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Abstract

Many of the data sources used in stream query processing
are known to exhibit bursty behavior. We focus here on pas-
sive network monitoring, an application in which the data rates
typically exhibit a large peak-to-average ratio. Provisioning a
stream query processor to handle peak rates in such a setting
can be prohibitively expensive.

In this paper, we propose to solve this problem by provision-
ing the query processor for typical data rates instead of much
higher peak data rates. To enable this strategy, we present
mechanisms and policies for managing the tradeoffs between
the latency and accuracy of query results when bursts exceed
the steady-state capacity of the query processor.

We describe the current status of our implementation and
present experimental results on a testbed network monitoring
application to demonstrate the utility of our approach.

1 Introduction

Many of the emerging applications in stream query process-
ing are known to exhibit high-speed, bursty data rates. The be-
havior of data streams in such applications is characterized by
relatively long periods of calm, punctuated by “bursts” of high-
speed data. The peak data rate exhibited in a burst is typically
many times the average data rate.

In this paper, we focus on an application that is particularly
prone to bursty data: passive network monitoring. A passive
network monitor (See Figure[I) is a device attached to a high-
traffic network link that monitors and analyzes the packets on
the link.

There has been significant interest in bringing the power of
declarative queries to passive network monitors [8,[15]. Declar-
ative queries are easy to change in response to the evolution
of networked applications, protocols and attacks, and they free
network operators from the drudgery of hand-optimizing their
monitoring code.

However, high-speed bursts and tight time constraints make
implementing declarative query processing for network moni-
toring a difficult problem. The bursty nature of network traffic
is well-documented in the literature [20) 24]]. Situations like
SYN floods can multiply the effects of bursts by increasing
bandwidth usage and decreasing packet size simultaneously.
Under such situations, even keeping simple counters during
bursts is considered difficult [[11]]. Bursts often produce not only
more data, but also different data than usual. This will often be
the case, for example, in crisis scenarios, such as a denial of ser-
vice attack or a flash crowd. Because network operators need
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Figure 1. A typical passive network monitoring
setup.

real-time data on the status of their networks, network moni-
tors need to provide timely answers under bursty load without
dropping packets.

Many researchers have attempted to bring declarative
queries to network monitoring by scaling up the query engine to
the network’s peak rate through various approaches. Some sys-
tems accelerate query processing with custom, reconfigurable,
or parallel hardware [29]]. Other systems construct queries by
connecting blocks of highly-optimized special-purpose code
[8]. Additionally, researchers have developed algorithms and
data structures for computing approximate answers in small
amounts of time and space [[13} 15} [7].

Realistically, making query processing scale to “line speed”
involves compromises. Custom hardware is expensive; special-
ized code limits the flexibility of the query language; approxi-
mate query answers are inferior to exact answers.

In this paper, we navigate these compromises with a differ-
ent approach. We do not scale our query processor to the net-
work’s maximum speed. Instead, we use a query processor that
can provide timely, exact answers under the rypical load on the
network connection. This normal load can be an order of mag-
nitude lower than the maximum load.

Of course, bursts will exceed the steady-state capacity of a
system that is configured in such a way. This overload can lead
to increased latency of query results, if the system buffers ex-
cess data; or decreased query result accuracy, if the system dis-
cards excess data. The key to provisioning for typical data rates
is to manage the overload behavior of the system.

To meet this goal, we allow the user to specify delay con-
straints that bound the latency of query results. Our system
manages its buffering to ensure that it satisfies the user’s delay
constraints. When it is impossible to meet a delay constraint
while processing all input data, we apply approximate query
processing techniques to minimize the impact on query result
accuracy. To enable this tight integration of buffer manage-
ment and approximation without extensive modifications to our



query engine, we have developed an architecture that we call
Data Triage.

2 Technical Contributions

The remaining sections of this paper describe our solutions
to the technical challenges of provisioning for typical network
load. From a query processing standpoint, the main contribu-
tions of this paper are as follows:

e Taking advantage of the bursty nature of network traffic
to reduce the cost of provisioning a declarative network
monitor (Section[5)

e Using windowed delay constraints to drive adaptive load
shedding (Section [6])

e The Data Triage architecture (Section 8]

e Implementation of approximation and Data Triage without
modifications to the core query engine (Sections[§and [9)

e Stream query processing experiments with timing-
accurate network traces (Section[I0)

3 Related Work

Overload handling is a natural concern in stream query pro-
cessing, and several pieces of previous work have proposed so-
lutions to the problem.

The Aurora continuous query system sheds excess load by
inserting drop operators into its dataflow network [32]. Our
work differs from this approach in two ways: First of all, we
use fixed end-to-end delay constraints, whereas Aurora’s drop
operators minimize a local cost function given the resources
available. Secondly, our system adaptively falls back on ap-
proximation in overload situations, while Aurora handles over-
load by dropping tuples from the dataflow.

Other work has focused on choosing the right tuples to drop
in the event of overload [9}17,130]. Our work is complementary
to these approaches. In this paper, we do not focus on choosing
“victim” tuples in the event of overflow; rather, we develop a
framework that sends the victim tuples through a fast, approxi-
mate data path to maintain bounded end-to-end latency. Choos-
ing the right victim tuples for Data Triage is an important piece
of future work.

Other stream processing systems have focused on using
purely approximate query processing as a way of handling high
load [4,/19]. Load shedding systems that use this approach loss-
ily compress sets of tuples and perform query processing on the
compressed sets. The STREAM data manager [12] uses either
dropping or synopses to handle load. In general, this previous
work has focused on situations in which the steady-state work-
load of the query processor exceeds its capacity to process input
streams; we focus here on provisioning a system to handle the
steady state well and to degrade gracefully when bursts lead to
temporary overload.

