Skip to main content
Log in

High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The latest version of the planetary part of the numerical ephemerides EPM (Ephemerides of Planets and the Moon) developed at the Institute of Applied Astronomy of the Russian Academy of Sciences is presented. The ephemerides of planets and the Moon were constructed by numerical integration in the post-Newtonian metric over a 140-year interval (from 1880 to 2020). The dynamical model of EPM2004 ephemerides includes the mutual perturbations from major planets and the Moon computed in terms of General Relativity with allowance for effects due to lunar physical libration, perturbations from 301 big asteroids, and dynamic perturbations due to the solar oblateness and the massive asteroid ring with uniform mass distribution in the plane of the ecliptic. The EPM2004 ephemerides resulted from a least-squares adjustment to more than 317000 position observations (1913–2003) of various types, including radiometric measurements of planets and spacecraft, CCD astrometric observations of the outer planets and their satellites, and meridian and photographic observations. The high-precision ephemerides constructed made it possible to determine, from modern radiometric measurements, a wide range of astrometric constants, including the astronomical unit AU = (149597870.6960 ± 0.0001) km, parameters of the rotation of Mars, the masses of the biggest asteroids, the solar quadrupole moment J 2 = (1.9 ± 0.3) × 10−7, and the parameters of the PPN formalism β and γ. Also given is a brief summary of the available state-of-the-art ephemerides with the same precision: various versions of EPM and DE ephemerides from the Jet Propulsion Laboratory (JPL) (USA) and the recent versions of these ephemerides—EPM2004 and DE410—are compared. EPM2004 ephemerides are available via FTP at ftp://qua-sar.ipa.nw.ru/incoming/EPM2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Abalakin, V.K., Osnovy efemeridnoi astronomii (Fundamentals of Ephemeris Astronomy), Dagaev, M.M. and Rakhlin, I.E., Eds., Moscow: Nauka, 1979.

    Google Scholar 

  • Akim, E.L. and Stepanianz, V.A., Numerical Theory of the Motion of the Earth and Venus Derived from Data of Radar and Optical Observations and Tracking Data for the Venera 9 and 10 Satellites, Dokl. Akad. Nauk SSSR, 1977, vol. 233, pp. 314–317 [Sov. Phys. Dokl. (Engl. Transl.), 1977, vol. 22, no. 3, pp. 135–137].

    Google Scholar 

  • Akim, E h.L., Brumberg, V.A., Kislik, M.D., et al., A Relativistic Theory of Motion of Inner Planets, in Relativity in Celestial Mechanics and Astrometry, IAU Symp. 114, Kovalevsky, J. and Brumberg, V.A., Eds., Dordrecht: Kluwer, 1986, pp. 63–68.

    Google Scholar 

  • Ash, M.E., Shapiro, I.I., and Smith, W.B., Astronomical Constants and Planetary Ephemerides Deduced from Radar and Optical Observations, Astron. J., 1967, vol. 72, pp. 332–350.

    Article  Google Scholar 

  • Bretagnon, P. and Francou, G., Planetary Theories in Rectangular and VSOP87 Solutions, Astron. Astrophys., 1988, vol. 202, pp. 309–315.

    Google Scholar 

  • Brumberg, V.A., Relyativistskaya nebesnaya mekhanika (Relativistic Celestial Mechanics), Demin, V.G., Ed., Moscow: Nauka, 1972.

    Google Scholar 

  • Dunham, D.W., Goffin, E., Manek, J., et al., Asteroidal Occultation Results Multiply Helped by HIPPARCOS, J. Ital. Astron. Soc., 2002, vol. 73, no.3, pp. 662–665.

    Google Scholar 

  • Eckert, W.J., Brouwer, D., and Clemence, G.M., Coordinates of the Five Outer Planets 1653–2060, Astron. Pap, 1951, vol. 12.

  • Eroshkin, G.I., Glebova, N.I., and Fursenko, M.A., Dopolneniya k Astronomicheskomu ezhegodniku (Additions to the Astronomical Yearbook), St. Petersburg: Inst. Teor. Astron. Ross. Akad. Nauk, 1992, vol. 27-28A, pp. 1–8.

    Google Scholar 

  • Everhart, E., Implicit Single-Sequence Methods for Integrating Orbits, Celest. Mech., 1974, vol. 10, pp. 35–55.

