<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 17 October 2012

Glutathione Efflux and Cell Death

Publication: Antioxidants & Redox Signaling
Volume 17, Issue Number 12

Abstract

Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Anathy VAesif SWGuala ASHavermans MReynaert NLHo YSBudd RCJanssen-Heininger YM. Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of FasJ Cell Biol184241-2522009. 1. Anathy V, Aesif SW, Guala AS, Havermans M, Reynaert NL, Ho YS, Budd RC, and Janssen-Heininger YM. Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas. J Cell Biol 184: 241–252, 2009.
2.
Anathy VRoberson ECGuala ASGodburn KEBudd RCJanssen-Heininger YM. Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell deathAntioxid Redox Signal16496-5052012. 2. Anathy V, Roberson EC, Guala AS, Godburn KE, Budd RC, and Janssen-Heininger YM. Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death. Antioxid Redox Signal 16: 496–505, 2012.
3.
Aon MACortassa SMaack CO'Rourke B. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol statusJ Biol Chem28221889-219002007. 3. Aon MA, Cortassa S, Maack C, and O'Rourke B. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282: 21889–21900, 2007.
4.
Aoshiba KYasui SNishimura KNagai A. Thiol depletion induces apoptosis in cultured lung fibroblastsAm J Respir Cell Mol Biol2154-641999. 4. Aoshiba K, Yasui S, Nishimura K, and Nagai A. Thiol depletion induces apoptosis in cultured lung fibroblasts. Am J Respir Cell Mol Biol 21: 54–64, 1999.
5.
Aoyama KMatsumura NWatabe MNakaki T. Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunctionEur J Neurosci2720-302008. 5. Aoyama K, Matsumura N, Watabe M, and Nakaki T. Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction. Eur J Neurosci 27: 20–30, 2008.
6.
Appenzeller-Herzog C. Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulumJ Cell Sci124847-8552011. 6. Appenzeller-Herzog C. Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum. J Cell Sci 124: 847–855, 2011.
7.
Aquilano KBaldelli SCardaci SRotilio GCiriolo MR. Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cellsJ Cell Sci1241043-10542011. 7. Aquilano K, Baldelli S, Cardaci S, Rotilio G, and Ciriolo MR. Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cells. J Cell Sci 124: 1043–1054, 2011.
8.
Armstrong JSJones DP. Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cellsFASEB J161263-12652002. 8. Armstrong JS and Jones DP. Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J 16: 1263–1265, 2002.
9.
Armstrong JSSteinauer KKHornung BIrish JMLecane PBirrell GWPeehl DMKnox SJ. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell lineCell Death Differ9252-2632002. 9. Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, and Knox SJ. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9: 252–263, 2002.
10.
Awasthi SSinghal SSSharma RZimniak PAwasthi YC. Transport of glutathione conjugates and chemotherapeutic drugs by RLIP76 (RALBP1): a novel link between G-protein and tyrosine kinase signaling and drug resistanceInt J Cancer106635-6462003. 10. Awasthi S, Singhal SS, Sharma R, Zimniak P, and Awasthi YC. Transport of glutathione conjugates and chemotherapeutic drugs by RLIP76 (RALBP1): a novel link between G-protein and tyrosine kinase signaling and drug resistance. Int J Cancer 106: 635–646, 2003.
11.
Bajt MLHo YSVonderfecht SLJaeschke H. Reactive oxygen as modulator of TNF and fas receptor-mediated apoptosis in vivo: studies with glutathione peroxidase-deficient miceAntioxid Redox Signal4733-7402002. 11. Bajt ML, Ho YS, Vonderfecht SL, and Jaeschke H. Reactive oxygen as modulator of TNF and fas receptor-mediated apoptosis in vivo: studies with glutathione peroxidase-deficient mice. Antioxid Redox Signal 4: 733–740, 2002.
12.
Ballatori NHammond CLCunningham JBKrance SMMarchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteinsToxicol Appl Pharmacol204238-2552005. 12. Ballatori N, Hammond CL, Cunningham JB, Krance SM, and Marchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol 204: 238–255, 2005.
13.
Ballatori NKrance SMMarchan RHammond CL. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiologyMol Aspects Med3013-282009. 13. Ballatori N, Krance SM, Marchan R, and Hammond CL. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 30: 13–28, 2009.
14.
Ballatori NKrance SMNotenboom SShi STieu KHammond CL. Glutathione dysregulation and the etiology and progression of human diseasesBiol Chem390191-2142009. 14. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, and Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390: 191–214, 2009.
15.
Baltes SFedrowitz MTortos CLPotschka HLoscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assaysJ Pharmacol Exp Ther320331-3432007. 15. Baltes S, Fedrowitz M, Tortos CL, Potschka H, and Loscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther 320: 331–343, 2007.
16.
Barrett WCDeGnore JPKonig SFales HMKeng YFZhang ZYYim MBChock PB. Regulation of PTP1B via glutathionylation of the active site cysteine 215Biochemistry386699-67051999. 16. Barrett WC, DeGnore JP, Konig S, Fales HM, Keng YF, Zhang ZY, Yim MB, and Chock PB. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38: 6699–6705, 1999.
17.
Basu SKeszler AAzarova NANwanze NPerlegas AShiva SBroniowska KAHogg NKim-Shapiro DB. A novel role for cytochrome c: efficient catalysis of S-nitrosothiol formationFree Radic Biol Med48255-2632010. 17. Basu S, Keszler A, Azarova NA, Nwanze N, Perlegas A, Shiva S, Broniowska KA, Hogg N, and Kim-Shapiro DB. A novel role for cytochrome c: efficient catalysis of S-nitrosothiol formation. Free Radic Biol Med 48: 255–263, 2010.
18.
Baudouin-Cornu PLagniel GKumar CHuang MELabarre J. Glutathione degradation is a key determinant of glutathione homeostasisJ Biol Chem2874552-45612012. 18. Baudouin-Cornu P, Lagniel G, Kumar C, Huang ME, and Labarre J. Glutathione degradation is a key determinant of glutathione homeostasis. J Biol Chem 287:4552–4561, 2012.
19.
Beer SMTaylor ERBrown SEDahm CCCosta NJRunswick MJMurphy MP. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSEJ Biol Chem27947939-479512004. 19. Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, and Murphy MP. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem 279: 47939–47951, 2004.
20.
Benhar MForrester MTStamler JS. Protein denitrosylation: enzymatic mechanisms and cellular functionsNat Rev Mol Cell Biol10721-7322009. 20. Benhar M, Forrester MT, and Stamler JS. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10: 721–732, 2009.
21.
Benlloch MOrtega AFerrer PSegarra RObrador EAsensi MCarretero JEstrela JM. Acceleration of glutathione efflux and inhibition of gamma-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicityJ Biol Chem2806950-69592005. 21. Benlloch M, Ortega A, Ferrer P, Segarra R, Obrador E, Asensi M, Carretero J, and Estrela JM. Acceleration of glutathione efflux and inhibition of gamma-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicity. J Biol Chem 280: 6950–6959, 2005.
22.
Biswas SKRahman I. Environmental toxicity, redox signaling and lung inflammation: the role of glutathioneMol Aspects Med3060-762009. 22. Biswas SK and Rahman I. Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Mol Aspects Med 30: 60–76, 2009.
23.
Blair IA. Endogenous glutathione adductsCurr Drug Metab7853-8722006. 23. Blair IA. Endogenous glutathione adducts. Curr Drug Metab 7: 853–872, 2006.
24.
Blair IA. Analysis of endogenous glutathione-adducts and their metabolitesBiomed Chromatogr2429-382010. 24. Blair IA. Analysis of endogenous glutathione-adducts and their metabolites. Biomed Chromatogr 24: 29–38, 2010.
25.
Blokzijl Hvan Steenpaal AVander Borght SBok LILibbrecht LTamminga MGeuken MRoskams TADijkstra GMoshage HJansen PLFaber KN. Upregulation and cytoprotective role of epithelial multidrug resistance-associated protein 1 in inflammatory bowel diseaseJ Biol Chem28335630-356372008. 25. Blokzijl H, van Steenpaal A, Vander Borght S, Bok LI, Libbrecht L, Tamminga M, Geuken M, Roskams TA, Dijkstra G, Moshage H, Jansen PL, and Faber KN. Upregulation and cytoprotective role of epithelial multidrug resistance-associated protein 1 in inflammatory bowel disease. J Biol Chem 283: 35630–35637, 2008.
26.
Bojes HKDatta KXu JChin ASimonian PNunez GKehrer JP. Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawalBiochem J325Pt 2315-3191997. 26. Bojes HK, Datta K, Xu J, Chin A, Simonian P, Nunez G, and Kehrer JP. Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal. Biochem J 325 (Pt 2): 315–319, 1997.
27.
Bortner CDCidlowski JA. The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosisPflugers Arch448313-3182004. 27. Bortner CD and Cidlowski JA. The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Arch 448: 313–318, 2004.
28.
Brechbuhl HMGould NKachadourian RRiekhof WRVoelker DRDay BJ. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2J Biol Chem28516582-165872010. 28. Brechbuhl HM, Gould N, Kachadourian R, Riekhof WR, Voelker DR, and Day BJ. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2. J Biol Chem 285: 16582–16587, 2010.
29.
Briz ORomero MRMartinez-Becerra PMacias RIPerez MJJimenez FSan Martin FGMarin JJ. OATP8/1B3-mediated cotransport of bile acids and glutathione: an export pathway for organic anions from hepatocytes?J Biol Chem28130326-303352006. 29. Briz O, Romero MR, Martinez-Becerra P, Macias RI, Perez MJ, Jimenez F, San Martin FG, and Marin JJ. OATP8/1B3-mediated cotransport of bile acids and glutathione: an export pathway for organic anions from hepatocytes? J Biol Chem 281: 30326–30335, 2006.
30.
Broniowska KAKeszler ABasu SKim-Shapiro DBHogg N. Cytochrome c-mediated formation of S-nitrosothiol in cellsBiochem J442191-1972012. 30. Broniowska KA, Keszler A, Basu S, Kim-Shapiro DB, and Hogg N. Cytochrome c-mediated formation of S-nitrosothiol in cells. Biochem J 442: 191–197, 2012.
31.
Brown GCBorutaite V. Regulation of apoptosis by the redox state of cytochrome cBiochim Biophys Acta1777877-8812008. 31. Brown GC and Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta 1777: 877–881, 2008.
32.
Bush JAHo VCMitchell DLTron VALi G. Effect of N-acetylcysteine on UVB-induced apoptosis and DNA repair in human and mouse keratinocytesPhotochem Photobiol70329-3331999. 32. Bush JA, Ho VC, Mitchell DL, Tron VA, and Li G. Effect of N-acetylcysteine on UVB-induced apoptosis and DNA repair in human and mouse keratinocytes. Photochem Photobiol 70: 329–333, 1999.
33.
Cazanave SBerson AHaouzi DVadrot NFau DGrodet ALetteron PFeldmann GEl-Benna JFromenty BRobin MAPessayre D. High hepatic glutathione stores alleviate Fas-induced apoptosis in miceJ Hepatol46858-8682007. 33. Cazanave S, Berson A, Haouzi D, Vadrot N, Fau D, Grodet A, Letteron P, Feldmann G, El-Benna J, Fromenty B, Robin MA, and Pessayre D. High hepatic glutathione stores alleviate Fas-induced apoptosis in mice. J Hepatol 46: 858–868, 2007.