Real-time databases focus on providing answers to static
queries within tight time bounds. CASE-DB [23] is a real-
time database system that meets its real-time constraints by
giving approximate answers to queries. Our windowed delay
constraints differ from this previous work in that we maintain

timing constraints continuously over unpredictable streaming
data.

An overview of ongoing work on Data Triage appeared as a
short paper in ICDE 2005 [26].

4 Query Model

The work in this paper uses the query model of the cur-
rent development version of TelegraphCQ [6]. Queries in Tele-
graphCQ are expressed in CQL [2]], a stream query language
based on SQL. Data streams in TelegraphCQ consist of se-
quences of timestamped relational tuples. Users create streams
and tables using a variant of SQL’s Data Definition Language,
as illustrated in Figure ]

-- Stream of IP header information.
-- The "inet" type encapsulates a 32-bit IP address
create stream Packets ( src_addr inet, dest_ddr inet,
length integer, ts timestamp) type unarchived;

-- Table of WHOIS information
create table Whois (min_addr inet, max_addr inet, name varchar);

Figure 2. Schema for the queries in Figure 3]

In addition to traditional SQL query processing, Tele-
graphCQ allows users to specify long-running continuous
queries over data streams and/or static tables. In this paper,
we focus on continuous queries.

The basic building block of a continuous query in Tele-
graphCQ is a SELECT statement similar to the SELECT state-
ment in SQL. These statements can perform selections, projec-
tions, joins, and time windowing operations over streams and
tables.

TelegraphCQ can combine multiple SELECT statements by
using a variant of the SQL99 WITH construct. The implemen-
tation of the WITH clause in TelegraphCQ supports recursive
queries, but we do not consider recursion in this paper.

The specifications of time windows in TelegraphCQ consist
of RANGE and optional SLIDE and START parameters. Different
values of these parameters can specify sliding, hopping (also
known as tumbling), or jumping windows. For ease of exposi-
tion, we limit ourselves in this paper to the case where RANGE
and SLIDE are equal; that is, to hopping windows. We briefly
discuss the extension of our work to general sliding windows in
Section[8.31

Figure [3] gives several example network monitoring queries
that demonstrate the utility of this query model. We will use
the first of these queries as a running example throughout the

paper.
5 Data Rates in Passive Network Monitoring

Having provided a brief overview of the necessary back-
ground material, we now turn to the main topic of this paper:
Taking advantage of bursty network traffic to reduce the cost of
monitoring networks with a stream query processor.

Analyses of network traffic from a wide variety of sources
have shown them to exhibit self-similar, bursty behavior along a
number of dimensions [20, [24]]. In this paper, we focus on one
of these parameters, the rate of packet arrival. Packet arrival
rates tend to follow heavy-tailed distributions, with high-speed



—-- Fetch all packets from Berkeley
select * from Packets P [range by ’5 seconds’ slide by ’5 seconds’],
Whois W
where P.src_addr >= W.min_addr
and P.src_addr < W.max_addr
and W.name LIKE ’%berkeley.edu’;

-- Compute a traffic matrix (aggregate traffic between
-- source-destination pairs), updating every 5 seconds
select P.src_addr, P.dest_addr, sum(P.length)

from Packets P [range by ’30 sec’ slide by ’5 sec’]
group by P.src_addr, P.dest_addr;

-- Find all <source, destination> pairs that transmit more
-- than 1000 packets for two 10-second windows in a row.
with
Elephants as
select P.src_addr, P.dest_addr, count(*)
from Packets P [range ’10 sec’ slide ’10 sec’]
group by P.src_addr, P.dest_addr
having count(*) > 1000
(select P.src_addr, P.dest_addr, count (%)
from Packets P [range ’10 sec’ slide ’10 sec’],
Elephants E [range ’10 sec’ slide ’10 sec’]
-- Note that Elephants is offset by one window!
where P.src_addr = E.src_addr
and P.dest_addr = E.dest_addr
group by P.src_addr, P.dest_addr
having count(x) > 1000);

Figure 3. Sample queries in TelegraphCQ CQL
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Figure 4. Distribution of packet rates in a trace
of HTTP traffic from www.1bl.gov.

bursts occurring over a broad range of time scales [28]. For
example, Figure |4 shows the distribution of packet arrival rates
in a trace from the web server www.1bl.gov.

Network monitoring systems are typically provisioned with
sufficient CPU capacity to handle the maximum packet arrival
rate on the network connection. Because of the heavy-tailed
distribution of packet arrival rates, this maximum rate tends to
be significantly higher than the vast majority of network traffic.

In this paper, we advocate provisioning a network monitor
to handle the 90th to 95th percentile of traffic. This approach
allows significant reductions in the CPU requirements of the
monitor, while enabling the monitor to process all data most of
the time.

For example, Figure [5] shows the ratio between the 80th
through 100th percentiles of the packet arrival rate distribution
in Figure ] This analysis is conservative, in that we assume
that the maximum rate observed in our trace is the maximum
rate the connection can sustain. Assuming that the network
monitor’s CPU requirements are proportional to packet arrival
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Figure 5. The ratio between the maximum data
rate in the trace in {4 and the 80th to 100th per-
centile packet arrival rates. Provisioning a net-
work monitor for the 95th percentile of this distri-
bution reduces CPU requirements by 76 percent.

rate, provisioning for the 95th percentile of packet arrival rate
would reduce CPU requirements for monitoring this network
connection by 76 percent.

