cycle arrest [61, 71].

Caffeic acid (50–1000 μM) caused a significant reduction in
A549 cell viability in a dose-dependent manner [66]. Caffeic
acid (50–200 μM) also caused a significant decrease in the
production of superoxide anion, cell adhesion, and tumour cell
migration in A549 cells in a dose-dependent manner [66].

Ferulic acid (50–1000μM) caused a significant reduction in
A549 cell viability in a dose-dependent manner [66]. Ferulic
acid (50–200 μM) also caused a significant decrease in the
production of superoxide anion, cell adhesion, and tumour cell
migration in A549 cells in a dose-dependent manner [66].

Diphenylalkaloids

Diphenylalkaloids are alkaloids with one or more diphenyl
ether linkages [72]. Diphenylalkaloids can be further classi-
fied, depending on the length of the carbon chain between two
aromatic rings, into diphenylheptanoids, diphenylpentanoids,
and other diphenylalkanoids [73]. Refer to Fig. 4 for structure
and Table 3 for the list of studies discussed below.

C u r c um i n ( ( 1E , 6E ) - 1 , 7 - B i s ( 4 - h y d r o x y - 3 -
methoxyphenyl)-1,6-heptadiene-3,5-dione) consists of two
groups of diphenylalkaloids, namely diphenylheptanoids (or
d i a ry l hep t ano id s ) and d ipheny lpen t ano id s (o r
diarylpentanoids) [74, 75]. Curcumin is a hydrophobic poly-
phenol responsible for the yellow colour of the Indian spice
turmeric (Curcuma longa) [76]. Curcumin is considered the
most active constituent of turmeric comprising 2–5% of

turmeric preparations. Turmeric has been used for over
5000 years in the traditional Indian medicine system known
as Ayurveda [77]. Recent evidence suggests that curcumin has
both antioxidant and anti-inflammatory properties [78, 79].

Curcumin has been shown to modulate cytokines, en-
zymes, growth factors, kinases, and transcription factors
[80]. Several researchers investigated the anticancer properties
of curcumin. A study by Lin et al. [81] found that curcumin at
a concentration of 30 μM activated caspase-3 resulting in
DNA damage and endoplasmic reticulum (ER) stress and
mitochondrial-dependent-induced apoptosis in human lung
cancer A-549 cells. The effect of curcumin was assessed on
two human lung cancer cell lines, namely A549 (TP53 profi-
cient) and the large cell lung carcinoma cell line H1299 (TP53
null mutant) [82]. Curcumin inhibited the growth and induced
apoptosis in a concentration dependent manner in both cell
lines. Exposure of the cell lines to 40–50 μM resulted in a
50% reduction in cell viability, while a concentration of
160 μM lead to a more significant 95% reduction in the via-
bility of the cells. Since curcumin induced apoptosis occurred
in both the TP53 proficient (A549) and the TP53 deficient
(H1299) cell line it can be deduced that curcumin induces its
growth inhibitory effect in a TP53-independent manner.
Curcumin was also shown to inhibit the invasion and migra-
tion of A549 cells through the inhibition of MMP-2 and ma-
trix metalloproteinase-9 (MMP-9) and Vascular Endothelial
Growth Factor (VEGF) at concentrations of 10 and 20 μM
[83]. Wu et al. [84] studied the effects of curcumin on human
non-small cell lung cancer NCI-H460 cells. They found that
curcumin had a dose-dependent cytotoxic effect on the NCI-
H460 cells with a concentration of 30μM leading to cell death
in 95% of the cells. The study ascertained that curcumin
caused apoptosis in the NCI-H460 cells due to mitochondrial
membrane potential loss and subsequent caspase-3 activation,
together with the activation of FAS/caspase-8 (extrinsic) path-
way, ER stress proteins, growth arrest- and DNA damage-
inducible gene 153 (GADD 153) and glucose-regulated pro-
tein 78 (GRP78). Curcumin (5–20 μmol/L) was also shown to
concentration-dependently inhibit human lung adenocarcino-
ma cells (CL1–5) by invasion and metastasis via the upregu-
lation of the DnaJ-like heat shock protein 40 (HLJ1) associat-
ed with tumour suppression, via activation of the JNK/JunD
pathway [85]. It was also shown that curcumin caused signif-
icant growth inhibition of the human lung cancer cell PC-9,
inducing G1 and S phase arrests in cell-cycle regulation and
apoptosis in a TP53-independent manner [86]. Growth arrest
and apoptosis was most significantly observed at a concentra-
tion of 50 μM, where the percentage of viable cells 24 h after
treatment was 47.5% of the control. It was found that the
apoptosis was driven by the upregulation of growth arrest-
and DNA damage-inducible gene 45 (GADD 45) and
GADD 153. Similarly, curcumin was shown to induce apo-
ptosis in human lung squamous cell carcinoma (SK-MES-1)
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via upregulation of several genes including proliferating cell
nuclear antigen (PCNA), DNA polymerase lambda (POLL),
MutY DNA Glycosylase (MUTYH), signal transducer and
activator of transcription 5a (STAT5A), and AKT1, and the
downregulation of mitogen-activated protein kinase 1
(MAPK1), arrestin beta 2 (ARRB2), protein tyrosine kinase
2 (PTK2), mitogen-activated protein kinase 14 (MAPK14),
vascular endothelial growth factor A (VEGFA), and nuclear
factor kappa b subunit 1 (NFKB1); the most significant which
was found at 15 μmol/L [87].