34.
Chanvorachote PNimmannit UWang LStehlik CLu BAzad NRojanasakul Y. Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory proteinJ Biol Chem28042044-420502005. 34. Chanvorachote P, Nimmannit U, Wang L, Stehlik C, Lu B, Azad N, and Rojanasakul Y. Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J Biol Chem 280: 42044–42050, 2005.
35.
Chen CJHuang HSChang WC. Depletion of phospholipid hydroperoxide glutathione peroxidase up-regulates arachidonate metabolism by 12S-lipoxygenase and cyclooxygenase 1 in human epidermoid carcinoma A431 cellsFASEB J171694-16962003. 35. Chen CJ, Huang HS, and Chang WC. Depletion of phospholipid hydroperoxide glutathione peroxidase up-regulates arachidonate metabolism by 12S-lipoxygenase and cyclooxygenase 1 in human epidermoid carcinoma A431 cells. FASEB J 17: 1694–1696, 2003.
36.
Chiang HSMaric M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidationFree Radic Biol Med51688-6992011. 36. Chiang HS and Maric M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic Biol Med 51: 688–699, 2011.
37.
Chipuk JEGreen DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization?Trends Cell Biol18157-1642008. 37. Chipuk JE and Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18: 157–164, 2008.
38.
Chrestensen CAStarke DWMieyal JJ. Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosisJ Biol Chem27526556-265652000. 38. Chrestensen CA, Starke DW, and Mieyal JJ. Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275: 26556–26565, 2000.
39.
Circu MLAw TY. Glutathione and apoptosisFree Radic Res42689-7062008. 39. Circu ML and Aw TY. Glutathione and apoptosis. Free Radic Res 42: 689–706, 2008.
40.
Circu MLAw TY. Reactive oxygen species, cellular redox systems, and apoptosisFree Radic Biol Med48749-7622010. 40. Circu ML and Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48: 749–762, 2010.
41.
Circu MLStringer SRhoads CAMoyer MPAw TY. The role of GSH efflux in staurosporine-induced apoptosis in colonic epithelial cellsBiochem Pharmacol7776-852009. 41. Circu ML, Stringer S, Rhoads CA, Moyer MP, and Aw TY. The role of GSH efflux in staurosporine-induced apoptosis in colonic epithelial cells. Biochem Pharmacol 77: 76–85, 2009.
42.
Coffey RNWatson RWHegarty NJO'Neill AGibbons NBrady HRFitzpatrick JM. Thiol-mediated apoptosis in prostate carcinoma cellsCancer882092-21042000. 42. Coffey RN, Watson RW, Hegarty NJ, O'Neill A, Gibbons N, Brady HR, and Fitzpatrick JM. Thiol-mediated apoptosis in prostate carcinoma cells. Cancer 88: 2092–2104, 2000.
43.
Cole SPDeeley RG. Transport of glutathione and glutathione conjugates by MRP1Trends Pharmacol Sci27438-4462006. 43. Cole SP and Deeley RG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27: 438–446, 2006.
44.
Crack PJTaylor JMFlentjar NJde Haan JHertzog PIannello RCKola I. Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injuryJ Neurochem781389-13992001. 44. Crack PJ, Taylor JM, Flentjar NJ, de Haan J, Hertzog P, Iannello RC, and Kola I. Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem 78: 1389–1399, 2001.
45.
Cullen KVDavey RADavey MW. Verapamil-stimulated glutathione transport by the multidrug resistance-associated protein (MRP1) in leukaemia cellsBiochem Pharmacol62417-4242001. 45. Cullen KV, Davey RA, and Davey MW. Verapamil-stimulated glutathione transport by the multidrug resistance-associated protein (MRP1) in leukaemia cells. Biochem Pharmacol 62: 417–424, 2001.
46.
Custodio JBCardoso CMAlmeida LM. Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: implications in the prevention of etoposide-induced apoptosisChem Biol Interact140169-1842002. 46. Custodio JB, Cardoso CM, and Almeida LM. Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: implications in the prevention of etoposide-induced apoptosis. Chem Biol Interact 140: 169–184, 2002.
47.
D'Alessio MCerella CAmici CPesce CCoppola SFanelli CDe Nicola MCristofanon SClavarino GBergamaschi AMagrini AGualandi GGhibelli L. Glutathione depletion up-regulates Bcl-2 in BSO-resistant cellsFASEB J181609-16112004. 47. D'Alessio M, Cerella C, Amici C, Pesce C, Coppola S, Fanelli C, De Nicola M, Cristofanon S, Clavarino G, Bergamaschi A, Magrini A, Gualandi G, and Ghibelli L. Glutathione depletion up-regulates Bcl-2 in BSO-resistant cells. FASEB J 18: 1609–1611, 2004.
48.
D'Alessio MCerella CDe Nicola MBergamaschi AMagrini AGualandi GAlfonsi AMGhibelli L. Apoptotic GSH extrusion is associated with free radical generationAnn N Y Acad Sci1010449-4522003. 48. D'Alessio M, Cerella C, De Nicola M, Bergamaschi A, Magrini A, Gualandi G, Alfonsi AM, and Ghibelli L. Apoptotic GSH extrusion is associated with free radical generation. Ann N Y Acad Sci 1010: 449–452, 2003.
49.
D'Alessio MDe Nicola MCoppola SGualandi GPugliese LCerella CCristofanon SCivitareale PCiriolo MRBergamaschi AMagrini AGhibelli L. Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosisFASEB J191504-15062005. 49. D'Alessio M, De Nicola M, Coppola S, Gualandi G, Pugliese L, Cerella C, Cristofanon S, Civitareale P, Ciriolo MR, Bergamaschi A, Magrini A, and Ghibelli L. Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J 19: 1504–1506, 2005.
50.
Dalle-Donne IColombo GGagliano NColombo RGiustarini DRossi RMilzani A. S-glutathiolation in life and death decisions of the cellFree Radic Res453-152011. 50. Dalle-Donne I, Colombo G, Gagliano N, Colombo R, Giustarini D, Rossi R, and Milzani A. S-glutathiolation in life and death decisions of the cell. Free Radic Res 45: 3–15, 2011.
51.
Dalton TPChen YSchneider SNNebert DWShertzer HG. Genetically altered mice to evaluate glutathione homeostasis in health and diseaseFree Radic Biol Med371511-15262004. 51. Dalton TP, Chen Y, Schneider SN, Nebert DW, and Shertzer HG. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37: 1511–1526, 2004.
52.
Davis MAFlaws JAYoung MCollins KColburn NH. Effect of ceramide on intracellular glutathione determines apoptotic or necrotic cell death of JB6 tumor cellsToxicol Sci5348-552000. 52. Davis MA, Flaws JA, Young M, Collins K, and Colburn NH. Effect of ceramide on intracellular glutathione determines apoptotic or necrotic cell death of JB6 tumor cells. Toxicol Sci 53: 48–55, 2000.
53.
Deas ODumont CMollereau BMetivier DPasquier CBernard-Pomier GHirsch FCharpentier BSenik A. Thiol-mediated inhibition of FAS and CD2 apoptotic signaling in activated human peripheral T cellsInt Immunol9117-1251997. 53. Deas O, Dumont C, Mollereau B, Metivier D, Pasquier C, Bernard-Pomier G, Hirsch F, Charpentier B, and Senik A. Thiol-mediated inhibition of FAS and CD2 apoptotic signaling in activated human peripheral T cells. Int Immunol 9: 117–125, 1997.
54.
Delgado-Esteban MAlmeida ABolanos JP. D-Glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neuronsJ Neurochem751618-16242000. 54. Delgado-Esteban M, Almeida A, and Bolanos JP. D-Glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J Neurochem 75: 1618–1624, 2000.
55.
Denton DNicolson SKumar S. Cell death by autophagy: facts and apparent artefactsCell Death Differ1987-952012. 55. Denton D, Nicolson S, and Kumar S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19: 87–95, 2012.
56.
Di Monte DSandy MSSmith MT. Increased efflux rather than oxidation is the mechanism of glutathione depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)Biochem Biophys Res Commun148153-1601987. 56. Di Monte D, Sandy MS, and Smith MT. Increased efflux rather than oxidation is the mechanism of glutathione depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem Biophys Res Commun 148: 153–160, 1987.
57.
Di Stefano AFrosali SLeonini AEttorre APriora RDi Simplicio FCDi Simplicio P. GSH depletion, protein S-glutathionylation and mitochondrial transmembrane potential hyperpolarization are early events in initiation of cell death induced by a mixture of isothiazolinones in HL60 cellsBiochim Biophys Acta1763214-2252006. 57. Di Stefano A, Frosali S, Leonini A, Ettorre A, Priora R, Di Simplicio FC, and Di Simplicio P. GSH depletion, protein S-glutathionylation and mitochondrial transmembrane potential hyperpolarization are early events in initiation of cell death induced by a mixture of isothiazolinones in HL60 cells. Biochim Biophys Acta 1763: 214–225, 2006.
58.
Diaz-Hernandez JIAlmeida ADelgado-Esteban MFernandez EBolanos JP. Knockdown of glutamate-cysteine ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neuronsJ Biol Chem28038992-390012005. 58. Diaz-Hernandez JI, Almeida A, Delgado-Esteban M, Fernandez E, and Bolanos JP. Knockdown of glutamate-cysteine ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neurons. J Biol Chem 280: 38992–39001, 2005.
59.
Dimmeler SHaendeler JNehls MZeiher AM. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteasesJ Exp Med185601-6071997. 59. Dimmeler S, Haendeler J, Nehls M, and Zeiher AM. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185: 601–607, 1997.
60.
Dogan ALLegrand OFaussat AMPerrot JYMarie JP. Evaluation and comparison of MRP1 activity with three fluorescent dyes and three modulators in leukemic cell linesLeuk Res28619-6222004. 60. Dogan AL, Legrand O, Faussat AM, Perrot JY, and Marie JP. Evaluation and comparison of MRP1 activity with three fluorescent dyes and three modulators in leukemic cell lines. Leuk Res 28: 619–622, 2004.
61.
Drechsel DALiang LPPatel M. 1-methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neuronsToxicol Appl Pharmacol220341-3482007. 61. Drechsel DA, Liang LP, and Patel M. 1-methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons. Toxicol Appl Pharmacol 220: 341–348, 2007.
62.
Ellison IRichie JP Jr. Mechanisms of glutathione disulfide efflux from erythrocytesBiochem Pharmacol83164-1692012. 62. Ellison I and Richie JP, Jr. Mechanisms of glutathione disulfide efflux from erythrocytes. Biochem Pharmacol 83: 164–169, 2012.
63.
Estrela JMOrtega AObrador E. Glutathione in cancer biology and therapyCrit Rev Clin Lab Sci43143-1812006. 63. Estrela JM, Ortega A, and Obrador E. Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43: 143–181, 2006.
64.
Fadeel BOrrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human diseaseJ Intern Med258479-5172005. 64. Fadeel B and Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258: 479–517, 2005.
65.
Faucher KRabinovitch-Chable HCook-Moreau JBarriere GSturtz FRigaud M. Overexpression of human GPX1 modifies Bax to Bcl-2 apoptotic ratio in human endothelial cellsMol Cell Biochem27781-872005. 65. Faucher K, Rabinovitch-Chable H, Cook-Moreau J, Barriere G, Sturtz F, and Rigaud M. Overexpression of human GPX1 modifies Bax to Bcl-2 apoptotic ratio in human endothelial cells. Mol Cell Biochem 277: 81–87, 2005.