5.1 Microbenchmark Analysis

The analysis in the previous section is encouraging, but its
naive application is not very effective. Figure [6] shows the re-
sults of an experiment to measure the actual latency of query
results.

The data source for this experiment was the packet trace
used in the previous section. We played back this trace through
TelegraphCQ, using a schema similar to that in Figure 2| We
configured TelegraphCQ to run the query:

select count (*)
from Packets [range ’10 sec’ slide ’10 sec’];

To simulate a less-powerful machine, we increased the play-
back rate of the trace by a factor of 10 and reduced the query
window by a factor of 10. At these settings, our query pro-
cessor was provisioned for the 90th percentile of packet arrival
rates. The graph shows the observed latency between query
result generation and the end of each time window.

The results of this experiment demonstrate that naively pro-
visioning the query processor for “typical” data rate can cause
unacceptable increases in latency. The largest delays occur be-
cause the query processor does not follow the second assump-
tion we made in the previous section: that processing the data
from a given window does not interfere with processing of sub-
sequent windows. Longer bursts cause cumulative increases in
latency across time windows.

In the sections that follow, we propose the use of delay con-
straints to codify acceptable delay and the Data Triage architec-
ture to ensure that a query processor meets its delay constraints.

6 Delay Constraints

While it has the potential to reduce significantly the cost of
network monitoring hardware, the strategy of provisioning for
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Figure 6. Query result latency for a simple ag-
gregation query over a 10-second time window.
The query processor is provisioned for the 90th
percentile of packet arrival rates. Data is a trace
of a web server’s network traffic.

typical load leads to tradeoffs with query result latency. Navi-
gating these tradeoffs in a principled way requires a way for the
user to specify what constitutes acceptable latency for a given
query.

A delay constraint is a user-defined bound on the latency be-
tween data arrival and query result generation. Figure 7| shows
an example our proposed syntax for delay constraints. Our
modification to CQL adds the optional clause

LIMIT DELAY TO [intervall

to the end of the SELECT statement.

select count ()
from Packets P [range by ’5 seconds’ slide by ’5 seconds’],
Whois W
where P.src_addr >= W.min_addr
and P.src_addr < W.max_addr
and W.name LIKE ’%berkeley.edu’
limit delay to ’1 second’;

Figure 7. Sample query with a delay constraint

If the SELECT clause does not involve windowed aggrega-
tion, the delay constraint bounds the delay between the arrival
of a tuple and the production of its corresponding join results.
When the SELECT clause contains a windowed aggregate, the
delay constraint becomes what we call a windowed delay con-
straint. A windowed delay constraint of D seconds means that
the aggregate results for a time window are available at most D
seconds after then end of the window.

Most of the monitoring queries we have studied contain win-
dowed GROUP BY and aggregation, so we concentrate here on
delay constraints for windowed queries.

Table [Il summarizes the variable names used in this section
and the ones that follow. Consider a query with a hopping time
window of size W and a windowed delay constraint of D sec-
onds. Let w; denote the time window to which a given tuple ¢
belongs, and let Cy,,,, denote the marginal cost of processing a

Variable Units Description

D sec The delay constraint

w sec Size of the query’s hopping window
Crun sec Incremental CPU cost of sending a tuple

(CPU) through the main query in Data Triage
Cshadow  S€C Cost of sending a tuple through the
(CPU) shadow query

Chup sec Overall cost of processing a tuple
(CPU)
Cosum sec CPU cost of adding a tuple to a summary
(CPU)
Rpeak % The highest data rate that Data Triage
can handle
Rezact tuples  Thge highest data rate at which Data

sec
Triage does not use approximation

Table 1. Variables used in Sections 6| through g]

tuple. We assume that C',,;, is constant across all tuples; we dis-
cuss relaxing this assumption in the Future Work section. Let
end(w) denote the end of window w.
The delay constraint defines a delivery deadline for each tu-
ple t of
deadline(t) = end(w;) + D — Clyp (1)

It can be easily shown that, if the query processor consumes
every tuple before its delivery deadline, then the query engine
satisfies the delay constraint.

We note that every tuple in a hopping window has the same
deadline. During the remainder of this paper, we denote the
deadline for the tuples in window w by deadline(w)

7 Satisfying Delay Constraints

In the previous section, we introduced the concept of delay
constraints as a way for the application to specify its tolerance
for query result latency.

The overall goal of our work is to satisfy delay constraints
with a query processor that is provisioned for the 90th to 95th
percentile of its data rates. To handle bursts, such a query pro-
cessor needs a mechanism for trading off the accuracy of query
results against increased data processing speed. To provide
such a mechanism, we leverage the extensive previous work
in approximate query processing.

7.1 Approximate Query Processing with Summaries

Much work has been done on approximate relational query
processing using lossy set summaries. Originally intended for
query optimization and interactive data analysis, these tech-
niques have also shown promise as a fast and approximate
method of stream query processing. Examples of summary
schemes include random sampling [33| [1]], multidimensional
histograms [25} [16} 10, [31]], and wavelet-based histograms
(5L 21].

The focus of this paper is not to develop new methods of
approximate query processing. Instead, we leverage previous
work to manage latency and accuracy with bursty data streams.
Because no single summarization method has been shown to



dominate all others, we have developed and implemented a
framework that allows us to employ a broad spectrum of tech-
niques.

Our framework divides a given summarization scheme into
four components:

o A summary data structure that provides a compact, lossy
representation of a set of relational tuples

e A compression function that constructs summaries from
sets of tuples.

o A set of operators that compute relational algebra expres-
sions in the summary domain.

e A rendering function that computes aggregate values or
generates a representative set of tuples from a summary.

