Skip to main content
Log in

Masses of the Main Asteroid Belt and the Kuiper Belt from the Motions of Planets and Spacecraft

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Dynamicalmass estimates for the main asteroid belt and the trans-Neptunian Kuiper belt have been found from their gravitational influence on the motion of planets. Discrete rotating models consisting ofmovingmaterial points have been used tomodel the total attraction fromsmall or as yet undetected bodies of the belts. The masses of the model belts have been included in the set of parameters being refined and determined and have been obtained by processing more than 800 thousand modern positional observations of planets and spacecraft. We have processed the observations and determined the parameters based on the new EPM2017 version of the IAA RAS planetary ephemerides. The large observed radial extent of the belts (more than 1.2 AU for the main belt and more than 8 AU for the Kuiper belt) and the concentration of bodies in the Kuiper belt at a distance of about 44 AU found from observations have been taken into account in the discrete models. We have also used individual mass estimates for large bodies of the belts as well as for objects that spacecraft have approached and for bodies with satellites. Our mass estimate for the main asteroid belt is (4.008 ± 0.029) × 10−4/m (3σ). The bulk of the Kuiper belt objects are in the ring zone from 39.4 to 47.8 AU. The estimate of its total mass together with the mass of the 31 largest trans-Neptunian Kuiper belt objects is (1.97 ± 0.30) × 10−2m (3σ), which exceeds the mass of the main asteroid belt almost by a factor of 50. The mass of the 31 largest trans-Neptunian objects (TNOs) is only about 40% of the total one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. L. Allen, G. M. Bernstein, and R. Malhotra, Astron. J. 124, 2949 (2002).

    Article  ADS  Google Scholar 

  2. M. T. Bannister, J. J. Kavelaars, J.-M. Petit, B. J. Gladman, S. D. J. Gwyn, Y.-T. Chen, K. Volk, M. Alexandersen, et al., Astron. J. 152, 70 (2016).

    Article  ADS  Google Scholar 

  3. G. Benedetti-Rossi, R. Vieira Martins, J. I. B. Camargo, M. Assafin, and F. Braga-Ribas, Astron. Astrophys. 570, A86 (2014).

    Article  ADS  Google Scholar 

  4. G. M. Bernstein, D. E. Trilling, R. L. Allen, M. E. Brown, M. Holman, and R. Malhotra, Astron. J. 128, 1364 (2004).

    Article  ADS  Google Scholar 

  5. M. Booth, M. C. Wyatt, and A. Morbidelli, Mon. Not. R. Astron. Soc. 399, 385 (2009).

    Article  ADS  Google Scholar 

  6. M. Buie and W. M. Folkner, Astron. J. 149, 22 (2015).

    Article  ADS  Google Scholar 

  7. E. I. Chiang and M. E. Brown, Astron. J. 118, 1411 (1999).

    Article  ADS  Google Scholar 

  8. A. Delsanti and D. Jewitt, in Solar System Update, Ed. P. Blondel and J. Mason (Springer, Berlin, 2006), p. 267.

  9. J. L. Elliot, S. D. Kern, K. B. Clancy, A. A. S. Gulbis, R. L. Millis, M. W. Buie, L. H. Wasserman, E. I. Chiang, et al., Astron. J. 129, 1117 (2005).