66.
Fernandes RSCotter TG. Apoptosis or necrosis: intracellular levels of glutathione influence mode of cell deathBiochem Pharmacol48675-6811994. 66. Fernandes RS and Cotter TG. Apoptosis or necrosis: intracellular levels of glutathione influence mode of cell death. Biochem Pharmacol 48: 675–681, 1994.
67.
Fico AManganelli GCigliano LBergamo PAbrescia PFranceschi CMartini GFilosa S. 2-deoxy-d-ribose induces apoptosis by inhibiting the synthesis and increasing the efflux of glutathioneFree Radic Biol Med45211-2172008. 67. Fico A, Manganelli G, Cigliano L, Bergamo P, Abrescia P, Franceschi C, Martini G, and Filosa S. 2-deoxy-d-ribose induces apoptosis by inhibiting the synthesis and increasing the efflux of glutathione. Free Radic Biol Med 45: 211–217, 2008.
68.
Filomeni GAquilano KCivitareale PRotilio GCiriolo MR. Activation of c-Jun-N-terminal kinase is required for apoptosis triggered by glutathione disulfide in neuroblastoma cellsFree Radic Biol Med39345-3542005. 68. Filomeni G, Aquilano K, Civitareale P, Rotilio G, and Ciriolo MR. Activation of c-Jun-N-terminal kinase is required for apoptosis triggered by glutathione disulfide in neuroblastoma cells. Free Radic Biol Med 39: 345–354, 2005.
69.
Filomeni GAquilano KRotilio GCiriolo MR. Antiapoptotic response to induced GSH depletion: involvement of heat shock proteins and NF-kappaB activationAntioxid Redox Signal7446-4552005. 69. Filomeni G, Aquilano K, Rotilio G, and Ciriolo MR. Antiapoptotic response to induced GSH depletion: involvement of heat shock proteins and NF-kappaB activation. Antioxid Redox Signal 7: 446–455, 2005.
70.
Filomeni GRotilio GCiriolo MR. Glutathione disulfide induces apoptosis in U937 cells by a redox-mediated p38 MAP kinase pathwayFASEB J1764-662003. 70. Filomeni G, Rotilio G, and Ciriolo MR. Glutathione disulfide induces apoptosis in U937 cells by a redox-mediated p38 MAP kinase pathway. FASEB J 17: 64–66, 2003.
71.
Forman HJZhang HRinna A. Glutathione: overview of its protective roles, measurement, and biosynthesisMol Aspects Med301-122009. 71. Forman HJ, Zhang H, and Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30: 1–12, 2009.
72.
Fortenberry JDOwens MLBrown LA. S-nitrosoglutathione enhances neutrophil DNA fragmentation and cell deathAm J Physiol276L435-L4421999. 72. Fortenberry JD, Owens ML, and Brown LA. S-nitrosoglutathione enhances neutrophil DNA fragmentation and cell death. Am J Physiol 276: L435–L442, 1999.
73.
Franco RCidlowski JA. SLCO/OATP-like transport of glutathione in FasL-induced apoptosis: glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosisJ Biol Chem28129542-295572006. 73. Franco R and Cidlowski JA. SLCO/OATP-like transport of glutathione in FasL-induced apoptosis: glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosis. J Biol Chem 281: 29542–29557, 2006.
74.
Franco RCidlowski JA. Apoptosis and glutathione: beyond an antioxidantCell Death Differ161303-13142009. 74. Franco R and Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16: 1303–1314, 2009.
75.
Franco RDeHaven WISifre MBortner CDCidlowski JA. Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosisJ Biol Chem28336071-360872008. 75. Franco R, DeHaven WI, Sifre M, Bortner CD, and Cidlowski JA. Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis. J Biol Chem 283: 36071–36087, 2008.
76.
Franco RPanayiotidis MICidlowski JA. Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formationJ Biol Chem28230452-304652007. 76. Franco R, Panayiotidis MI, and Cidlowski JA. Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation. J Biol Chem 282: 30452–30465, 2007.
77.
Franco RSchoneveld OJPappa APanayiotidis MI. The central role of glutathione in the pathophysiology of human diseasesArch Physiol Biochem113234-2582007. 77. Franco R, Schoneveld OJ, Pappa A, and Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113: 234–258, 2007.
78.
Franklin CCKrejsa CMPierce RHWhite CCFausto NKavanagh TJ. Caspase-3-dependent cleavage of the glutamate-l-cysteine ligase catalytic subunit during apoptotic cell deathAm J Pathol1601887-18942002. 78. Franklin CC, Krejsa CM, Pierce RH, White CC, Fausto N, and Kavanagh TJ. Caspase-3-dependent cleavage of the glutamate-l-cysteine ligase catalytic subunit during apoptotic cell death. Am J Pathol 160: 1887–1894, 2002.
79.
Franklin CCRosenfeld-Franklin MEWhite CKavanagh TJFausto N. TGFbeta1-induced suppression of glutathione antioxidant defenses in hepatocytes: caspase-dependent post-translational and caspase-independent transcriptional regulatory mechanismsFASEB J171535-15372003. 79. Franklin CC, Rosenfeld-Franklin ME, White C, Kavanagh TJ, and Fausto N. TGFbeta1-induced suppression of glutathione antioxidant defenses in hepatocytes: caspase-dependent post-translational and caspase-independent transcriptional regulatory mechanisms. FASEB J 17: 1535–1537, 2003.
80.
Friesen CKiess YDebatin KM. A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cellsCell Death Differ11Suppl 1S73-S852004. 80. Friesen C, Kiess Y, and Debatin KM. A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells. Cell Death Differ 11 Suppl 1: S73–S85, 2004.
81.
Furfaro ALMacay JRMarengo BNitti MParodi AFenoglio DMarinari UMPronzato MADomenicotti CTraverso N. Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1Free Radic Biol Med52488-4962012. 81. Furfaro AL, Macay JR, Marengo B, Nitti M, Parodi A, Fenoglio D, Marinari UM, Pronzato MA, Domenicotti C, and Traverso N. Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1. Free Radic Biol Med 52: 488–496, 2012.
82.
Gallogly MMStarke DWMieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulationAntioxid Redox Signal111059-10812009. 82. Gallogly MM, Starke DW, and Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 11: 1059–1081, 2009.
83.
Galluzzi LMaiuri MCVitale IZischka HCastedo MZitvogel LKroemer G. Cell death modalities: classification and pathophysiological implicationsCell Death Differ141237-12432007. 83. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, and Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14: 1237–1243, 2007.
84.
Galluzzi LVitale IAbrams JMAlnemri ESBaehrecke EHBlagosklonny MVDawson TMDawson VLEl-Deiry WSFulda SGottlieb EGreen DRHengartner MOKepp OKnight RAKumar SLipton SALu XMadeo FMalorni WMehlen PNunez GPeter MEPiacentini MRubinsztein DCShi YSimon HUVandenabeele PWhite EYuan JZhivotovsky BMelino GKroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012Cell Death Differ19107-1202012. 84. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, and Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107–120, 2012.
85.
Garcia-Nogales PAlmeida ABolanos JP. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotectionJ Biol Chem278864-8742003. 85. Garcia-Nogales P, Almeida A, and Bolanos JP. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem 278: 864–874, 2003.
86.
Garcia-Ruiz CFernandez-Checa JCKaplowitz N. Bidirectional mechanism of plasma membrane transport of reduced glutathione in intact rat hepatocytes and membrane vesiclesJ Biol Chem26722256-222641992. 86. Garcia-Ruiz C, Fernandez-Checa JC, and Kaplowitz N. Bidirectional mechanism of plasma membrane transport of reduced glutathione in intact rat hepatocytes and membrane vesicles. J Biol Chem 267: 22256–22264, 1992.
87.
Garcia TBOliveira KRdo Nascimento JLCrespo-Lopez MEPicanco-Diniz DLMota TCHerculano AM. Glutamate induces glutathione efflux mediated by glutamate/aspartate transporter in retinal cell culturesNeurochem Res36412-4182011. 87. Garcia TB, Oliveira KR, do Nascimento JL, Crespo-Lopez ME, Picanco-Diniz DL, Mota TC, and Herculano AM. Glutamate induces glutathione efflux mediated by glutamate/aspartate transporter in retinal cell cultures. Neurochem Res 36: 412–418, 2011.
88.
Gendron MCSchrantz NMetivier DKroemer GMaciorowska ZSureau FKoester SPetit PX. Oxidation of pyridine nucleotides during Fas- and ceramide-induced apoptosis in Jurkat cells: correlation with changes in mitochondria, glutathione depletion, intracellular acidification and caspase 3 activationBiochem J353357-3672001. 88. Gendron MC, Schrantz N, Metivier D, Kroemer G, Maciorowska Z, Sureau F, Koester S, and Petit PX. Oxidation of pyridine nucleotides during Fas- and ceramide-induced apoptosis in Jurkat cells: correlation with changes in mitochondria, glutathione depletion, intracellular acidification and caspase 3 activation. Biochem J 353: 357–367, 2001.
89.
Ghibelli LCoppola SFanelli CRotilio GCivitareale PScovassi AICiriolo MR. Glutathione depletion causes cytochrome c release even in the absence of cell commitment to apoptosisFASEB J132031-20361999. 89. Ghibelli L, Coppola S, Fanelli C, Rotilio G, Civitareale P, Scovassi AI, and Ciriolo MR. Glutathione depletion causes cytochrome c release even in the absence of cell commitment to apoptosis. FASEB J 13: 2031–2036, 1999.
90.
Ghibelli LFanelli CRotilio GLafavia ECoppola SColussi CCivitareale PCiriolo MR. Rescue of cells from apoptosis by inhibition of active GSH extrusionFASEB J12479-4861998. 90. Ghibelli L, Fanelli C, Rotilio G, Lafavia E, Coppola S, Colussi C, Civitareale P, and Ciriolo MR. Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J 12: 479–486, 1998.
91.
Ghosh SPulinilkunnil TYuen GKewalramani GAn DQi DAbrahani ARodrigues B. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletionAm J Physiol Heart Circ Physiol289H768-H7762005. 91. Ghosh S, Pulinilkunnil T, Yuen G, Kewalramani G, An D, Qi D, Abrahani A, and Rodrigues B. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol 289: H768–H776, 2005.
92.
Gouaze VAndrieu-Abadie NCuvillier OMalagarie-Cazenave SFrisach MFMirault MELevade T. Glutathione peroxidase-1 protects from CD95-induced apoptosisJ Biol Chem27742867-428742002. 92. Gouaze V, Andrieu-Abadie N, Cuvillier O, Malagarie-Cazenave S, Frisach MF, Mirault ME, and Levade T. Glutathione peroxidase-1 protects from CD95-induced apoptosis. J Biol Chem 277: 42867–42874, 2002.
93.
Gouaze VMirault MECarpentier SSalvayre RLevade TAndrieu-Abadie N. Glutathione peroxidase-1 overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cellsMol Pharmacol60488-4962001. 93. Gouaze V, Mirault ME, Carpentier S, Salvayre R, Levade T, and Andrieu-Abadie N. Glutathione peroxidase-1 overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cells. Mol Pharmacol 60: 488–496, 2001.