These primitives allow one to approximate continuous
queries of the type described in Section[d} First, summarize the
tuples in the current time window, then run these summaries
through a tree of operators, and finally render the approximate
result.

In addition to the primitives listed above, each approxima-
tion technique also has one or more funing parameters. Exam-
ples of such parameters include sample rate, histogram bucket
width, and number of wavelet coefficients. The tuning parame-
ters control the tradeoff between processing time and approxi-
mation error.

With the current state-of-the-art in summarization tech-
niques, the tuning parameters need to be set prior to the creation
of the summary. Of course, a query processor that employs ap-
proximation to meet delay constraints cannot predict whether
a burst will occur in the current time window. Such a system
must tune its summaries to the maximum data rate that could
possibly occur.

Unfortunately, the values of the tuning parameters that en-
able such a high data rate will result in relatively high approxi-
mation errors. The summarization technique will overcompress
the present data, because it cannot predict the future behavior
of the stream.

Our solution to this problem is to use approximation as a
“safety valve” rather than a primary data path. Our system
maintains two data paths: one that uses normal query processng
and one that uses approximation. The system only sends tuples
through the approximate data path when processing those tu-
ples fully would violate the delay constraint.

8 Data Triage

In the previous section, we motivated our approach of using
approximation as a fallback mechanism to satisfy delay con-
straints. Implementing this approach without major modifica-
tions to the query engine leads to an architecture that we call
Data Triage.

Figure [8| gives an overview of the Data Triage architecture.
This architecture consists of several components:

e The initial parsing and filtering layer of the system de-
codes network packets and produces streams of relational
tuples containing detailed information about the packet
stream. Our current implementation of this layer is based
on the low-level packet-processing routines of the Bro in-
trusion detection system [11]].
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Figure 8. An overview of the Data Triage archi-
tecture. Data Triage acts as a middleware layer
within the network monitor, isolating the real-
time components from the best-effort query pro-
cessor to maintain end-to-end responsiveness.

e The Main Query operates inside a stream query processor,
in our case TelegraphCQ. The user-specified query con-
sumes tuples from the initial parsing and filtering layer.
Architecturally, the key characteristic of the main query is
that it is tuned to operate at the network’s fypical data rate.
Data Triage protects the main query from data rates that
exceed its capacity.

o A Triage Queue sits between each stream of tuples and
the main query. Triage Queues act as buffers to smooth
out small bursts, and they provide a mechanism for some
data to the approximate data path when there is not enough
time to perform full query processing on every tuple.

o The Triage Scheduler manages the Triage Queues to
ensure that the system delivers query results on time.
The Scheduler manages end-to-end delay by triaging ex-
cess tuples from the Triage Queues, sending these tuples
through a fast but approximate alternate datapath. We give
a detailed description of our scheduling algorithms and de-
lay constraints in Section[8.1]

e The Summarizer builds summary data structures contain-
ing information about the tuples that the Scheduler has
triaged. The Summarizer then encapsulates these sum-
maries and sends them to the query engine for approximate
query processing.



e The shadow query uses approximate query processing
over summary data structures to compute the results that
are missing from the main query.

We have implemented Data Triage in the TelegraphCQ
stream query processor. In the process of doing so, we over-
came several challenges. The sections that follow describe the
approaches we used to construct simple and efficient solutions
to these problems:

e Choosing which tuples to friage and when to triage them
(Section|8.1))

e Constructing approximate shadow queries -efficiently

(Sections[8.2and [9)

e Determining the maximum data rate that Data Triage can
support with a given approximation technique (Section

8.4).
8.1 The Triage Scheduler

The Triage Scheduler is the control component of Data
Triage, with control over the Triage Queue and the Summa-
rizer. The scheduler’s primary purpose is to ensure that the sys-
tem meets the delay constraint. The Triage Scheduler meets
this goal by controlling three important decisions:

e Whether to send a tuple from the Triage Queue to the main
query

e Whether to “triage” a tuple from the Triage Queue, by
adding it to a summary

e When to transfer the current summary from the Summa-
rizer to the shadow query.

Sending tuples to the summarizer supports significantly
higher data rates, but compression operations do not have
nonzero cost. As we will show in our experiments, summariz-
ing a large number of triaged tuples requires a relatively small
but still significant amount of CPU time. Likewise, relational
operations on summaries can take a significant amount of time,
though they only occur once per time window. In order to sat-
isfy the user’s delay constraints, the Triage Scheduler needs to
take these costs into account when deciding which tuples to
triage and when to triage them.

Recall from the previous section that a delay constraint of D
defines a tuple delivery deadline of deadline(t) = end(w;) +
D — CYy, for each tuple t, where Cy,,, is the time required to
process the tuple.

In the Data Triage architecture, the value of Cy,,,, depends on
which datapath a tuple follows. Let C't,,;; denote the CPU time
required to send a tuple through the main query, and let Csym,
denote the CPU time to add a tuple to the current summary.
Cfun  (for main query)

Csum (for shadow query)

The Triage Scheduler also needs to account for the cost of
sending summaries through the shadow query. We let Cispqd0w
denote the cost per time window of the shadow query, including
the cost of merging query results. We assume that Cspqq0w 18
constant regardless of the number of tuples triaged. We revisit
this assumption in Section ??.

Cshadow 18 @ per-window cost. We assume that the sys-
tem uses a single CPU. Under this assumption, an increase in

Then we have: C,,;, =
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Figure 9. The effective length of the Triage Queue
for tuples belonging to a 5-second time window,
as a function of offset into the window. The delay
constraint is 2 seconds, and C.;,.4.., is 1 second.