Stilbenes

Stilbenes are phenolic compounds with a core C6-C2-C6 struc-
tural feature. They are phytoalexins usually produced by
plants in response to fungal, bacterial or viral attacks [88].
Refer to Fig. 5 for the structures of the stilbenes and Table 4
for the list of studies discussed below.

Resveratrol (trans-3,5,4′-trihydroxystilbene) is the most
common natural stilbene found abundantly in a large number
of fruits and vegetables, most notably grapes [89]. It has anti-
inflammatory [90], anti-oxidative [91], proapoptotic and cell
cycle arrest [92] properties. A study byWang et al. [93] found
that 20 μM resveratrol suppressed invasion and metastasis of
A549 cells by preventing transforming growth factor beta 1
(TGF-β1) induced EMT. Another study exposed A549 cells
to 4–64 μM resveratrol which resulted in inhibition of growth
(IC50 8.9 μM) and apoptosis induced via caspase-3 activation
[94]. Resveratrol (1–10 μM) showed a significant inhibitory

effect on TKI- resistant cell line, H1993, while almost
having no effect on the TKI- sensitive cell line, H2073
[61]. The study did not speculate on the method of this
inhibitory effect.

Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is
an analogue of resveratrol that occurs naturally and which
has similar biological effects [95]. Schneider et al. [96] inves-
tigated the effect of pterostilbene (10-100 μM) on two lung
cancer cell lines, NCI-H460 and SK-MES-1. Pterostilbene
caused a decrease in cell viability, especially for concentra-
tions more than 20 μM, and increased apoptosis and caspase 3
& 7 activity.

Bioavailability of phenolic compounds

These studies of the biological activity of phenolic com-
pounds against cancer cells shows that there’s great promise
for their therapeutic application to treat cancer, but one hin-
drance to this use is the low absorption they exhibit. The low
absorption stems from decreased solubility and decreased sta-
bility [97].

Dietary intake of phenolic acids are estimated to range from
200 mg/day up to 1198.6 mg/day [3, 98]. The oral bioavail-
ability of tea catechins seems to be very low, with plasma
concentrations being between 5 to 50 times lower than what
is required to replicate findings in vitro [99]. Another
compounding problem is that some phenolic compounds such
as quercetin are present in our diets at very low quantities,

Table 3 List of studies where curcumin showed anticancer activity against various lung cancer cell lines

Diphenylalkaloid Concentration Cell line Mechanisms Reference

Curcumin 30 μM A-549 Caspase-3 induced apoptosis. TP53-independent apoptosis [81]

40–50, 160 μM A549
H1299

TP53-independent induction of apoptosis [82]

10–20 μM A549 MMP 2&9 mediated inhibition of invasion and metastasis [83]

30 μM NCI-H460 Caspase-3 & 8 induced apoptosis [84]

5–20 μmol/L CL1–5 Upregulation of tumour suppressor HLJ1 [85]

50 μM PC-9 Apoptosis via upregulation of GADD 45 and 153 [86]

15 μmol/L SK-MES-1 Upregulation and downregulation of genes [87]