94.
Gould NSMin EMartin RJDay BJ. CFTR is the primary known apical glutathione transporter involved in cigarette smoke-induced adaptive responses in the lungFree Radic Biol Med521201-12062012. 94. Gould NS, Min E, Martin RJ, and Day BJ. CFTR is the primary known apical glutathione transporter involved in cigarette smoke-induced adaptive responses in the lung. Free Radic Biol Med 52: 1201–1206, 2012.
95.
Green RMGraham MO'Donovan MRChipman JKHodges NJ. Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicityMutagenesis21383-3902006. 95. Green RM, Graham M, O'Donovan MR, Chipman JK, and Hodges NJ. Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 21: 383–390, 2006.
96.
Guha PDey ASen RChatterjee MChattopadhyay SBandyopadhyay SK. Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell lineJ Pharmacol Exp Ther336206-2142011. 96. Guha P, Dey A, Sen R, Chatterjee M, Chattopadhyay S, and Bandyopadhyay SK. Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J Pharmacol Exp Ther 336: 206–214, 2011.
97.
Hagenbuch BMeier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional propertiesPflugers Arch447653-6652004. 97. Hagenbuch B and Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447: 653–665, 2004.
98.
Hammond CLMadejczyk MSBallatori N. Activation of plasma membrane reduced glutathione transport in death receptor apoptosis of HepG2 cellsToxicol Appl Pharmacol19512-222004. 98. Hammond CL, Madejczyk MS, and Ballatori N. Activation of plasma membrane reduced glutathione transport in death receptor apoptosis of HepG2 cells. Toxicol Appl Pharmacol 195: 12–22, 2004.
99.
Hammond CLMarchan RKrance SMBallatori N. Glutathione export during apoptosis requires functional multidrug resistance-associated proteinsJ Biol Chem28214337-143472007. 99. Hammond CL, Marchan R, Krance SM, and Ballatori N. Glutathione export during apoptosis requires functional multidrug resistance-associated proteins. J Biol Chem 282: 14337–14347, 2007.
100.
Han DHanawa NSaberi BKaplowitz N. Hydrogen peroxide and redox modulation sensitize primary mouse hepatocytes to TNF-induced apoptosisFree Radic Biol Med41627-6392006. 100. Han D, Hanawa N, Saberi B, and Kaplowitz N. Hydrogen peroxide and redox modulation sensitize primary mouse hepatocytes to TNF-induced apoptosis. Free Radic Biol Med 41: 627–639, 2006.
101.
Han YHKim SHKim SZPark WH. Apoptosis in arsenic trioxide-treated Calu-6 lung cells is correlated with the depletion of GSH levels rather than the changes of ROS levelsJ Cell Biochem104862-8782008. 101. Han YH, Kim SH, Kim SZ, and Park WH. Apoptosis in arsenic trioxide-treated Calu-6 lung cells is correlated with the depletion of GSH levels rather than the changes of ROS levels. J Cell Biochem 104: 862–878, 2008.
102.
Han YHKim SZKim SHPark WH. Apoptosis in pyrogallol-treated Calu-6 cells is correlated with the changes of intracellular GSH levels rather than ROS levelsLung Cancer59301-3142008. 102. Han YH, Kim SZ, Kim SH, and Park WH. Apoptosis in pyrogallol-treated Calu-6 cells is correlated with the changes of intracellular GSH levels rather than ROS levels. Lung Cancer 59: 301–314, 2008.
103.
Hancock JTDesikan RNeill SJ. Does the redox status of cytochrome C act as a fail-safe mechanism in the regulation of programmed cell death?Free Radic Biol Med31697-7032001. 103. Hancock JT, Desikan R, and Neill SJ. Does the redox status of cytochrome C act as a fail-safe mechanism in the regulation of programmed cell death? Free Radic Biol Med 31: 697–703, 2001.
104.
Hansen JMZhang HJones DP. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ionsFree Radic Biol Med40138-1452006. 104. Hansen JM, Zhang H, and Jones DP. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40: 138–145, 2006.
105.
He CKlionsky DJ. Regulation mechanisms and signaling pathways of autophagyAnnu Rev Genet4367-932009. 105. He C and Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43: 67–93, 2009.
106.
He YYHuang JLRamirez DCChignell CF. Role of reduced glutathione efflux in apoptosis of immortalized human keratinocytes induced by UVAJ Biol Chem2788058-80642003. 106. He YY, Huang JL, Ramirez DC, and Chignell CF. Role of reduced glutathione efflux in apoptosis of immortalized human keratinocytes induced by UVA. J Biol Chem 278: 8058–8064, 2003.
107.
Hentze HGantner FKolb SAWendel A. Depletion of hepatic glutathione prevents death receptor-dependent apoptotic and necrotic liver injury in miceAm J Pathol1562045-20562000. 107. Hentze H, Gantner F, Kolb SA, and Wendel A. Depletion of hepatic glutathione prevents death receptor-dependent apoptotic and necrotic liver injury in mice. Am J Pathol 156: 2045–2056, 2000.
108.
Hentze HSchmitz ILatta MKrueger AKrammer PHWendel A. Glutathione dependence of caspase-8 activation at the death-inducing signaling complexJ Biol Chem2775588-55952002. 108. Hentze H, Schmitz I, Latta M, Krueger A, Krammer PH, and Wendel A. Glutathione dependence of caspase-8 activation at the death-inducing signaling complex. J Biol Chem 277: 5588–5595, 2002.
109.
Hirrlinger JDringen R. Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytesMethods Enzymol400395-4092005. 109. Hirrlinger J and Dringen R. Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol 400: 395–409, 2005.
110.
Hirrlinger JKonig JKeppler DLindenau JSchulz JBDringen R. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stressJ Neurochem76627-6362001. 110. Hirrlinger J, Konig J, Keppler D, Lindenau J, Schulz JB, and Dringen R. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J Neurochem 76: 627–636, 2001.
111.
Ho YSXiong YHo DSGao JChua BHPai HMieyal JJ. Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxiaFree Radic Biol Med431299-13122007. 111. Ho YS, Xiong Y, Ho DS, Gao J, Chua BH, Pai H, and Mieyal JJ. Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia. Free Radic Biol Med 43: 1299–1312, 2007.
112.
Hofken TLinder DKleene RGoke BWagner AC. Membrane dipeptidase and glutathione are major components of pig pancreatic zymogen granulesExp Cell Res244481-4901998. 112. Hofken T, Linder D, Kleene R, Goke B, and Wagner AC. Membrane dipeptidase and glutathione are major components of pig pancreatic zymogen granules. Exp Cell Res 244: 481–490, 1998.
113.
Hu HLForsey RJBlades TJBarratt MEParmar PPowell JR. Antioxidants may contribute in the fight against ageing: an in vitro modelMech Ageing Dev121217-2302000. 113. Hu HL, Forsey RJ, Blades TJ, Barratt ME, Parmar P, and Powell JR. Antioxidants may contribute in the fight against ageing: an in vitro model. Mech Ageing Dev 121: 217–230, 2000.
114.
Huang DCHahne MSchroeter MFrei KFontana AVillunger ANewton KTschopp JStrasser A. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L)Proc Natl Acad Sci U S A9614871-148761999. 114. Huang DC, Hahne M, Schroeter M, Frei K, Fontana A, Villunger A, Newton K, Tschopp J, and Strasser A. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc Natl Acad Sci U S A 96: 14871–14876, 1999.
115.
Huang JLam GYBrumell JH. Autophagy signaling through reactive oxygen speciesAntioxid Redox Signal142215-22312011. 115. Huang J, Lam GY, and Brumell JH. Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14: 2215–2231, 2011.
116.
Huang KPHuang FL. Glutathionylation of proteins by glutathione disulfide S-oxideBiochem Pharmacol641049-10562002. 116. Huang KP and Huang FL. Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem Pharmacol 64: 1049–1056, 2002.
117.
Huang ZPinto JTDeng HRichie JP Jr. Inhibition of caspase-3 activity and activation by protein glutathionylationBiochem Pharmacol752234-22442008. 117. Huang Z, Pinto JT, Deng H, and Richie JP, Jr. Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol 75: 2234–2244, 2008.
118.
Iantomasi TFavilli FMarraccini PMagaldi TBruni PVincenzini MT. Glutathione transport system in human small intestine epithelial cellsBiochim Biophys Acta1330274-2831997. 118. Iantomasi T, Favilli F, Marraccini P, Magaldi T, Bruni P, and Vincenzini MT. Glutathione transport system in human small intestine epithelial cells. Biochim Biophys Acta 1330: 274–283, 1997.
119.
Imai HNakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cellsFree Radic Biol Med34145-1692003. 119. Imai H and Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34: 145–169, 2003.
120.
Inoue KAkaike TMiyamoto YOkamoto TSawa TOtagiri MSuzuki SYoshimura TMaeda H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivoJ Biol Chem27427069-270751999. 120. Inoue K, Akaike T, Miyamoto Y, Okamoto T, Sawa T, Otagiri M, Suzuki S, Yoshimura T, and Maeda H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem 274: 27069–27075, 1999.
121.
Jang JHSurh YJ. Bcl-2 attenuation of oxidative cell death is associated with up-regulation of gamma-glutamylcysteine ligase via constitutive NF-kappaB activationJ Biol Chem27938779-387862004. 121. Jang JH and Surh YJ. Bcl-2 attenuation of oxidative cell death is associated with up-regulation of gamma-glutamylcysteine ligase via constitutive NF-kappaB activation. J Biol Chem 279: 38779–38786, 2004.
122.
Johansson MLundberg M. Glutathionylation of beta-actin via a cysteinyl sulfenic acid intermediaryBMC Biochem8262007. 122. Johansson M and Lundberg M. Glutathionylation of beta-actin via a cysteinyl sulfenic acid intermediary. BMC Biochem 8: 26, 2007.
123.
Jones DP. Redefining oxidative stressAntioxid Redox Signal81865-18792006. 123. Jones DP. Redefining oxidative stress. Antioxid Redox Signal 8: 1865–1879, 2006.
124.
Jourd'heuil DJourd'heuil FLFeelisch M. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanismJ Biol Chem27815720-157262003. 124. Jourd'heuil D, Jourd'heuil FL, and Feelisch M. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism. J Biol Chem 278: 15720–15726, 2003.
125.
Jungas TMotta IDuffieux FFanen PStoven VOjcius DM. Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulatorJ Biol Chem27727912-279182002. 125. Jungas T, Motta I, Duffieux F, Fanen P, Stoven V, and Ojcius DM. Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator. J Biol Chem 277: 27912–27918, 2002.
126.
Kane DJSarafian TAAnton RHahn HGralla EBValentine JSOrd TBredesen DE. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen speciesScience2621274-12771993. 126. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, and Bredesen DE. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1277, 1993.
127.
Kayanoki YFujii JIslam KNSuzuki KKawata SMatsuzawa YTaniguchi N. The protective role of glutathione peroxidase in apoptosis induced by reactive oxygen speciesJ Biochem119817-8221996. 127. Kayanoki Y, Fujii J, Islam KN, Suzuki K, Kawata S, Matsuzawa Y, and Taniguchi N. The protective role of glutathione peroxidase in apoptosis induced by reactive oxygen species. J Biochem 119: 817–822, 1996.
128.