Cshadow decreases the amount of processing time available for
other operations.

Incorporating the costs of the approximate datapath into the
deadline equation from Section [6} we obtain the new equation:

Cyuy  (for main query)
Csum (for shadow query)
2

In other words, the deadline for a tuple depends on whether tile)
tuple is triaged. Of course, whether the tuple is triaged depends
on the tuple’s deadline.

We can satisfy all the above requirements with a single
scheduling invariant. Intuitively:

deadline(w) = end(w) + D — Cshadow — {

Time to process remaining - Time before delay con-
tuples in window — straint violated '
3)

More formally, letting n denote the number of tuples in
the Triage Queue, W the window size, O the real-time offset
into the current window, and C'f,; the cost of sending a tuple
through the main query:

nCruy < W + D — Cspadow — Crun — O, 4)
or equivalently

nS(W+D_Cshadow1> 0 )
Crun Cru

&)

As long as the Triage Scheduler maintains this invariant (by
triaging enough tuples to keep n sufficiently low), the query
processor will satisfy its delay constraint. We note that the
Scheduler must maintain the invariant simultaneously for all
windows whose tuples could be in the Triage Queue.

It is important to note that n, the number of tuples that
can reside in the Triage Queue without violating this invariant,
decreases linearly throughout each time window. One could
imagine using a fixed queue length to satisfy the invariant, but
doing so would require a queue length of the minimum value of
n over the entire window. In other words, using a fixed-length



queue causes the system to triage tuples unnecessarily. In keep-
ing with our philosophy of using approximation as a fallback
mechanism, our scheduler avoids triaging tuples for as long as
possible by continuously varying the number of tuples from the
window that are permitted to reside in the Triage Queue. Figure
[illustrates this variation in effective queue length.

8.2 Approximate Query Processing Framework

Another challenge of implementing Data Triage is adding
the approximate query processing components to the query en-
gine without rearchitecting the system. We have met this chal-
lenge by developing a common framework for different types
of approximate query processing and mapping this framework
onto TelegraphCQ’s object-relational capabilities. This imple-
mentation permits the use of many different summary types and
minimizes changes to the TelegraphCQ query engine.

At the core of a summary scheme is the summarization data
structure, which provides a compact, lossy representation of a
set of relational tuples. We used the user-defined datatype func-
tionality of TelegraphCQ to implement several types of sum-
mary data structure, including reservoir samples, two types of
multidimensional histograms, and wavelet-based histograms.

The second component of a summary scheme is a compres-
sion function for summarizing sets of tuples. One way to im-
plement these is as functions that take a set of tuples as an ar-
gument and return a summary. To avoid the space overhead
of storing large sets of tuples, our implementation takes in a
stream of tuples and incrementally adds them to the summary.

The third component of a summary scheme is a set of re-
lational operators that operate on the summary domain. Once
summaries are stored in objects, it is straightforward to imple-
ment relational operators as functions on these objects. For ex-
ample, some of the operators for the MHIST multidimensional
histogram type [25] are as follows:

-- Project S down to the indicated columns.

CREATE FUNCTION project(S MHIST, colnames CSTRING) RETURNS MHIST AS ...

-- Approximate SQL’s UNION ALL construct.
CREATE FUNCTION union_all(S MHIST, T MHIST) RETURNS MHIST AS ...

-- Compute approximate equijoin of S and T.
CREATE FUNCTION equijoin(S MHIST, S_colname CSTRING,

T MHIST, T_colname CSTRING) RETURNS MHIST AS ...

The final component of a summary scheme is a render-
ing function that computes aggregate values from a summary.
TelegraphCQ contains functionality from PostgreSQL for con-
structing functions that return sets of tuples. We use this set-
returning function framework to implement the rendering func-
tions for the different datatypes:

-- Convert S into tuples, one tuple for each bucket

CREATE FUNCTION mhist_render(S MHIST) RETURNS SETOF RECORD AS ...

Having implemented the components of a given summariza-
tion scheme, we can construct Data Triage’s shadow queries
and merging logic using query rewriting. Section [9] demon-
strates this process on a simple example query.

8.3 General Sliding Windows

The previous sections have described our implementation of
Data Triage as it applies to nonoverlapping, or “hopping,” time
windows. Extending this work to general sliding windows and

to multiple queries is straightforward, though we do not cover
it in detail in the conference version of this paper. The extended
version of this paper provides a more in-depth treatment of the
subject [27].

Briefly, the framework described in this paper can accomo-
date arbitrary combinations of TelegraphCQ window clauses
with the following changes:

e Use the method described in [18] to convert overlapping
time windows to a repeating sequence of nonoverlapping
windows.

e Compute delay constraints for each of the nonoverlapping
windows by determining the query delay constraints that
apply at a given point in the sequence.

e When constructing shadow queries, use user-defined ag-
gregates to merge summaries from adjacent windows as
needed.

8.4 Provisioning Data Triage

Data Triage uses approximate query processing as a fallback
mechanism to ensure that an underprovisioned query processor
can meet a delay constraint. The effectiveness of this approach
of course depends on the summary implementation being faster
than the general-purpose query processor.

In particular, we would like to know:

e If the approximation method in Data Triage’s shadow
query performs at a given level, what degree of underpro-
visioning will Data Triage permit?

e How quickly can different query approximation methods
process data?

In this section, we address both of these questions. We start
with a theoretical analysis of approximate query processing per-
formance as it applies to Data Triage, then we apply our theory
to an experimental analysis of several approximation method-
ologies.

As in previous sections, our analysis assumes that the time
windows in the user’s query are hopping windows.