    Article  ADS  Google Scholar 

  10. W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and P. Kychynka, IPN Prog. Rep. 42–196 (2014).

    Google Scholar 

  11. B. Gladman, Highlights Astron. 12, 193 (2002).

    Article  ADS  Google Scholar 

  12. B. Gladman, J. J. Kavelaars, J.-M. Petit, A. Morbidelli, M. J. Holman, and T. Loredo, Astron. J. 122, 1051 (2001).

    Article  ADS  Google Scholar 

  13. A. Hees, W. Folkner, R. Jacobson, and R. Park, Phys. Rev. D 89, 102002 (2014).

    Article  ADS  Google Scholar 

  14. D. Jewitt, J. Luu, and C. Trujillo, Astron. J. 115, 2125 (1998).

    Article  ADS  Google Scholar 

  15. S. Kenyon, Publ. Astron. Soc. Pacif. 114, 265 (2002).

    Article  ADS  Google Scholar 

  16. S. J. Kenyon and J. Luu, Astron. J. 118, 1101 (1999).

    Article  ADS  Google Scholar 

  17. G. A. Krasinsky, E. V. Pitjeva, M. V. Vasilyev, and E. I. Yagudina, Icarus 158, 98 (2002).

    Article  ADS  Google Scholar 

  18. P. Kuchynka and W. Folkner, Icarus 222, 243 (2013).

    Article  ADS  Google Scholar 

  19. H. F. Levison and A. Morbidelli, Nature (London, U. K. ) 426, 419 (2003).

    Article  ADS  Google Scholar 

  20. J. X. Luu and D. C. Jewitt, Ann. Rev. 40, 63 (2002).

    Google Scholar 

  21. N. McBride and D. W. Hughes, Mon. Not. R. Astron. Soc. 244, 513 (1990).

    ADS  Google Scholar 

  22. R. S. Park, W. M. Folkner, A. S. Konopliv, J. G. Williams, D. E. Smith, and M. T. Zuber, Astron. J. 153, 121 (2017).

    Article  ADS  Google Scholar 

  23. D. A. Pavlov and V. I. Skripcnichenko, in Proceedings Journees 2014 on Systemes de Reference Spatio-Temporels, Ed. by Z. Malkin and N. Capitaine (Pulkovo Observ., 2015), p. 243.

    Google Scholar 

  24. D. A. Pavlov, J. G. Williams, and V. V. Suvorkin, Celest. Mech. Dyn. Astron. 126, 61 (2016).

    Article  ADS  Google Scholar 

  25. J.-M. Petit, A. Morbidelli, and J. Chambers, Icarus 153, 338 (2001).

    Article  ADS  Google Scholar 

  26. E. V. Pit’eva, N. P. Pit’ev, D. A. Pavlov, and M. A. Bodunova, Tr. IPA RAN 43, 113 (2017).

    Google Scholar 

  27. E. V. Pitjeva, Solar Syst. Res. 39, 176 (2005).

    Article  ADS  Google Scholar 

  28. E. V. Pitjeva, in Proceedings of the IAU Symposium 263 on Icy Bodies of the Solar System, Ed. by D. Lazzaro, D. Prialnik, R. Schulz, and J. A. Fernandez (Cambridge Univ. Press, Cambridge, 2010a), p. 93.

  29. E. V. Pitjeva, in Protecting the Earth against Collisions with Asteroids and Comet Nuclei, Ed. by A. Finkelstein, W. Huebner, and V. Shor (Nauka, St. Petersburg, 2010b), p. 237.

    Google Scholar 

  30. E. V. Pitjeva, Solar Syst. Res. 47, 386 (2013).

    Article  ADS  Google Scholar 

  31. E. V. Pitjeva and N. H. Pitjev, Celest. Mech. Dyn. Astron. 119, 237 (2014).

    Article  ADS  Google Scholar 

  32. E. V. Pitjeva and N. H. Pitjev, in Proceedings of the IAU Symp. No. 318 on Asteroids: New Observations, New Models, Ed. by S. Chesley, A. Morbidelli, R. Jedicke, and D. Farnocchia (Cambridge Univ. Press, Cambridge, 2016), p. 212.

    Google Scholar 

  33. M. C. de Sanctis, M. T. Capria, and A. Coradini, Astron. J. 121, 2792 (2001).

    Article  ADS  Google Scholar 

  34. S. A. Stern and J. E. Colwell, Astrophys. J. 490, 879 (1997).

    Article  ADS  Google Scholar 

  35. C. A. Trujillo and M. E. Brown, Astrophys. J. 554, L95 (2001).

    Google Scholar 

  36. T. Vinogradova, Tr. IPA RAN 26, 110 (2012).

    Google Scholar 

  37. C. Vitense, A. Krivov, and T. Lohne, Astron. Astrophys. 520, A32 (2010).

    Google Scholar 

  38. P. R. Weissman and H. F. Levison, Ed. by A. Stern and D. J. Tholen (Univer. Arizona Press, Tucson, 1997), p. 559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pitjeva.

Additional information

Original Russian Text © E.V. Pitjeva, N.P. Pitjev, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, Nos. 8–9, pp. 604–617.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitjeva, E.V., Pitjev, N.P. Masses of the Main Asteroid Belt and the Kuiper Belt from the Motions of Planets and Spacecraft. Astron. Lett. 44, 554–566 (2018). https://doi.org/10.1134/S1063773718090050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718090050

Keywords

Navigation