Skip to main content

Advertisement

Log in

First long term in vivo study on subdurally implanted Micro-ECoG electrodes, manufactured with a novel laser technology

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A novel computer aided manufacturing (CAM) method for electrocorticography (ECoG) microelectrodes was developed to be able to manufacture small, high density microelectrode arrays based on laser-structuring medical grade silicone rubber and high purity platinum. With this manufacturing process, we plan to target clinical applications, such as presurgical epilepsy monitoring, functional imaging during cerebral tumor resections and brain-computer interface control in paralysed patients, in the near future. This paper describes the manufacturing, implantation and long-term behaviour of such an electrode array. In detail, we implanted 8-channel electrode arrays subdurally over rat cerebral cortex over a period of up to 25 weeks. Our primary objective was to ascertain the electrode’s stability over time, and to analyse the host response in vivo. For this purpose, impedance measurements were carried out at regular intervals over the first 18 weeks of the implantation period. The impedances changed between day 4 and day 7 after implantation, and then remained stable until the end of the implantation period, in accordance with typical behaviour of chronically implanted microelectrodes. A post-mortem histological examination was made to assess the tissue reaction due to the implantation. A mild, chronically granulated inflammation was found in the area of the implant, which was essentially restricted to the leptomeninges. Overall, these findings suggest that the concept of the presented ECoG-electrodes is promising for use in long-term implantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • J.D. Bancroft, M. Gamble, Churchill Livingstone (2002)

  • Y.Y. Duan, G.M. Clark, R.S.C. Cowan, Biomaterials 25, 3813 (2004)

    Article  Google Scholar 

  • W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, IEEE T Bio-Med Eng 52, 1295 (2005)

    Article  Google Scholar 

  • W.J. Freeman, L.J. Rogers, M.D. Holmes, D.L. Silbergeld, J Neurosci Meth 95, 111 (2000)

    Article  Google Scholar 

  • A. Gharabaghi, A. Koerbel, S.K. Rosahl, M. Tatagiba, M. Samii, Neurosurg 60, 124 (2007)

    Article  Google Scholar 

  • R.A. Green, J.S. Ordonez, M. Schuettler, L.A. Poole-Warren, N.H. Lovell, G.J. Suaning, Biomaterials 31, 886 (2010)

    Article  Google Scholar 

  • W.M. Grill, J.T. Mortimer, Ann Biomed Eng 22, 23 (1994)

    Article  Google Scholar 

  • C. Henle, M. Schuettler, J.S. Ordonez, T. Stieglitz, P IEEE EMBS, 4208–4211 (2008)

  • B.A. Hollenberg, C.D. Richards, R. Richards, D.F. Bahr, D.M. Rector, J Neurosci Meth 153, 147 (2006)

    Article  Google Scholar 

  • C. Jeschke, M. Schuettler, L.M. Reindl, T. Stieglitz, P IFMBE, 2447–2450 (2008)

  • E.C. Leuthardt, G. Schalk, J.R. Wolpaw, F.G. Ojemann, D.W. Moran, J Neural Eng 1, 63–71 (2004)

    Article  Google Scholar 

  • E.T. McAdams, J. Jossinet, Physiol Meas 16, A1–A13 (1995)

    Article  Google Scholar 

  • A. Mercanzini, P. Colin, J.-C. Bensadoun, A. Bertsch, P. Renaud, IEEE T Bio-Med Eng 56, 1909–1918 (2009)

    Article  Google Scholar 

  • J.-U. Meyer, T. Stieglitz, O. Scholz, W. Haberer, H. Beutel, IEEE T Adv Pack 24, 366–374 (2001)

    Article  Google Scholar 

  • V.M. Mirsky, M. Riepl, O.S. Wolfbeis, Biosens Bioelectron 12, 977–989 (1997)

    Article  Google Scholar 

  • J. Newman, J Electrochem Soc 113, 501–502 (1966)

    Article  Google Scholar 

  • G. Paxinos, J.C. Watson, The rat brain in stereoetaxic coordinates (Elsevier Academic, San Diego, 2007)