8.4.1 Data Triage and System Capacity

An important design goal of Data Triage is what we call the
Do-no-harm principle:

If the system has time to process all the tuples in
a time window fully, it should do so.

Data Triage operates in two regimes: Up to a certain
data rate R..qct, the system performs exact query processing.
Above R..q.t, Data Triage must resort to approximation to
handle data rates up to a maximum of Rpcqr.

We characterize the CPU cost of a summariza-
tion/approximation scheme by two parameters, Cgspadow
and Cgyy,. We assume for ease of exposition that these
parameters are constants; similar conclusions can be reached
by treating Cspqdow and Ciy,y, as random variables.

In the paragraphs that follow, we derive the relationship be-
tween the summarization parameters, Cspgdow and Cyym, and
the system capacity parameters, Rezqce and Rpeqk-



8.4.2 Cs hadow

Recall that Cp, 440w represents the CPU cost incurred by send-
ing a summary through the shadow query.
The maximum possible value of Ry qct 18 ﬁ, the rate at

which the main query can consume tuples. If the user’s query
involves hopping windows of length W and it takes Cy,y to
process a tuple in the main query, then the number of tuples
that the main query can process in a single window is

W — Cshadow
T Crw ©
full

Effectively, Rezqct 1s reduced by a factor of 1 — Ch%

Additionally, since the system cannot send a summary to the
shadow query until the end of a time window, Cypagow SETVES
as a lower bound on the delay constraint.

In summary, Cspqdon constrains the guery parameters D
and . In order for Data Triage to work effectively, the value
of Cshadow needs to be less than the delay constraint D and
small relative to the window size W.

843 Cium

Csum represents the incremental CPU cost of adding a single
tuple to a summary.

In contrast to Cspadow, Csum 1S a per-tuple cost. The
value of Ciyp, limits Rpeqr, the maximum instantaneous rate
at which tuples can enter the system.

The system must be able to summarize incoming tuples
quickly enough to meet its delay constraint. The Triage Queue
can contain tuples from up to [%J + 1 windows at once, and
the number of tuples from each window that can reside in the

. 1 tuples .
Triage Queue decreases at a rate of Cron S€C - Since the sys-

tem must be able to handle a sustained load of Rcq; without
dropping any tuples, we have

C(shadow 1 w 1
Hpear ( w ) (Csum QDJ " ) Ofull>
(7

Note that, Cspadow < W and Ceumy < Clpyuy, then
Rpear & 7,

In summary, the ratio between Clp, and C'y,y (the time to
process a tuple in the main query) acts as a bound on the cost
savings through underprovisioning.

8.5 Performance Analysis of Approximation Tech-
niques

We have implemented several summary types within the
framework we described earlier in this paper:

e Multidimensional histograms with a fixed grid of buckets
e MHIST multidimensional histograms [25]]

o Wavelet-based histograms [22]]

e Reservoir sampling [33]

All of the approximation schemes we studied allow the user
to adjust the tradeoff between speed and accuracy by chang-
ing a summary granularity parameter. For example, reservoir
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Figure 10. The CPU cost of inserting a tuple into
the four types of summary we implemented. The
X axis represents the granularity of the summary
data structure.

sampling uses a sample size parameter, and wavelet-based his-
tograms keep a fixed number of wavelet coefficients.

We conducted a microbenchmark study to determine the
relationship between summary granularity and the parameters
Clsum and Cigpado for our implementations.

8.5.1 Measuring C,,,,

Our first experiment measured C,,.,,, the CPU cost of inserting
a tuple into each of the data structures.

The experiment inserted randomly-generated two-column
tuples into the summaries. We measured the insertion cost
across a range of summary granularities.

Figure [I0] shows the results of this experiment; note the
logarithmic scale on the y axis. The X axis represents sum-
mary granularity, measured by the number of histogram buck-
ets, wavelet coefficients, or sampled tuples.

The insertion cost for reservoir sampling was extremely low,
though it did increase somewhat at larger sample sizes, proba-
bly due to caching effects.

Fixed-grid histograms provided low insertion times across
a wide variety of data structure sizes. The insertion operation
on such a histogram is a simple index into an array, and cache
effects were not significant at the summary sizes we examined.

The insertion cost for wavelet-based histograms increased
somewhat with summary size, primarily due to the cost of sort-
ing to find the largest wavelet coefficients. This increase was
only a factor of 2 across the entire range of wavelet sizes.

MHISTs exhibited a relatively high insertion cost that be-
came progressively worse as the number of buckets was in-
creased. For more than a few hundred buckets, insertion into
our MHIST implementation would slower than normal tuple
processing. The high insertion cost stems mostly from the lack
of an index to the MHIST buckets. Using a kd-tree [3] to map
tuples to buckets would rectify this problem. Even with these
optimizations, our MHIST implementation would still have a
higher insertion cost than the other summaries, as evidenced by
the leftmost point on the curve.
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Figure 11. The time required to compute a single
window of a shadow query using four kinds of
summary data structure. The X axis represents
the granularity of the summaries; the Y axis rep-
resents execution time.

8.6 Measuring C,qd00

Our second experiment measured the value of the Cipqdow
constant as a function of summary granularity. The experiment
measured the cost of performing the shadow query for a stream-
table join query.

Figure [T1] shows our results. The cost of the join was sen-
sitive to summary size for all summaries studied. The join
costs of the four summary types were separated by significant
constant factors, with MHISTs taking the longest, followed
by reservoir samples, wavelet-based histograms, and fixed-grid
histograms.