    Article  Google Scholar 

  • Fienga, A. and Simon, J.-L., Analytical and Numerical Studies of Asteroids Perturbations on Solar System Planet Dynamics, Astron. Astrophys., 2005, vol. 429, pp. 361–367.

    Article  Google Scholar 

  • Folkner, W.M., Yoder, C.F., Yuan, D.N., et al., Interior Structure and Seasonal Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder, Science, 1997, vol. 278, pp. 1749–1752.

    Article  CAS  PubMed  Google Scholar 

  • Glebova, N.I., On the Improvement of the Ephemerides of Inner Planets on the Basis of Optical and Radar Data Treatment for 1960–1980, Byull. Inst. Teor. Astron., 1984, vol. 15, pp. 241–250.

    Google Scholar 

  • Hilton, J.L., Asteroid Mass and Densities, in Asteroids III, Bottke, W.F., Jr., Cellino, A., Paolicchi, P., and Binzel, R.P., Eds., Tucson: Univ. Arizona Press, 2002, pp. 103–112.

    Google Scholar 

  • Kislik, M.D., Koljuka, Yu.F., Kotel’nikov, V.A., et al., A General Relativistic Theory of Motion of the Inner planets of the Solar System, Dokl. Akad. Nauk SSSR, 1980, vol. 255, no.3, pp. 545–547 [Sov. Phys. Dokl. (Engl. Transl.), 1980, vol. 25, no. 11, pp. 867–869].

    Google Scholar 

  • Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Sveshnikova, E.S., Some Results from the Reduction of Radar, Laser, and Optical Observations of the Inner Planets and the Moon, Dokl. Akad. Nauk SSSR, 1981, vol. 261, pp.1320–1324 [Sov. Phys. Dokl. (Engl. Transl.), 1981, vol. 26, no. 12, pp. 1103–1105].

    Google Scholar 

  • Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Sveshnikova, E.S., Improvement of the Ephemerides of the Inner Planets and the Moon using Radar Measurements, Lunar Laser and Meridian Observations in 1961-1980, Byull. Inst. Teor. Astron., 1982, vol. 15, no.3, pp. 145–164.

    Google Scholar 

  • Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Chunajeva, L.I., The Motion of Major Planets from Observations 1769–1988 and Some Astronomical Constants, Celest. Mech. Dyn. Astron., 1993, vol. 55, pp. 1–23.

    Article  Google Scholar 

  • Krasinsky, G.A. and Vasilyev, M.V., Universal Programming System ERA for High Precision Applications of Dynamic and Ephemeris Astronomy, in Dynamics and astrometry of natural and artificial celestial bodies, IAU Coll. 165, Wytrzyszczak, I.M., Lieske, J.H., and Feldman, R.A., Eds., Dordrecht: Kluwer, 1997, pp. 239–244.

    Google Scholar 

  • Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., and Yagudina, E.I., Estimating Masses of Asteroids, Commun. IAA RAS, 2001, vol. 139, pp. 1–43.

    Google Scholar 

  • Krasinsky, G.A., Selenodynamical Parameters from Analysis of LLR Observations of 1970–2001, Commun. IAA RAS, 2002, vol. 148, pp. 1–27.

    Google Scholar 

  • Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., and Yagudina, E.I., Hidden Mass in the Asteroid Belt, Icarus, 2002, vol. 158, pp. 98–105.

    Article  Google Scholar 

  • Mignard, F., Report of the IAU Working Group on ICRS, in Towards models and constants for sub-microarcsecond astrometry, Johnston, K.J., McCarthy, D.D., Luzum, B.J., and Kaplan, G.H., Eds., Washington, DC, USA: U.S. Naval Observatory, 2000, pp. 10–19.

    Google Scholar 

  • Newhall, X.X., Standish, E.M., Jr., and Williams, J.G., DE102: a Numerically Integrated Ephemerides of the Moon and Planets Spanning Forty-four Centuries, Astron. Astrophys., 1983, vol. 125, pp. 150–167.

    Google Scholar 

  • Oesterwinter, C. and Cohen, Ch.J., New Orbital Elements for Moon and Planets, Celest. Mech., 1972, vol. 5, pp. 317–395.