Kemp MGo YMJones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biologyFree Radic Biol Med44921-9372008. 128. Kemp M, Go YM, and Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44: 921–937, 2008.
129.
Keppler DLeier IJedlitschky GKonig J. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2Chem Biol Interact111–112153-1611998. 129. Keppler D, Leier I, Jedlitschky G, and Konig J. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chem Biol Interact 111–112: 153–161, 1998.
130.
Kern JCKehrer JP. Free radicals and apoptosis: relationships with glutathione, thioredoxin, and the BCL family of proteinsFront Biosci101727-17382005. 130. Kern JC and Kehrer JP. Free radicals and apoptosis: relationships with glutathione, thioredoxin, and the BCL family of proteins. Front Biosci 10: 1727–1738, 2005.
131.
Keszler AZhang YHogg N. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed?Free Radic Biol Med4855-642010. 131. Keszler A, Zhang Y, and Hogg N. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed? Free Radic Biol Med 48: 55–64, 2010.
132.
Kim JETannenbaum SR. S-Nitrosation regulates the activation of endogenous procaspase-9 in HT-29 human colon carcinoma cellsJ Biol Chem2799758-97642004. 132. Kim JE and Tannenbaum SR. S-Nitrosation regulates the activation of endogenous procaspase-9 in HT-29 human colon carcinoma cells. J Biol Chem 279: 9758–9764, 2004.
133.
Kirkland RAFranklin JL. Evidence for redox regulation of cytochrome C release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibitionJ Neurosci211949-19632001. 133. Kirkland RA and Franklin JL. Evidence for redox regulation of cytochrome C release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J Neurosci 21: 1949–1963, 2001.
134.
Kizhakkayil JThayyullathil FChathoth SHago APatel MGaladari S. Glutathione regulates caspase-dependent ceramide production and curcumin-induced apoptosis in human leukemic cellsFree Radic Biol Med521854-18642012. 134. Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, and Galadari S. Glutathione regulates caspase-dependent ceramide production and curcumin-induced apoptosis in human leukemic cells. Free Radic Biol Med 52: 1854–1864, 2012.
135.
Kroemer GGalluzzi LVandenabeele PAbrams JAlnemri ESBaehrecke EHBlagosklonny MVEl-Deiry WSGolstein PGreen DRHengartner MKnight RAKumar SLipton SAMalorni WNunez GPeter METschopp JYuan JPiacentini MZhivotovsky BMelino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009Cell Death Differ163-112009. 135. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, and Melino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3–11, 2009.
136.
Kroemer GLevine B. Autophagic cell death: the story of a misnomerNat Rev Mol Cell Biol91004-10102008. 136. Kroemer G and Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9: 1004–1010, 2008.
137.
Kuipers IGuala ASAesif SWKonings GBouwman FGMariman ECWouters EFJanssen-Heininger YMReynaert NL. Cigarette smoke targets glutaredoxin 1, increasing s-glutathionylation and epithelial cell deathAm J Respir Cell Mol Biol45931-9372011. 137. Kuipers I, Guala AS, Aesif SW, Konings G, Bouwman FG, Mariman EC, Wouters EF, Janssen-Heininger YM, and Reynaert NL. Cigarette smoke targets glutaredoxin 1, increasing s-glutathionylation and epithelial cell death. Am J Respir Cell Mol Biol 45: 931–937, 2011.
138.
l'Hoste SChargui ABelfodil RCorcelle EDuranton CRubera IPoujeol CMograbi BTauc MPoujeol P. CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubulesAm J Physiol Renal Physiol298F435-F4532010. 138. l'Hoste S, Chargui A, Belfodil R, Corcelle E, Duranton C, Rubera I, Poujeol C, Mograbi B, Tauc M, and Poujeol P. CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubules. Am J Physiol Renal Physiol 298: F435–F453, 2010.
139.
Laberge RMKarwatsky JLincoln MCLeimanis MLGeorges E. Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stressBiochem Pharmacol731727-17372007. 139. Laberge RM, Karwatsky J, Lincoln MC, Leimanis ML, and Georges E. Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stress. Biochem Pharmacol 73: 1727–1737, 2007.
140.
Lagadic-Gossmann DHuc LLecureur V. Alterations of intracellular pH homeostasis in apoptosis: origins and rolesCell Death Differ11953-9612004. 140. Lagadic-Gossmann D, Huc L, and Lecureur V. Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11: 953–961, 2004.
141.
Lai YHickey RWChen YBayir HSullivan MLChu CTKochanek PMDixon CEJenkins LWGraham SHWatkins SCClark RS. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl esterJ Cereb Blood Flow Metab28540-5502008. 141. Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, Watkins SC, and Clark RS. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28: 540–550, 2008.
142.
Lampela OJuffer AHRauk A. Conformational analysis of glutathione in aqueous solution with molecular dynamicsJ Phys Chem A1079208-92202003. 142. Lampela O, Juffer AH, and Rauk A. Conformational analysis of glutathione in aqueous solution with molecular dynamics. J Phys Chem A 107: 9208–9220, 2003.
143.
Lash LH. Mitochondrial glutathione transport: physiological, pathological and toxicological implicationsChem Biol Interact16354-672006. 143. Lash LH. Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163: 54–67, 2006.
144.
Lash LHPutt DAXu FMatherly LH. Role of rat organic anion transporter 3 (Oat3) in the renal basolateral transport of glutathioneChem Biol Interact170124-1342007. 144. Lash LH, Putt DA, Xu F, and Matherly LH. Role of rat organic anion transporter 3 (Oat3) in the renal basolateral transport of glutathione. Chem Biol Interact 170: 124–134, 2007.
145.
Lavrik IGolks AKrammer PH. Death receptor signalingJ Cell Sci118265-2672005. 145. Lavrik I, Golks A, and Krammer PH. Death receptor signaling. J Cell Sci 118: 265–267, 2005.
146.
Le Foll IDuval DP. Programmed cell death induced by glutathione depletion in PC 12 cells is blocked by inhibitors of 12 lipoxygenase, but does not appear to be mediated through the formation of 12 HETE derivativesFree Radic Biol Med30793-8022001. 146. Le Foll I and Duval DP. Programmed cell death induced by glutathione depletion in PC 12 cells is blocked by inhibitors of 12 lipoxygenase, but does not appear to be mediated through the formation of 12 HETE derivatives. Free Radic Biol Med 30: 793–802, 2001.
147.
Lee HRCho JMShin DHYong CSChoi HGWakabayashi NKwak MK. Adaptive response to GSH depletion and resistance to L: -buthionine-(S,R)-sulfoximine: involvement of Nrf2 activationMol Cell Biochem31823-312008. 147. Lee HR, Cho JM, Shin DH, Yong CS, Choi HG, Wakabayashi N, and Kwak MK. Adaptive response to GSH depletion and resistance to L: -buthionine-(S,R)-sulfoximine: involvement of Nrf2 activation. Mol Cell Biochem 318:23–31, 2008.
148.
Lee JWKo YELee IHLee HKKim HWKim YH. Osmotic stress induces loss of glutathione and increases the sensitivity to oxidative stress in H9c2 cardiac myocytesFree Radic Res43262-2712009. 148. Lee JW, Ko YE, Lee IH, Lee HK, Kim HW, and Kim YH. Osmotic stress induces loss of glutathione and increases the sensitivity to oxidative stress in H9c2 cardiac myocytes. Free Radic Res 43: 262–271, 2009.
149.
Lee SMKoh HJPark DCSong BJHuh TLPark JW. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cellsFree Radic Biol Med321185-11962002. 149. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, and Park JW. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32: 1185–1196, 2002.
150.
Lee TKHammond CLBallatori N. Intracellular glutathione regulates taurocholate transport in HepG2 cellsToxicol Appl Pharmacol174207-2152001. 150. Lee TK, Hammond CL, and Ballatori N. Intracellular glutathione regulates taurocholate transport in HepG2 cells. Toxicol Appl Pharmacol 174: 207–215, 2001.
151.
Leier IJedlitschky GBuchholz UCenter MCole SPDeeley RGKeppler D. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pumpBiochem J314Pt 2433-4371996. 151. Leier I, Jedlitschky G, Buchholz U, Center M, Cole SP, Deeley RG, and Keppler D. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J 314 (Pt 2): 433–437, 1996.
152.
Li LLee TKMeier PJBallatori N. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporterJ Biol Chem27316184-161911998. 152. Li L, Lee TK, Meier PJ, and Ballatori N. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem 273: 16184–16191, 1998.
153.
Li LMeier PJBallatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathioneMol Pharmacol58335-3402000. 153. Li L, Meier PJ, and Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol 58: 335–340, 2000.
154.
Liang HRan QJang YCHolstein DLechleiter JMcDonald-Marsh TMusatov ASong WVan Remmen HRichardson A. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondriaFree Radic Biol Med47312-3202009. 154. Liang H, Ran Q, Jang YC, Holstein D, Lechleiter J, McDonald-Marsh T, Musatov A, Song W, Van Remmen H, and Richardson A. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic Biol Med 47: 312–320, 2009.
155.
Lin DYMa WYDuan SJZhang YDu LY. Real-time imaging of viable-apoptotic switch in GSNO-induced mouse thymocyte apoptosisApoptosis111289-12982006. 155. Lin DY, Ma WY, Duan SJ, Zhang Y, and Du LY. Real-time imaging of viable-apoptotic switch in GSNO-induced mouse thymocyte apoptosis. Apoptosis 11: 1289–1298, 2006.
156.
Liuzzi FFanelli CCiriolo MRCerella CD'Alessio MDenicola MMagrini ABergamaschi AGhibelli L. Rescue of cells from apoptosis by antioxidants occurs downstream from GSH extrusionAnn N Y Acad Sci1010441-4452003. 156. Liuzzi F, Fanelli C, Ciriolo MR, Cerella C, D'Alessio M, Denicola M, Magrini A, Bergamaschi A, and Ghibelli L. Rescue of cells from apoptosis by antioxidants occurs downstream from GSH extrusion. Ann N Y Acad Sci 1010: 441–445, 2003.
157.
Lou HKaplowitz N. Glutathione depletion down-regulates tumor necrosis factor alpha-induced NF-kappaB activity via IkappaB kinase-dependent and -independent mechanismsJ Biol Chem28229470-294812007. 157. Lou H and Kaplowitz N. Glutathione depletion down-regulates tumor necrosis factor alpha-induced NF-kappaB activity via IkappaB kinase-dependent and -independent mechanisms. J Biol Chem 282: 29470–29481, 2007.
158.
Lu YCederbaum A. The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells: modulation by ERK, ROS, glutathione, and thioredoxinFree Radic Biol Med431061-10752007. 158. Lu Y and Cederbaum A. The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells: modulation by ERK, ROS, glutathione, and thioredoxin. Free Radic Biol Med 43: 1061–1075, 2007.
159.
Lubos ELoscalzo JHandy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunitiesAntioxid Redox Signal151957-19972011. 159. Lubos E, Loscalzo J, and Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15: 1957–1997, 2011.
160.