Again, MHISTs were significantly slower than the other
histogram-based summaries. In this case, the discrepancy was
due to MHIST buckets not being aligned with each other along
the join dimension. This misalignment meant that each bucket
joined with several other buckets and produced a large number
of result buckets.

We also conducted a version of this experiment in which
we varied the number of tuples inserted into the summaries.
Beyond 100 tuples, the cost of the shadow query was insensitive
to the number of tuples. We omit detailed results due to space
constraints.

8.6.1 Discussion

Our evaluation of the four approximation schemes we have im-
plemented shows that three of them can summarize tuples fast
enough to be useful for Data Triage. In the current version of
TelegraphCQ, Cy, the time to process a tuple in a conven-
tional query, typically ranges from 1 x 107 to 1 x 1073 sec-
onds, depending on query complexity. The compression func-
tions for the three summary types can consume tuples consid-
erably faster, with C,,, values of approximately 1 x 10~ for
fixed-grid or wavelet-based histograms and 1 x 10~ for sam-
ples. We expect these times to drop significantly as we optimize
our code.

Our shadow query microbenchmark shows that simple fixed-
grid histograms have very small values of Cgjq400, €ven at

very fine summary granularities. Even accounting for their rela-
tively inefficient partitioning function, these simple histograms
should work better than the other summary types studied for
queries with short time windows or tight delay constraints.

9 Lifetime of a Query

To illustrate the methods we use to construct shadow queries
and how these methods interact with our implementation of
Data Triage, we will now describe the query rewrite and ex-
ecution process as it applies to the query in Figure[7] The query
reports the number of packets coming from Berkeley domains
every 5 seconds.

9.1 Summary Streams

Recall the sample CQL schema from Section[d This schema
contains a table of WHOIS information and a stream, Packet,
of information about network packets.

To use Data Triage in TelegraphCQ, the user adds an ON
OVERLOAD clause to each CREATE STREAM statement:

CREATE STREAM Packets
ON OVERLOAD KEEP HISTOGRAM;

This clause specifies the type of summary that Data Triage will
construct on excess tuples in the stream. We plan to allow the
user to choose the summary type at query execution time in a
future version of TelegraphCQ.

The ON OVERLOAD clause causes TelegraphCQ to generate
an auxiliary summary stream for summaries of triaged tuples:

CREATE STREAM

__triaged_Packets(summary HISTOGRAM,
earliest Timestamp,
latest Timestamp);

The two Timestamp fields in this stream indicate the range of
timestamps in the tuples represented by the summary field. The
summary stream will serve as an input to all shadow queries
that operate on the Packets stream.

9.2 Query Rewrite

Figure [12|shows the query rewrite process as applied to our
sample query. Our query rewriting methodology is based on an
algebraic formalism that allows us to correctly rewrite queries
into shadow queries. We use relational algebra to build a set of
differential relational algebra operators.

Our approach here resembles past work in maintaining mate-
rialized views [[14]], though our setting is different. Due to space
constraints, we do not discuss the differential relational algebra
in detail here. We refer the interested reader to the extended
version of this paper for a more in-depth discussion [27].

Briefly, each differential operator propagates changes from
the inputs to the outputs of the corresponding relational alge-
bra operator. The differential relational algebra divides each

10ur system also creates a second summary stream that summarizes non-
triaged tuples. This second stream is only necessary for queries with stream-
stream joins and is only activated for such queries.



Original Query Precompute Static Portions
insert into CachedHists
select count(*), ts lect ‘Whois’ . hist f (
fron Packets P select filois’, histfron query
> P . o select min_addr, max_addr
st Differential R
s o .
Whois W Relational Algebra v where name like
_ . \’%berkeley.edu\’’);
where P.src_addr >= W.min_addr
and P.src_addr < W.max_addr
and W.name LIKE ’berkeley.edu’
limit delay to ’1 second’;
-_—
Shadow Query
select
hist_to_count(
hist_project(
= hist_bandjoin(
: (select summary
Flnal Query from CachedHist

with
Nselect count(x)...) as main_gq,

Main Query\

SQ;S::V (select M.count as main_count,
y S.count as shadow_count,
g M.ts as ts
Merge —| from main_q M [range ‘5 seconds’],
Query

full outer join
shadow_q S [range ‘5 seconds’]
where M.ts = S.ts);

(select hist_to_count(...)) as shadow_q,

where entryname = ‘Whois’),
TP.summary,
‘Packets.src_addr’,
‘Whois.min_addr’,
‘Whois.max_addr’
),
‘Packets.src_addr’
)
) as shadow,
TP.end_ts as ts
From __triaged_Packets TP;

Figure 12. An illustration of the Data Triage query rewrite algorithm as applied to an example query. The
algorithm produces a main query, a shadow query, and auxiliary glue queries to merge their results. This
example uses multidimensional histograms as a summary datatype.

relation S into noisy, additive noise, and subtractive noise com-
ponentsE] Shoisy> S+ and S_, such that:

Snoisy =S + S+ —-S5_ (8)
where + and — are the multiset union and multiset difference
operators, respectively.

Our query rewriter starts by constructing a differential rela-
tional algebra expression for each SELECT clause in the original
query. Each differential operator is defined in terms of the ba-
sic relational operators. The query rewriter recursively applies
these definitions to the differential relational algebra expression
to obtain a relational algebra expression for the tuples that are
missing from the main query’s output. Then the query rewriter
removes empty relations and translates the relational algebra
expression into the object-relational framework we described
in Section [8.2]to produce the shadow query.

Certain portions of the shadow query reference static tables
that do not change during the lifetime of the user’s continuous
query. The query rewriter precomputes these expressions and
stores the resulting summary objects in a system table. At run-
time, the shadow query fetches these cached summaries instead
of recomputing the corresponding subexpressions.