Fig. 4 Curcumin structure
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approximately 20 ± 5 mg of your daily dietary intake [100].
Pharmacokinetics studies has suggested that absorption of
quercetin in humans following a single oral dose can be as
low as 2% [101]. A study by Hollman et al. [102] showed that
when humans received 68 mg quercetin equivalents (nearly
twice the estimated maximum flavonol intake) the maximum
plasma concentration was only 0.74 μmol/L. Zheng et al. [45]
demonstrated that administration of 0.74 μmol/L quercetin
caused 5, 10, and 30% inhibition in growth of A549 cells after
24, 48, and 72 h period, respectively. It doesn’t fare much
better for diphenylalkaloids such as curcumin either. Many
studies have shown that curcumin has a poor oral bioavailabil-
ity due to low absorption, increased metabolism, and its swift
elimination from the body. Yang et al. [103] found the oral
bioavailability of curcumin to be 1% when they compared the
maximum serum concentrations achieved after intravenous-
and oral administration of curcumin, 0.36 ± 0.05μg/mL and
0.06 ± 0.01μg/mL, respectively. Another study showed that
when 3.6–12 g C complex is taken per day for a week or
longer, that the plasma levels of curcumin remains at or below
25 nmol [104]. Siviero et al. [105] reported that after intraper-
itoneal injection of 100 mg/kg of carbon-14 curcumin, the
following distribution was obtained: brain 2.9 ± 0.4 nmol/g,
muscle 8.4 ± 6.0 nmol/g, heart 9.1 ± 1.1 nmol/g, lung 16 ±
3 nmol/g, liver 73 ± 20 nmol/g, kidney 78 ± 3 nmol/g, and
intestinal mucosa 200 ± 23 nmol/g. This indicates that the
bulk of curcumin goes towards the tissue of the intestine.

Resveratrol on the other hand has relatively high oral ab-
sorption (at least 70% absorbed), but has a low oral bioavail-
ability [106]. It is postulated that the low oral bioavailability
could be due to the rapid sulfate conjugation of resveratrol by
the liver/intestine [106]. Several studies concluded that after
oral administration of approximately 25 mg resveratrol, the
plasma concentration of the free form of resveratrol was be-
tween 1 and 5 ng/ml [107–110].

The in vitro studies show what the phenolic compounds
can do once accumulated at the site of action and in sufficient
concentration. However, in reality concerning oral ingestion,
such as when you are trying to get the phenolic compounds
from your diet. The phenolic compounds have to navigate
many obstacles to get to the bloodstream and ultimately the
site of action. The phenolic compounds face the high acidity
environment of the stomach which can cause degradation and
uncontrolled release which, in turn, can cause decreased ab-
sorption from the intestines [97]. Several great reviews have
been written on the topic of bioavailability of phenolic
compounds, which can aid the reader with further infor-
mation [111, 112]. Therefore, it is not possible to obtain,
through the diet alone, the concentration of phenolic com-
pounds necessary to have the effects described in the pre-
vious section. This is one of the questions proposed by
Rasouli et al., whether it is possible to achieve the con-
centration of phenolic compounds in vivo in order to rep-
licate the effects seen in vitro [113]. It is the purpose of
the next section to propose that by transporting the phe-
nolic compounds in a way that helps successfully traverse
and protect it from these obstacles, it may be possible to
achieve similar effects without needing phenolic com-
pounds in the micromolar range.

Drug delivery

Nanoparticulate delivery systems

Nanoparticles and liposomes are useful strategies to overcome
the poor absorption, rapid metabolism, and elimination inher-
ent in most natural products; helping to increase their bioavail-
ability and target specific sites, such as the lung. This section
will be looking at studies carried out on delivery systems

Table 4 List of stilbenes with potential anticancer activity against various cell cancer lines

Stilbenes name Concentration Cell lines Mechanisms References

Resveratrol 20 μM A549 Suppressed invasion and metastasis by preventing TGF-β1 induced EMT [93]

4–64 μM A549 Inhibition of growth and apoptosis induced via caspase 3 activation [94]

1–10 μM H1993 Suppression of cell viability [61]

Pterostilbene 10–100 μM NCI-H460 SK-MES-1 Decrease in cell viability and increased apoptosis and caspase-3 & 7 activity [96]

Fig. 5 List of stilbenes and their
chemical structures
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using polymeric nanoparticles. For a more comprehensive list
of delivery systems utilising other nanoparticulate systems,
such as liposomes, micelles, dendrimers, etc. refer to the re-
view by Loira-Pastoriza, Todoroff and Vanbever [110].