Mahagita CGrassl SMPiyachaturawat PBallatori N. Human organic anion transporter 1B1 (OATP1B1/OATP-C) and 1B3 (OATP1B3/OATP-8) function as bidirectional carriers and do not mediate GSH-bile acid co-transportAm J Physiol Gastrointest Liver Physiol293G271-G2782007. 160. Mahagita C, Grassl SM, Piyachaturawat P, and Ballatori N. Human organic anion transporter 1B1 (OATP1B1/OATP-C) and 1B3 (OATP1B3/OATP-8) function as bidirectional carriers and do not mediate GSH-bile acid co-transport. Am J Physiol Gastrointest Liver Physiol 293: G271– G278, 2007.
161.
Mannick JBHausladen ALiu LHess DTZeng MMiao QXKane LSGow AJStamler JS. Fas-induced caspase denitrosylationScience284651-6541999. 161. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, and Stamler JS. Fas-induced caspase denitrosylation. Science 284: 651–654, 1999.
162.
Mannick JBMiao XQStamler JS. Nitric oxide inhibits Fas-induced apoptosisJ Biol Chem27224125-241281997. 162. Mannick JB, Miao XQ, and Stamler JS. Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem 272: 24125–24128, 1997.
163.
Mannick JBSchonhoff CPapeta NGhafourifar PSzibor MFang KGaston B. S-Nitrosylation of mitochondrial caspasesJ Cell Biol1541111-11162001. 163. Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, and Gaston B. S-Nitrosylation of mitochondrial caspases. J Cell Biol 154: 1111–1116, 2001.
164.
Marchan RHammond CLBallatori N. Multidrug resistance-associated protein 1 as a major mediator of basal and apoptotic glutathione releaseBiochim Biophys Acta17782413-24202008. 164. Marchan R, Hammond CL, and Ballatori N. Multidrug resistance-associated protein 1 as a major mediator of basal and apoptotic glutathione release. Biochim Biophys Acta 1778: 2413–2420, 2008.
165.
Marengo BDe Ciucis CVerzola DPistoia VRaffaghello LPatriarca SBalbis ETraverso NCottalasso DPronzato MAMarinari UMDomenicotti C. Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastomaFree Radic Biol Med44474-4822008. 165. Marengo B, De Ciucis C, Verzola D, Pistoia V, Raffaghello L, Patriarca S, Balbis E, Traverso N, Cottalasso D, Pronzato MA, Marinari UM, and Domenicotti C. Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma. Free Radic Biol Med 44: 474–482, 2008.
166.
Mari MMorales AColell AGarcia-Ruiz CFernandez-Checa JC. Mitochondrial glutathione, a key survival antioxidantAntioxid Redox Signal112685-27002009. 166. Mari M, Morales A, Colell A, Garcia-Ruiz C, and Fernandez-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11: 2685–2700, 2009.
167.
Martin HLTeismann P. Glutathione—a review on its role and significance in Parkinson's diseaseFASEB J233263-32722009. 167. Martin HL and Teismann P. Glutathione—a review on its role and significance in Parkinson's disease. FASEB J 23: 3263–3272, 2009.
168.
Matsumaru KJi CKaplowitz N. Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytesHepatology371425-14342003. 168. Matsumaru K, Ji C and Kaplowitz N. Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes. Hepatology 37: 1425–1434, 2003.
169.
Mattson DMAhmad IMDayal DParsons ADAykin-Burns NLi LOrcutt KPSpitz DRDornfeld KJSimons AL. Cisplatin combined with zidovudine enhances cytotoxicity and oxidative stress in human head and neck cancer cells via a thiol-dependent mechanismFree Radic Biol Med46232-2372009. 169. Mattson DM, Ahmad IM, Dayal D, Parsons AD, Aykin-Burns N, Li L, Orcutt KP, Spitz DR, Dornfeld KJ, and Simons AL. Cisplatin combined with zidovudine enhances cytotoxicity and oxidative stress in human head and neck cancer cells via a thiol-dependent mechanism. Free Radic Biol Med 46: 232–237, 2009.
170.
McCall K. Genetic control of necrosis—another type of programmed cell deathCurr Opin Cell Biol22882-8882010. 170. McCall K. Genetic control of necrosis—another type of programmed cell death. Curr Opin Cell Biol 22: 882–888, 2010.
171.
McNeely SCBelshoff ACTaylor BFFan TWMcCabe MJ Jr.Pinhas ARStates JC. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrestToxicol Appl Pharmacol229252-2612008. 171. McNeely SC, Belshoff AC, Taylor BF, Fan TW, McCabe MJ, Jr., Pinhas AR, and States JC. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest. Toxicol Appl Pharmacol 229: 252–261, 2008.
172.
Meister A. Glutathione biosynthesis and its inhibitionMethods Enzymol25226-301995. 172. Meister A. Glutathione biosynthesis and its inhibition. Methods Enzymol 252: 26–30, 1995.
173.
Melino GBernassola FKnight RACorasaniti MTNistico GFinazzi-Agro A. S-nitrosylation regulates apoptosisNature388432-4331997. 173. Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, and Finazzi-Agro A. S-nitrosylation regulates apoptosis. Nature 388: 432–433, 1997.
174.
Messmer UKLapetina EGBrune B. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C- and protein kinase A-activating compoundsMol Pharmacol47757-7651995. 174. Messmer UK, Lapetina EG, and Brune B. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C- and protein kinase A-activating compounds. Mol Pharmacol 47: 757–765, 1995.
175.
Meurette OLefeuvre-Orfila LRebillard ALagadic-Gossmann DDimanche-Boitrel MT. Role of intracellular glutathione in cell sensitivity to the apoptosis induced by tumor necrosis factor {alpha}-related apoptosis-inducing ligand/anticancer drug combinationsClin Cancer Res113075-30832005. 175. Meurette O, Lefeuvre-Orfila L, Rebillard A, Lagadic-Gossmann D, and Dimanche-Boitrel MT. Role of intracellular glutathione in cell sensitivity to the apoptosis induced by tumor necrosis factor {alpha}-related apoptosis-inducing ligand/anticancer drug combinations. Clin Cancer Res 11: 3075–3083, 2005.
176.
Mieyal JJGallogly MMQanungo SSabens EAShelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylationAntioxid Redox Signal101941-19882008. 176. Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, and Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10: 1941–1988, 2008.
177.
Minich TRiemer JSchulz JBWielinga PWijnholds JDringen R. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytesJ Neurochem97373-3842006. 177. Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, and Dringen R. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97: 373–384, 2006.
178.
Mitchell DAMorton SUFernhoff NBMarletta MA. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cellsProc Natl Acad Sci U S A10411609-116142007. 178. Mitchell DA, Morton SU, Fernhoff NB, and Marletta MA. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A 104: 11609–11614, 2007.
179.
Mohr SHallak Hde Boitte ALapetina EGBrune B. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenaseJ Biol Chem2749427-94301999. 179. Mohr S, Hallak H, de Boitte A, Lapetina EG, and Brune B. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274: 9427–9430, 1999.
180.
Monostori PWittmann GKarg ETuri S. Determination of glutathione and glutathione disulfide in biological samples: an in-depth reviewJ Chromatogr B Analyt Technol Biomed Life Sci8773331-33462009. 180. Monostori P, Wittmann G, Karg E, and Turi S. Determination of glutathione and glutathione disulfide in biological samples: an in-depth review. J Chromatogr B Analyt Technol Biomed Life Sci 877: 3331–3346, 2009.
181.
Morgan MJKim YSLiu ZG. TNFalpha and reactive oxygen species in necrotic cell deathCell Res18343-3492008. 181. Morgan MJ, Kim YS, and Liu ZG. TNFalpha and reactive oxygen species in necrotic cell death. Cell Res 18: 343–349, 2008.
182.
Mueller CFWidder JDMcNally JSMcCann LJones DPHarrison DG. The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stressCirc Res97637-6442005. 182. Mueller CF, Widder JD, McNally JS, McCann L, Jones DP, and Harrison DG. The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. Circ Res 97: 637–644, 2005.
183.
Musallam LEthier CHaddad PSBilodeau M. EGF mediates protection against Fas-induced apoptosis by depleting and oxidizing intracellular GSH stocksJ Cell Physiol19862-722004. 183. Musallam L, Ethier C, Haddad PS, and Bilodeau M. EGF mediates protection against Fas-induced apoptosis by depleting and oxidizing intracellular GSH stocks. J Cell Physiol 198: 62–72, 2004.
184.
Nagai HMatsumaru KFeng GKaplowitz N. Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocytesHepatology3655-642002. 184. Nagai H, Matsumaru K, Feng G, and Kaplowitz N. Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocytes. Hepatology 36: 55–64, 2002.
185.
Nepravishta RSabelli RIorio EMicheli LPaci MMelino S. Oxidative species and S-glutathionyl conjugates in the apoptosis induction by allyl thiosulfateFEBS J279154-1672012. 185. Nepravishta R, Sabelli R, Iorio E, Micheli L, Paci M, and Melino S. Oxidative species and S-glutathionyl conjugates in the apoptosis induction by allyl thiosulfate. FEBS J 279: 154–167, 2012.
186.
Ng KHLim BGWong KP. Sulfate conjugating and transport functions of MDCK distal tubular cellsKidney Int63976-9862003. 186. Ng KH, Lim BG, and Wong KP. Sulfate conjugating and transport functions of MDCK distal tubular cells. Kidney Int 63: 976–986, 2003.
187.
Nomura KImai HKoumura TKobayashi TNakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosisBiochem J351183-1932000. 187. Nomura K, Imai H, Koumura T, Kobayashi T, and Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351: 183–193, 2000.
188.
Nur EVerwijs Mde Waart DRSchnog JJOtten HMBrandjes DPBiemond BJElferink RP. Increased efflux of oxidized glutathione (GSSG) causes glutathione depletion and potentially diminishes antioxidant defense in sickle erythrocytesBiochim Biophys Acta18121412-14172011. 188. Nur E, Verwijs M, de Waart DR, Schnog JJ, Otten HM, Brandjes DP, Biemond BJ, and Elferink RP. Increased efflux of oxidized glutathione (GSSG) causes glutathione depletion and potentially diminishes antioxidant defense in sickle erythrocytes. Biochim Biophys Acta 1812: 1412–1417, 2011.
189.
O'Neill AJO'Neill SHegarty NJCoffey RNGibbons NBrady HFitzpatrick JMWatson RW. Glutathione depletion-induced neutrophil apoptosis is caspase 3 dependentShock14605-6092000. 189. O'Neill AJ, O'Neill S, Hegarty NJ, Coffey RN, Gibbons N, Brady H, Fitzpatrick JM, and Watson RW. Glutathione depletion-induced neutrophil apoptosis is caspase 3 dependent. Shock 14: 605–609, 2000.
190.
Oda TSadakata NKomatsu NMuramatsu T. Specific efflux of glutathione from the basolateral membrane domain in polarized MDCK cells during ricin-induced apoptosisJ Biochem126715-7211999. 190. Oda T, Sadakata N, Komatsu N, and Muramatsu T. Specific efflux of glutathione from the basolateral membrane domain in polarized MDCK cells during ricin-induced apoptosis. J Biochem 126: 715–721, 1999.
191.
Ortega AFerrer PCarretero JObrador EAsensi MPellicer JAEstrela JM. Down-regulation of glutathione and Bcl-2 synthesis in mouse B16 melanoma cells avoids their survival during interaction with the vascular endotheliumJ Biol Chem27839591-395992003. 191. Ortega A, Ferrer P, Carretero J, Obrador E, Asensi M, Pellicer JA, and Estrela JM. Down-regulation of glutathione and Bcl-2 synthesis in mouse B16 melanoma cells avoids their survival during interaction with the vascular endothelium. J Biol Chem 278: 39591–39599, 2003.