    Article  Google Scholar 

  • Ostro, S.J., Hudson, R.S., Berner, A.M., et al., Asteroid Radar Astronomy, in Asteroids III, Bottke, W.F., Jr., Cellino, A., Paolicchi, P., and Binzel, R.P., Eds., Tucson: Univ. Arizona Press, 2002, pp. 289–312.

    Google Scholar 

  • Pitjeva, E.V., Study of the Mars Dynamics based on the Analysis of Observations of the Viking and Pathfinder Landers, Tr. Inst. Prikl. Astron. Ross. Akad. Nauk, 1999, vol. 4, pp. 22–35.

    Google Scholar 

  • Pitjeva, E.V., Modern Numerical Ephemerides of Planets and the Importance of Ranging Observations for Their Creation, Celest. Mech. Dyn. Astron., 2001a, vol. 80, pp. 249–271.

    Article  Google Scholar 

  • Pitjeva, E.V., Progress in the Determination of Some Astronomical Constants from Radiometric Observations of Planets and Spacecraft, Astron. Astrophys., 2001b, vol. 371, pp. 760–765.

    Article  Google Scholar 

  • Pitjeva, E.V., Modern Numerical Theories of the Motion of the Sun, Moon and Major Planets: a Comprehensive Commentary to the Astronomical Yearbook, Tr. Inst. Prikl. Astron. Ross. Akad. Nauk, 2004, vol. 10, pp. 112–134.

    Google Scholar 

  • Standish, E.M., Keesey, M.S.W., and Newhall, X.X., JPL Development Ephemeris Number 96, JPL Tech. Rep., 1976, vol. 32-1603, pp. 1–36.

    Google Scholar 

  • Standish, E.M., Jr., The Observational Basis for JPL’s DE200 Planetary Ephemerides of the Astronomical Almanac, Astron. Astrophys, 1990, vol. 233, pp. 252–271.

    Google Scholar 

  • Standish, E.M., Newhall, X.X., Williams, J.G., and Folkner, W.M., JPL Planetary and Lunar Ephemerides, DE403/LE403, Interoffice Memorandum, 1995, vol. 314.10-127, pp. 1–22.

    Google Scholar 

  • Standish, E.M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Interoffice Memorandum, 1998, vol. 312, F-98-048, pp. 1–18.

    Google Scholar 

  • Standish, E.M. and Fienga, A., Accuracy Limit of Modern Ephemerides Imposed by Uncertainties in Asteroid Masses, Astron. Astrophys., 2002, vol. 384, pp. 322–328.

    Article  CAS  Google Scholar 

  • Standish, E.M., The Astronomical Unit Now, in Transit of Venus: new views of the solar system and galaxy, IAU Coll. 196, Kurtz, D.W., Ed., Cambridge: Cambridge University Press, 2005 (in press).

    Google Scholar 

  • Sveshnikov, M.L., Reduction of Washington Observations of Major Planets and the Sun to the Uniform System, Byull. Inst. Teor. Astron., 1974, vol. 152, pp. 563–570.

    Google Scholar 

  • Sveshnikov, M.L., personal communication, 2000.

  • Tedesco, E.F., Noah, P.V., Noah, M., and Price, S.D., The Supplemental IRAS Minor Planet Survey, Astron. J., 2002a, vol. 123, pp. 1056–1085.

    Article  Google Scholar 

  • Tedesco, E.F., Egan, M.P., and Price, S.D., The Midcourse Space Experiment Infrared Minor Planet Survey, Astron. J., 2002b, vol. 124, pp. 583–591.

    Article  Google Scholar 

  • Yoder, C.F. and Standish, E.M., Martian Precession and Rotation from Viking Lander Range Data, J. Geophys. Res., Ser. E, 1997, vol. 102, no.2, pp. 4065–4080.

    Google Scholar 

  • Yoder, C.F., Konoplev, A.S., Yuan, D.N., et al., Fluid Core Size of Mars from Detection of the Solar Tide, Science, 2003, vol. 300, pp. 299–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheskii Vestnik, Vol. 39, No. 3, 2005, pp. 202–213.

Original Russian Text Copyright © 2005 by Pitjeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitjeva, E.V. High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants. Sol Syst Res 39, 176–186 (2005). https://doi.org/10.1007/s11208-005-0033-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11208-005-0033-2

Keywords

Navigation