    Google Scholar 

  • T. Pistohl, T. Ball, A. Schulze-Bonhage, A. Aertsen, C. Mehring, J Neurosci Meth 167, 105–114 (2007)

    Article  Google Scholar 

  • V.S. Polikov, P.A. Tresco, W.M. Reichert, J Neurosci Meth 148, 1–18 (2005)

    Article  Google Scholar 

  • B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, J Neural Eng 6(3), 036003 (2009)

    Article  Google Scholar 

  • J. Salzmann, O.P. Linderholm, J.L. Guyomard, M. Simonutti, M. Paques, M. Lecchi, J. Sommerhalder, M. Pelizzone, J. Sahel, P. Renaud, A.B. Safran, S. Picaud, Brit J Ophthalmol 90, 1183–1187 (2006)

    Article  Google Scholar 

  • G. Schalk, J. Kubanek, K.J. Miller, N.R. Anderson, E.C. Leuthardt, F.G. Ojemann, D. Limbrick, D.W. Moran, L.A. Gerhardt, J.R. Wolpaw, J Neural Eng 4, 264–275 (2007)

    Article  Google Scholar 

  • M. Schuettler, P IEEE EMBS, 186–189 (2007)

  • M. Schuettler, C. Henle, J.S. Ordonez, W. Meier, T. Guenter, T. Stieglitz, P IEEE EMBS, 3212–3215 (2008)

  • M. Schuettler, C. Henle, J.S. Ordonez, G.J. Suaning, N.H. Lovell, T. Stieglitz, P IEEE Conf on Neural Eng, 53–56 (2007)

  • M. Schuettler, K.P. Koch, T. Stieglitz, P IFESS, 306–310 (2003)

  • M. Schuettler, S. Stiess, B.V. King, G.J. Suaning, J Neural Eng 2, 121–128 (2005)

    Article  Google Scholar 

  • M. Slutzky, L.R. Jordan, L.E. Miller, P IEEE EMBS, 3771–3774 (2008)

  • T. Stieglitz, in Neuroprosthetics—Theorie and Practice, ed. by K.W. Horch, G.S. Dhillon, (World Scientific Publishing Co. Pte. Ltd., Singapore, 2004), p. 475

  • T. Stieglitz, B. Rubehn, C. Henle, S. Kisban, S. Herwik, P. Ruther, M. Schuettler, Prog Brain Res 175, 297–315 (2009)

    Article  Google Scholar 

  • H. Thoma, H.J. Gerner, J. Holle, P. Kluger, W. Mayr, B. Meister, G. Schwanda, H. Stohr, Am Soc Artif Internal Organs T 10, 472–479 (1987)

    Google Scholar 

  • R.J. Vetter, J.C. Williams, J.F. Hetke, E.A. Nunamaker, D.R. Kipke, IEEE T Bio-Med Eng 51, 896–904 (2004)

    Article  Google Scholar 

  • J.C. Williams, J.A. Hippensteel, J. Dilgen, W.G. Shain, D.R. Kipke, J Neural Eng 4, 410–423 (2007)

    Article  Google Scholar 

  • J.C. Williams, R.L. Rennaker, D.R. Kipke, Brain Res Protoc 4, 303–313 (1999)

    Article  Google Scholar 

  • A.R. Wyler, G.A. Ojemann, E. Lettich, A.A. Ward, J Neurosurg 60, 1195–1200 (1984)

    Article  Google Scholar 

  • K. Yoshida, J.J. Struijk, in Neuroprosthetics—Theorie and Practice, ed. by K.W. Horch, G.S. Dhillon (World Scientific Publishing Co. Pte. Ltd., Singapore, 2004), p. 342

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Martin Schuettler for discussions and Wolfgang Meier for assembly. This study was supported by the German Ministry for Education and Research (BMBF Grant: Go Bio, FZK: 313891).

Conflict of Interest Statement

The authors agree to declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Henle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henle, C., Raab, M., Cordeiro, J.G. et al. First long term in vivo study on subdurally implanted Micro-ECoG electrodes, manufactured with a novel laser technology. Biomed Microdevices 13, 59–68 (2011). https://doi.org/10.1007/s10544-010-9471-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9471-9

Keywords

Navigation