192.
Osbild SBrault LBattaglia EBagrel D. Resistance to cisplatin and adriamycin is associated with the inhibition of glutathione efflux in MCF-7-derived cellsAnticancer Res263595-36002006. 192. Osbild S, Brault L, Battaglia E, and Bagrel D. Resistance to cisplatin and adriamycin is associated with the inhibition of glutathione efflux in MCF-7-derived cells. Anticancer Res 26: 3595–3600, 2006.
193.
Pan SBerk BC. Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathwayCirc Res100213-2192007. 193. Pan S and Berk BC. Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathway. Circ Res 100: 213–219, 2007.
194.
Pan ZVoehringer DWMeyn RE. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free systemCell Death Differ6683-6881999. 194. Pan Z, Voehringer DW, and Meyn RE. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ 6: 683–688, 1999.
195.
Park HAKhanna SRink CGnyawali SRoy SSen CK. Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathwayCell Death Differ161167-11792009. 195. Park HA, Khanna S, Rink C, Gnyawali S, Roy S, and Sen CK. Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway. Cell Death Differ 16: 1167–1179, 2009.
196.
Perricone CDe Carolis CPerricone R. Glutathione: a key player in autoimmunityAutoimmun Rev8697-7012009. 196. Perricone C, De Carolis C, and Perricone R. Glutathione: a key player in autoimmunity. Autoimmun Rev 8: 697–701, 2009.
197.
Perrotton TTrompier DChang XBDi Pietro ABaubichon-Cortay H. (R)- and (S)-verapamil differentially modulate the multidrug-resistant protein MRP1J Biol Chem28231542-315482007. 197. Perrotton T, Trompier D, Chang XB, Di Pietro A, and Baubichon-Cortay H. (R)- and (S)-verapamil differentially modulate the multidrug-resistant protein MRP1. J Biol Chem 282: 31542–31548, 2007.
198.
Pias EKAw TY. Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species productionFASEB J16781-7902002. 198. Pias EK and Aw TY. Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production. FASEB J 16: 781–790, 2002.
199.
Pias EKAw TY. Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cellsCell Death Differ91007-10162002. 199. Pias EK and Aw TY. Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death Differ 9: 1007–1016, 2002.
200.
Poole LBNelson KJ. Discovering mechanisms of signaling-mediated cysteine oxidationCurr Opin Chem Biol1218-242008. 200. Poole LB and Nelson KJ. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12: 18–24, 2008.
201.
Qanungo SStarke DWPai HVMieyal JJNieminen AL. Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaBJ Biol Chem28218427-184362007. 201. Qanungo S, Starke DW, Pai HV, Mieyal JJ, and Nieminen AL. Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282: 18427–18436, 2007.
202.
Rahman IKode ABiswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling methodNat Protoc13159-31652006. 202. Rahman I, Kode A, and Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1: 3159–3165, 2006.
203.
Ran QLiang HGu MQi WWalter CARoberts LJ 2ndHerman BRichardson AVan Remmen H. Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosisJ Biol Chem27955137-551462004. 203. Ran Q, Liang H, Gu M, Qi W, Walter CA, Roberts LJ, 2nd, Herman B, Richardson A, and Van Remmen H. Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279: 55137–55146, 2004.
204.
Rana SDringen R. Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytesNeurosci Lett41545-482007. 204. Rana S and Dringen R. Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415: 45–48, 2007.
205.
Ray SDKamendulis LMGurule MWYorkin RDCorcoran GB. Ca2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophenFASEB J7453-4631993. 205. Ray SD, Kamendulis LM, Gurule MW, Yorkin RD, and Corcoran GB. Ca2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen. FASEB J 7: 453–463, 1993.
206.
Rius MHummel-Eisenbeiss JHofmann AFKeppler D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathioneAm J Physiol Gastrointest Liver Physiol290G640-G6492006. 206. Rius M, Hummel-Eisenbeiss J, Hofmann AF, and Keppler D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol 290: G640–G649, 2006.
207.
Rouzer CAScott WAGriffith OWHamill ALCohn ZA. Glutathione metabolism in resting and phagocytizing peritoneal macrophagesJ Biol Chem2572002-20081982. 207. Rouzer CA, Scott WA, Griffith OW, Hamill AL, and Cohn ZA. Glutathione metabolism in resting and phagocytizing peritoneal macrophages. J Biol Chem 257: 2002–2008, 1982.
208.
Rudin CMYang ZSchumaker LMVanderWeele DJNewkirk KEgorin MJZuhowski EGCullen KJ. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistanceCancer Res63312-3182003. 208. Rudin CM, Yang Z, Schumaker LM, VanderWeele DJ, Newkirk K, Egorin MJ, Zuhowski EG, and Cullen KJ. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res 63: 312–318, 2003.
209.
Ryter SWKim HPHoetzel APark JWNakahira KWang XChoi AM. Mechanisms of cell death in oxidative stressAntioxid Redox Signal949-892007. 209. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, and Choi AM. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9: 49–89, 2007.
210.
Sato TMachida TTakahashi SIyama SSato YKuribayashi KTakada KOku TKawano YOkamoto TTakimoto RMatsunaga TTakayama TTakahashi MKato JNiitsu Y. Fas-mediated apoptosome formation is dependent on reactive oxygen species derived from mitochondrial permeability transition in Jurkat cellsJ Immunol173285-2962004. 210. Sato T, Machida T, Takahashi S, Iyama S, Sato Y, Kuribayashi K, Takada K, Oku T, Kawano Y, Okamoto T, Takimoto R, Matsunaga T, Takayama T, Takahashi M, Kato J, and Niitsu Y. Fas-mediated apoptosome formation is dependent on reactive oxygen species derived from mitochondrial permeability transition in Jurkat cells. J Immunol 173: 285–296, 2004.
211.
Sawai HDomae N. Transfer of Fas (CD95) protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11Eur J Histochem54e82010. 211. Sawai H and Domae N. Transfer of Fas (CD95) protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11. Eur J Histochem 54: e8, 2010.
212.
Schafer FQBuettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione coupleFree Radic Biol Med301191-12122001. 212. Schafer FQ and Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191–1212, 2001.
213.
Scherz-Shouval RShvets EFass EShorer HGil LElazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4EMBO J261749-17602007. 213. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, and Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26: 1749–1760, 2007.
214.
Schor NFRudin CMHartman ARThompson CBTyurina YYKagan VE. Cell line dependence of Bcl-2-induced alteration of glutathione handlingOncogene19472-4762000. 214. Schor NF, Rudin CM, Hartman AR, Thompson CB, Tyurina YY, and Kagan VE. Cell line dependence of Bcl-2-induced alteration of glutathione handling. Oncogene 19: 472–476, 2000.
215.
Schrammel AGorren ACSchmidt KPfeiffer SMayer B. S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*-)Free Radic Biol Med341078-10882003. 215. Schrammel A, Gorren AC, Schmidt K, Pfeiffer S, and Mayer B. S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*-). Free Radic Biol Med 34: 1078–1088, 2003.
216.
Seiler ASchneider MForster HRoth SWirth EKCulmsee CPlesnila NKremmer ERadmark OWurst WBornkamm GWSchweizer UConrad M. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell deathCell Metab8237-2482008. 216. Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Radmark O, Wurst W, Bornkamm GW, Schweizer U, and Conrad M. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8: 237–248, 2008.
217.
Sekine SMitsuki KIto KKugioka SHorie T. Sustained intrahepatic glutathione depletion causes proteasomal degradation of multidrug resistance-associated protein 2 in rat liverBiochim Biophys Acta1822980-9872012. 217. Sekine S, Mitsuki K, Ito K, Kugioka S, and Horie T. Sustained intrahepatic glutathione depletion causes proteasomal degradation of multidrug resistance-associated protein 2 in rat liver. Biochim Biophys Acta 1822: 980–987, 2012.
218.
Shen SKepp OKroemer G. The end of autophagic cell death?Autophagy82012. 218. Shen S, Kepp O, and Kroemer G. The end of autophagic cell death? Autophagy 8, 2012.
219.
Sies H. Glutathione and its role in cellular functionsFree Radic Biol Med27916-9211999. 219. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 27: 916–921, 1999.
220.
Slater AFStefan CNobel Ivan den Dobbelsteen DJOrrenius S. Intracellular redox changes during apoptosisCell Death Differ357-621996. 220. Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, and Orrenius S. Intracellular redox changes during apoptosis. Cell Death Differ 3: 57–62, 1996.
221.
Sreekumar PGSpee CRyan SJCole SPKannan RHinton DR. Mechanism of RPE cell death in alpha-crystallin deficient mice: a novel and critical role for MRP1-mediated GSH effluxPLoS One7e334202012. 221. Sreekumar PG, Spee C, Ryan SJ, Cole SP, Kannan R, and Hinton DR. Mechanism of RPE cell death in alpha-crystallin deficient mice: a novel and critical role for MRP1-mediated GSH efflux. PLoS One 7: e33420, 2012.
222.
Staab CAAlander JBrandt MLengqvist JMorgenstern RGrafstrom RCHoog JO. Reduction of S-nitrosoglutathione by alcohol dehydrogenase 3 is facilitated by substrate alcohols via direct cofactor recycling and leads to GSH-controlled formation of glutathione transferase inhibitorsBiochem J413493-5042008. 222. Staab CA, Alander J, Brandt M, Lengqvist J, Morgenstern R, Grafstrom RC, and Hoog JO. Reduction of S-nitrosoglutathione by alcohol dehydrogenase 3 is facilitated by substrate alcohols via direct cofactor recycling and leads to GSH-controlled formation of glutathione transferase inhibitors. Biochem J 413: 493–504, 2008.
223.
Starke DWChock PBMieyal JJ. Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transductionJ Biol Chem27814607-146132003. 223. Starke DW, Chock PB, and Mieyal JJ. Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. J Biol Chem 278: 14607–14613, 2003.
224.
Stridh MHCorrea FNodin CWeber SGBlomstrand FNilsson MSandberg M. Enhanced glutathione efflux from astrocytes in culture by low extracellular Ca2+ and curcuminNeurochem Res351231-12382010. 224. Stridh MH, Correa F, Nodin C, Weber SG, Blomstrand F, Nilsson M, and Sandberg M. Enhanced glutathione efflux from astrocytes in culture by low extracellular Ca2+ and curcumin. Neurochem Res 35: 1231–1238, 2010.
225.
Stridh MHTranberg MWeber SGBlomstrand FSandberg M. Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannelsJ Biol Chem28310347-103562008. 225. Stridh MH, Tranberg M, Weber SG, Blomstrand F, and Sandberg M. Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels. J Biol Chem 283: 10347–10356, 2008.
226.
Stubauer GGiuffre ASarti P. Mechanism of S-nitrosothiol formation and degradation mediated by copper ionsJ Biol Chem27428128-281331999. 226. Stubauer G, Giuffre A, and Sarti P. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. J Biol Chem 274: 28128–28133, 1999.
227.
Sullivan DMWehr NBFergusson MMLevine RLFinkel T. Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolationBiochemistry3911121-111282000. 227. Sullivan DM, Wehr NB, Fergusson MM, Levine RL, and Finkel T. Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. Biochemistry 39: 11121–11128, 2000.
228.