Polymeric nanoparticles refers to colloidal systems with
spherical or irregular shape that either encapsulates or entraps
a biologically active substance [114]. Numerous biodegrad-
able polymers, both synthetic and natural, can be utilised to
create polymeric nanoparticles, including polycaprolactone
(PCL), polylactic acid (PLA), poly (lactic-co-glycolic acid)
(PLGA), chitosan and gelatin [115]. The US Food and Drug
Administration (FDA) have approved PLA and PLGA for
human applications. PLA and PLGA are broken down in an
organism into their biodegradable biocompatible monomeric
building blocks, lactic and glycolic acid [115].When PLA and
PLGA are administered intravenously, they are normally
quickly cleared by the immune system of the host [116]. To
combat this and increase the circulation time, nanoparticles
are often coated with poly(ethylene glycol) (PEG), a polymer
that can aid in evading clearance by the immune system [117].
Chitosan is a natural polycationic linear polysaccharide, that
has been shown to be mucoadhesive, non-immunogenic and
non-toxic [118]. Gelatin is a protein based biopolymer that’s
highly biocompatible and biodegradable with low toxicity and
low antigenicity [119]. The advantages of polymeric nanopar-
ticles include controllable physico-chemical properties, high
stability, homogenous size distribution, high drug encapsula-
tion, and controllable drug release [120].

Polymeric nanoparticles have been extensively studied for
their drug delivery capacity (refer to table 5 for list of studies
discussed below). PLGA is, due to FDA approval, the most

popular polymer used for nanoparticle delivery. It is safe and
highly stable in colloidal suspensions and has been shown to
have controlled release properties [121]. PLGA nanoparticles
with or without chitosan coating has been shown to be
cytocompatible with A549 cells as high as 5 mg/mL [122].
Khalil et al. [123] showed that orally administered PLGA and
PLGA-PEG nanoparticles increases drug absorption (in-
creased bioavailability),causes sustained drug release, and in-
creases the half-life of the encapsulated drug. PLGA and
PLGA-PEG nanoparticles increased the peak concentration
of curcumin by 2.9- and 7.4-fold, increasing the peak concen-
tration of free curcumin from 4.066 ± 0.564 ng/ml to 11.783 ±
0.454 ng/ml and 29.778 ± 4.632 ng/ml for PLGA and PLGA-
PEG nanoparticles, respectively [123]. The PLGA and
PLGA-PEG nanoparticles also increased the half-life of the
curcumin from 1 h to 4 h and 6 h, for free curcumin, PLGA,
PLGA-PEG nanoparticles, respectively [123]. The PLGA and
PLGA-PEG nanoparticles enhanced the oral bioavailability of
curcumin by 15.6- and 55.4-fold, respectively [123]. Teong
et al. [124] encapsulated curcumin in polymeric chitosan, gel-
atin, and hyaluronan nanoparticles with an encapsulation effi-
ciency of 81, 67, and 78%, respectively. The curcumin-
encapsulated- chitosan, gelatin, and hyaluronan nanoparticles
all showed enhanced apoptotic effects of 45, 40 and 32%,
respectively, as opposed to pure curcumin (>20%) on A549
cells [124]. When administered intravenously to rats, a signif-
icant amount of curcumin encapsulated into PLGA nanopar-
ticles were found in the lungs [125]. Kumar et al. [126] used
in vitro studies to investigate the effects of naringenin encap-
sulated chitosan nanoparticles (NAR/CS NPs) on A549 lung
cancer cells and normal mouse fibroblast cells (3T3). The

Table 5 List of phenolic compounds and the polymeric nanoparticles used in their delivery

Nanoparticulate system Phenolic compound Effect Reference

PLGA
PLGA-PEG

Curcumin PLGA and PLGA-PEG nanoparticles:
- increased the peak concentration of curcumin by 2.9- and 7.4-fold
- increased the half-life of the curcumin from 1 h to 4 h (PLGA) and 6 h (PLGA-PEG)
- enhanced the oral bioavailability of curcumin by 15.6- and 55.4-fold, respectively

[123]

Chitosan Gelatin
Hyaluronan

Curcumin Polymeric chitosan, gelatin, and hyaluronan nanoparticles:
- All showed enhanced apoptotic effects of 45, 40 and 32%, respectively, as opposed

to pure curcumin (>20%) on A549 cells

[124]

Chitosan naringenin naringenin encapsulated chitosan nanoparticles (NAR/CS NPs):
- caused a statistically significant dose-dependent decrease in cell viability in A549 cells

as compared with free naringenin, without affecting the normal 3T3 cells

[126]

Gelatin Resveratrol Resveratrol encapsulated in gelatin nanoparticles:
- induced cell death in human lung cancer cells NCI-H460 by changing the expression

of TP53, p21, caspase-3, Bax, Bcl-2 and NF-κB

[119]

Gelatin Resveratrol Resveratrol encapsulated gelatin nanoparticles (R-GNPs):
- improved cellular uptake and superior bioavailability, decreasing cell viability,

mitochondrial membrane potential and increasing cytotoxicity, DNA damage and
intracellular ROS levels as compared to free resveratrol in NCI-H460 cells

[127]

PLGA EGCG The EGCG-encapsulated PLGA nanoparticles:
- decreased IC50 of EGCG from 60 μM (free EGCG) to 9 μM (encapsulated-EGCG)
- enhanced the sensitivity of the A549 cells to cisplatin by reducing the dose of cisplatin

required by up to 20-fold

[128]
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results showed that the NAR/CS NPs caused a statistically
significant dose-dependent decrease in cell viability in A549
cells as compared with free naringenin, without affecting the
normal 3T3 cells [126]. Resveratrol encapsulated in gelatin
nanoparticles was shown to induce cell death in human lung
cancer cells NCI-H460 by changing the expression of TP53,
p21, caspase-3, Bax, Bcl-2 and NF-κB [119]. Previously, it
was shown that resveratrol encapsulated gelatin nanoparticles
(R-GNPs) had an improved cellular uptake and superior bio-
availability, decreasing cell viability, mitochondrial membrane
potential and increasing cytotoxicity, DNA damage and intra-
cellular ROS levels as compared to free resveratrol in NCI-
H460 cells [127]. Singh et al. [128] encapsulated EGCG in
PLGA nanoparticles and assessed it on human lung cancer
A549 cells. The EGCG-encapsulated PLGA nanoparticles
showed an IC50 of 9 μM while the free EGCG showed an
IC50 of 60 μM, meaning that the nanoparticles reduced the
dose required to exert the same antiproliferative effect on the
A549 cells by over 6 times [128]. The EGCG encapsulated
PLGA nanoparticles also enhanced the sensitivity of the
A549 cells to cisplatin by reducing the dose of cisplatin
required by up to 20 fold [128]. Phenolic compounds
delivered concomitantly with well-established chemother-
apeutic drugs were shown to have a synergistic effect.
Duan et al. [129] showed that the combined delivery of
co-encapsulated curcumin and doxorubicin in poly(butyl
cyanoacrylate) nanoparticles reversed the multidrug resis-
tance of the breast cancer cell line (MC7) at a higher
efficacy than the agents on its own or in separate nano-
particles. Another study showed that curcumin enhanced
the apoptotic effect of doxorubicin while also supressing
the adverse effects associated with it [130].

Popov et al. [131] found that administration via
intratracheal instillation of fluticasone propionate (FP) en-
capsulated in poly(lactide)-based mucus-penetrating parti-
cles (MPP) for pulmonary delivery showed a higher local
exposure to the lungs of rodents as compared to
poly(lactide)-based mucoadhesive particles (MAP) and
free-FP. PLGA nanoparticles coated with glycol chitosan
was shown to be more readily absorbed onto A549 cells
than the non-coated PLGA nanoparticles. The chitosan-
coated PLGA nanoparticles were found in the lungs up
to 72 h after pulmonary administration, whereas non-
coated PLGA nanoparticles were removed from the lungs
8 h after administration [132].