Sumbayev VV. S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1Arch Biochem Biophys415133-1362003. 228. Sumbayev VV. S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1. Arch Biochem Biophys 415: 133–136, 2003.
229.
Sze GKaplowitz NOokhtens MLu SC. Bidirectional membrane transport of intact glutathione in Hep G2 cellsAm J Physiol265G1128-G11341993. 229. Sze G, Kaplowitz N, Ookhtens M, and Lu SC. Bidirectional membrane transport of intact glutathione in Hep G2 cells. Am J Physiol 265: G1128–G1134, 1993.
230.
Tao LEnglish AM. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathioneBiochemistry434028-40382004. 230. Tao L and English AM. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione. Biochemistry 43: 4028–4038, 2004.
231.
Thomson SJCox AGCuddihy SLPullar JMHampton MB. Inhibition of receptor-mediated apoptosis upon Bcl-2 overexpression is not associated with increased antioxidant statusBiochem Biophys Res Commun375145-1502008. 231. Thomson SJ, Cox AG, Cuddihy SL, Pullar JM, and Hampton MB. Inhibition of receptor-mediated apoptosis upon Bcl-2 overexpression is not associated with increased antioxidant status. Biochem Biophys Res Commun 375: 145–150, 2008.
232.
Trompier DChang XBBarattin Rdu Moulinet D'Hardemare ADi Pietro ABaubichon-Cortay H. Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1Cancer Res644950-49562004. 232. Trompier D, Chang XB, Barattin R, du Moulinet D'Hardemare A, Di Pietro A, and Baubichon-Cortay H. Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1. Cancer Res 64: 4950–4956, 2004.
233.
Troyano AFernandez CSancho Pde Blas EAller P. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidationJ Biol Chem27647107-471152001. 233. Troyano A, Fernandez C, Sancho P, de Blas E, and Aller P. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. J Biol Chem 276: 47107–47115, 2001.
234.
Troyano ASancho PFernandez Cde Blas EBernardi PAller P. The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cellsCell Death Differ10889-8982003. 234. Troyano A, Sancho P, Fernandez C, de Blas E, Bernardi P, and Aller P. The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ 10: 889–898, 2003.
235.
Tulpule KDringen R. Formaldehyde stimulates Mrp1-mediated glutathione deprivation of cultured astrocytesJ Neurochem116626-6352011. 235. Tulpule K and Dringen R. Formaldehyde stimulates Mrp1-mediated glutathione deprivation of cultured astrocytes. J Neurochem 116: 626–635, 2011.
236.
Vahrmeijer ALHoetelmans RWMulder GJSchutrups Jvan Vlierberghe RLvan de Velde CJvan Dierendonck JH. Development of resistance to glutathione depletion-induced cell death in CC531 colon carcinoma cells: association with increased expression of bcl-2Biochem Pharmacol591557-15622000. 236. Vahrmeijer AL, Hoetelmans RW, Mulder GJ, Schutrups J, van Vlierberghe RL, van de Velde CJ, and van Dierendonck JH. Development of resistance to glutathione depletion-induced cell death in CC531 colon carcinoma cells: association with increased expression of bcl-2. Biochem Pharmacol 59: 1557–1562, 2000.
237.
Valko MMorris HCronin MT. Metals, toxicity and oxidative stressCurr Med Chem121161-12082005. 237. Valko M, Morris H, and Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 12: 1161–1208, 2005.
238.
Valverde MRojas EKala SVKala GLieberman MW. Survival and cell death in cells constitutively unable to synthesize glutathioneMutat Res594172-1802006. 238. Valverde M, Rojas E, Kala SV, Kala G, and Lieberman MW. Survival and cell death in cells constitutively unable to synthesize glutathione. Mutat Res 594: 172–180, 2006.
239.
van den Dobbelsteen DJNobel CSSchlegel JCotgreave IAOrrenius SSlater AF. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibodyJ Biol Chem27115420-154271996. 239. van den Dobbelsteen DJ, Nobel CS, Schlegel J, Cotgreave IA, Orrenius S, and Slater AF. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J Biol Chem 271: 15420–15427, 1996.
240.
Van Luyn MJMuller MRenes JMeijer CScheper RJNienhuis EFMulder NHJansen PLDe Vries EG. Transport of glutathione conjugates into secretory vesicles is mediated by the multidrug-resistance protein 1Int J Cancer7655-621998. 240. Van Luyn MJ, Muller M, Renes J, Meijer C, Scheper RJ, Nienhuis EF, Mulder NH, Jansen PL, and De Vries EG. Transport of glutathione conjugates into secretory vesicles is mediated by the multidrug-resistance protein 1. Int J Cancer 76: 55–62, 1998.
241.
Varghese JKhandre NSSarin A. Caspase-3 activation is an early event and initiates apoptotic damage in a human leukemia cell lineApoptosis8363-3702003. 241. Varghese J, Khandre NS, and Sarin A. Caspase-3 activation is an early event and initiates apoptotic damage in a human leukemia cell line. Apoptosis 8: 363–370, 2003.
242.
Voehringer DWMeyn RE. Redox aspects of Bcl-2 functionAntioxid Redox Signal2537-5502000. 242. Voehringer DW and Meyn RE. Redox aspects of Bcl-2 function. Antioxid Redox Signal 2: 537–550, 2000.
243.
Wang HLi JFollett PLZhang YCotanche DAJensen FEVolpe JJRosenberg PA. 12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytesEur J Neurosci202049-20582004. 243. Wang H, Li J, Follett PL, Zhang Y, Cotanche DA, Jensen FE, Volpe JJ, and Rosenberg PA. 12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes. Eur J Neurosci 20: 2049–2058, 2004.
244.
Wang WBallatori N. Endogenous glutathione conjugates: occurrence and biological functionsPharmacol Rev50335-3561998. 244. Wang W and Ballatori N. Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev 50: 335–356, 1998.
245.
Will YKaetzel RSBrown MKFraley TSReed DJ. In vivo reversal of glutathione deficiency and susceptibility to in vivo dexamethasone-induced apoptosis by N-acetylcysteine and L-2-oxothiazolidine-4-carboxylic acid, but not ascorbic acid, in thymocytes from gamma-glutamyltranspeptidase-deficient knockout miceArch Biochem Biophys397399-4062002. 245. Will Y, Kaetzel RS, Brown MK, Fraley TS, and Reed DJ. In vivo reversal of glutathione deficiency and susceptibility to in vivo dexamethasone-induced apoptosis by N-acetylcysteine and L-2-oxothiazolidine-4-carboxylic acid, but not ascorbic acid, in thymocytes from gamma-glutamyltranspeptidase-deficient knockout mice. Arch Biochem Biophys 397: 399–406, 2002.
246.
Winterbourn CCHampton MB. Thiol chemistry and specificity in redox signalingFree Radic Biol Med45549-5612008. 246. Winterbourn CC and Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45: 549–561, 2008.
247.
Xu KThornalley PJ. Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitroBiochem Pharmacol61165-1772001. 247. Xu K and Thornalley PJ. Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem Pharmacol 61: 165–177, 2001.
248.
Xu XChua CCKong JKostrzewa RMKumaraguru UHamdy RCChua BH. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cellsJ Neurochem1032004-20142007. 248. Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, and Chua BH. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103: 2004–2014, 2007.
249.
Yang JBogni ASchuetz EGRatain MDolan MEMcLeod HGong LThorn CRelling MVKlein TEAltman RB. Etoposide pathwayPharmacogenet Genomics19552-5532009. 249. Yang J, Bogni A, Schuetz EG, Ratain M, Dolan ME, McLeod H, Gong L, Thorn C, Relling MV, Klein TE, and Altman RB. Etoposide pathway. Pharmacogenet Genomics 19: 552–553, 2009.
250.
Yang ZWang ZEDoulias PTWei WIschiropoulos HLocksley RMLiu L. Lymphocyte development requires S-nitrosoglutathione reductaseJ Immunol1856664-66692010. 250. Yang Z, Wang ZE, Doulias PT, Wei W, Ischiropoulos H, Locksley RM, and Liu L. Lymphocyte development requires S-nitrosoglutathione reductase. J Immunol 185: 6664–6669, 2010.
251.
Yuan HPerry CNHuang CIwai-Kanai ECarreira RSGlembotski CCGottlieb RA. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotectionAm J Physiol Heart Circ Physiol296H470-H4792009. 251. Yuan H, Perry CN, Huang C, Iwai-Kanai E, Carreira RS, Glembotski CC, and Gottlieb RA. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol 296: H470–H479, 2009.
252.
Yuan LKaplowitz N. Glutathione in liver diseases and hepatotoxicityMol Aspects Med3029-412009. 252. Yuan L and Kaplowitz N. Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med 30: 29–41, 2009.
253.
Zamzami NMarzo ISusin SABrenner CLarochette NMarchetti PReed JKofler RKroemer G. The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transitionOncogene161055-10631998. 253. Zamzami N, Marzo I, Susin SA, Brenner C, Larochette N, Marchetti P, Reed J, Kofler R, and Kroemer G. The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16: 1055–1063, 1998.
254.
Zhang HLimphong PPieper JLiu QRodesch CKChristians EBenjamin IJ. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicityFASEB J261442-14512012. 254. Zhang H, Limphong P, Pieper J, Liu Q, Rodesch CK, Christians E, and Benjamin IJ. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J 26: 1442–1451, 2012.
255.
Zhang ZLiew CWHandy DEZhang YLeopold JAHu JGuo LKulkarni RNLoscalzo JStanton RC. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosisFASEB J241497-15052010. 255. Zhang Z, Liew CW, Handy DE, Zhang Y, Leopold JA, Hu J, Guo L, Kulkarni RN, Loscalzo J, and Stanton RC. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. FASEB J 24: 1497–1505, 2010.
256.
Zhu JKrom BPSanglard DIntapa CDawson CCPeters BMShirtliff MEJabra-Rizk MA. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathionePLoS One6e288302011. 256. Zhu J, Krom BP, Sanglard D, Intapa C, Dawson CC, Peters BM, Shirtliff ME, and Jabra-Rizk MA. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione. PLoS One 6: e28830, 2011.
257.
Zimmermann AKLoucks FASchroeder EKBouchard RJTyler KLLinseman DA. Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondriaJ Biol Chem28229296-293042007. 257. Zimmermann AK, Loucks FA, Schroeder EK, Bouchard RJ, Tyler KL, and Linseman DA. Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem 282: 29296–29304, 2007.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 17Issue Number 12December 15, 2012
Pages: 1694 - 1713
PubMed: 22656858

History

Published in print: December 15, 2012
Published online: 17 October 2012
Published ahead of print: 16 July 2012
Published ahead of production: 2 June 2012
Accepted: 2 June 2012
Revision received: 25 May 2012
Received: 31 January 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Rodrigo Franco
Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska.
School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska.
John A. Cidlowski
Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.

Notes

Address correspondence to:John A. CidlowskiLaboratory of Signal TransductionNational Institute of Environmental Health SciencesNational Institutes of HealthP.O. Box 12233111. T. W. Alexander DriveResearch Triangle Park, NC 27709E-mail: [email protected]
Asst. Prof. Rodrigo FrancoRedox Biology CenterSchool of Veterinary Medicine and Biomedical SciencesUniversity of Nebraska-Lincoln114 VBS 0905, East Campus Loop & Fair St.Lincoln, NE 68583E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top