Pulmonary delivery

Pulmonary drug delivery allows for the non-invasive admin-
istration of a drug/bioactive compound via inhalation [133].
There are many advantages to delivering drugs via the lungs
for both local and systemic treatment, including high bioavail-
ability since the first pass metabolism is bypassed, rapid onset

of action due to direct targeting at the site needed (lung cancer
cells), self-administration (similar to how asthmatics use their
inhalation devices) and non-invasiveness (which increases pa-
tient compliance) [134–136]. One of the biggest challenges
for cancer chemotherapy is the non-specific targeting/
distribution of the anticancer agent and the severe side effects
this produces [137]. Nanoparticle-mediated pulmonary deliv-
ery will aid in overcoming this obstacle through targeted de-
livery; reducing the dosage required to treat the cancer and
reducing the amount of drug the healthy cells are being ex-
posed to. However, spray-dried nanoparticles are incapable of
depositing directly into the lungs since they get exhaled with-
out settling in the alveoli due to their small size range (<1 μm)
[138]. The ideal range for particles to be able to deposit in the
lung is between 1 and 5 μm [139]. Nanoparticles can be made
into the appropriate size via spray-drying the nanoparticles
using excipients, such as leucine, to form microparticles.
These microparticles can be delivered to the lungs through
dry powder inhalers (DPIs). DPIs are portable solid powder
delivery devices that are used without the aid of propellants
[133]. DPIs often give a better stability profile for the loaded
bioactive compound than aerosols or nebulizers [140].

Several drugs have been studied for both local and systemic
pulmonary delivery [141]. Polymeric nanoparticles have been
used for the pulmonary delivery of small molecules, genes and
proteins/peptides [142–148]. However, studies using polymeric
nanoparticle-mediatedmicroparticles for pulmonary delivery of
phenolic compounds are a little less ubiquitous in the literature.

Scutellarin, a flavone, was incorporated into polymeric mi-
croparticles based on poly(vinyl alcohol) (PVA), polyvinylpyr-
rolidone (PVP) and sodium hyaluronate [149]. The particles
showed a median size of 1.95–2.83μm, which is applicable
for inhalation [149]. The particles were administered via pul-
monary route and then assessed for bioavailability [149]. It was
found that the pulmonary route caused the bioavailability of
scutellarin to be 77%, which was 30 fold higher than the oral
route [149]. Studies has already shown that these polymeric
nanoparticles can be used in combination with common anti-
cancer drugs, such as cisplatin and doxorubicin, to either en-
hance their efficacy and/or attenuate their adverse effects. Liu
et al. [150] prepared paclitaxel- oleic acid-conjugated chitosan
nanoparticles (P-OA-CTS) and quercetin-oleic acid-conjugated
chitosan nanoparticles (Q-OA-CTS) and then co-loaded both
nanoparticles into microparticles by spray-drying the nanopar-
ticles with hydroxypropyl-β-cyclodextrin, lactose, and manni-
tol as excipients. The microparticles obtained was shown to be
in the ideal range of between 1 and 5 μm with a slow release
profile [150]. The study ascertained that intravenous delivery of
the microspheres caused more accumulation of the encapsulat-
ed drug in the liver and kidney than in the lung, while pulmo-
nary administration lead to a significant majority of the drug
depositing in the lungs with minimal amounts accumulating in
the other organs [150]. Furthermore, 6 h after pulmonary
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administration, paclitaxel and quercetin concentration in the
lung remained high (206.27 μg/g) with comparatively low dis-
tribution in the liver (8.82 μg/g), spleen (6.94 μg/g), kidney
(5.01 μg/g) and heart (2.61 μg/g) at the same time. Whereas,
6 h after intravenous delivery the concentration of paclitaxel
and quercetin in all organs were ≤ 5 μg/g. It was reported that
quercetin helped increase the circulatory time of paclitaxel
[150]. Combined, this shows that pulmonary delivery of micro-
particles not only improved the retention time of the drugs, but
also allowed for the accumulation of the drug in the lung with
only minimal amount of drug accumulating in other organs.
This should lead to lower side-effects.

Conclusion

Phenolic compounds have huge potential in chemoprevention
with a plethora of compounds showing promise in in vitro
studies. However, the biggest drawback with using phenolic
compounds is their low bioavailability due to several factors
including low intrinsic activity, malabsorption, high rate of
metabolism, inactivity of metabolic products and/or rapid
elimination and clearance from the body [76]. It was shown
that when the phenolic compounds were incorporated into
polymeric nanoparticles, they enhanced the anticancer effects
shown in vitro. Despite the ability of the polymeric nanopar-
ticle to deliver the phenolic compounds via oral and intrave-
nous administration, it is only natural to assess pulmonary
delivery, especially for lung cancer. This is due to the many
advantages that pulmonary delivery has. Although there are
only a limited amount studies done on pulmonary delivery of
phenolic compounds, they do show quite a lot of promise. It
would be interesting to see where this field goes in the next
few years.
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