Finally, the query rewriter generates a single WITH statement
that will run the main and shadow queries and merge their re-
sults. The user submits this rewritten query to the query engine,
which begins executing the main and shadow queries.

2The additive noise component is necessary because operations like nega-
tion and set difference can cause additional tuples to appear in an expression’s
output when tuples are removed from its inputs.
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9.3 Query Execution

When the rewritten query enters the system, the Tele-
graphCQ engine passes the delay constraint and window size to
the Triage Scheduler. The Scheduler monitors the Triage Queue
on the Packets stream and summarizes tuples that the system
does not have time to process fully. Once per time window,
the Scheduler sends a summary to the __triaged_Packets
stream that serves as an input to the shadow query.

The original query returns a single count of packets per time
window. In place of this single count, the rewritten query will
instead return two counts per time window — one from the
main query and one from the shadow query. The user can add
these two counts to obtain an estimate of the true query results.
Keeping the results of the main and shadow queries separate
provides feedback as to how much approximation went into the
overall result.

10 Experimental Validation

We conducted experiments on our prototype implementation
of Data Triage to measure how well it satisfied delay constraints
in a realistic environment. We used a 105-MB trace of the traf-
fic to and from the HTTP server www.1bl.gov as the input to
our experiments.

The query used in the experiments was a variant of the exam-
ple query from earlier in the paper. The current implementation
of band joins in TelegraphCQ is inefficient, so we modified the
query to be an equijoin on the most significant 16 bits of the IP
address instead.



Burst from t=180-240 sec
——

30

B Without Data Triage

2

>

&

o 20

D - ]

= With Data Triage:
§ .10 sec delay constraint
O\ 5ec_

5 .

(] 2 sec

0 10 20 30 40 50
Window Number (10-second windows)

Figure 13. A comparison of query result latency
with and without Data Triage on with the system
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data stream was a timing-accurate trace of a web
server. Each line is the average of 10 runs fo the
experiment.

We ran our experiments on a server with two 1.4 GHz Pen-
tium IIT CPUs and 1.5 GB of main memory. To simulate using a
less powerful embedded CPU, we wrote a program that would
“play back” the trace at a multiple of its original speed and
decreased the delay constraint and window size of the query
accordingly. We used reservoir samples as the approximation
method for this experiment. We adjusted the trace playback rate
to 10 times the original rate. At this data rate, our system was
provisioned for the 90th percentile of packet arrival rates in our
trace.

10.1 Latency

For our first experiment, we ran the query both with and
without Data Triage and measured the latency of query results.
We determined latency by measuring the time at which the sys-
tem output the result for each window and subtracting the win-
dow’s last timestamp from this figure. We repeated the exper-
iment 10 times and recorded the average latency for each time
window.

Figure |13| shows a graph of query result latency during the
first 500 seconds of the trace. The the line marked “Without
Data Triage” shows the latency of the query on an unmodified
version of TelegraphCQ. The other lines show the latency of
TelegraphCQ with Data Triage and delay constraints of 10, 5,
and 2 seconds, respectively.

Approximately 180 seconds into the trace, a 50-second burst
exceeds the query processor’s capacity. Without Data Triage,
the unmodified version of TelegraphCQ falls steadily behind
the trace and does not catch up until 90 seconds after the end of
the burst.

With Data Triage enabled, the Triage Scheduler shunts ex-
cess tuples to the shadow query as needed to satisfy the delay
constraint. As the graph shows, the system triages just enough
tuples to avoid violating the constraint, performing full process-
ing on as much of the input data as possible.
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Figure 14. A comparison of query result ac-
curacy using the same experimental setup as
in Figure [13 and a 2-second delay constraint.
Data Triage outperformed the other two load-
shedding methods tested. Each line is the av-
erage of 10 runs of the experiment.

10.2 Result Accuracy

Our second experiment measured the accuracy of query re-
sults with three methods of satisfying a 2-second delay con-
straint. We measured result error using a root-mean-squared
error metric. That is, we defined the error for time window w
as:

\/ >_gegroups (actual(g) — reported(g))? ©

|groups|

Using this error metric and the same query and experimental
setup as the previous experiment, we measured the result error
of three load-shedding methods:

e Data Triage as described in this paper

e Drop Excess Tuples: When the delay constraint is about
to be violated, drop the remaining tuples in the window.

e Summarize All: Generate summaries of all tuples and
perform approximate query processing on the summaries.

We used a reservoir sample as the summary type for both
Data Triage and the Summarize All technique. We tuned the
reservoir size to the maximum data rate in the trace.

Figure [14] shows the results for the first 500 seconds of this
experiment. Throughout the trace, Data Triage provides more
accurate results than either of the other methods. During the
bursts in windows 0 and 18-21, Data Triage processes as many
tuples as possible before resorting to approximation. The Drop
Excess Tuples method, on the other hand, generates query re-
sults that are missing significant chunks of the data. Likewise,
the Summarize All method drops tuples that could have been
processed fully.

During the periods in between bursts, both Data Triage and
the Drop Excess Tuples method processed all tuples in each
window, producing no error. The error for Summarize All also
decreased somewhat during these lulls, as the reservoir sample
covered a larger portion of the data in the window.



11 Conclusion

In this paper, we observed that there are significant potential
cost savings to provisioning a network monitor for typical data
rates as opposed to the maximum load. We found that con-
trolling the tradeoff between provisioning and latency is key
to enabling these cost savings. We described windowed delay
constraints, a way of specifying tolerances for query result la-
tency, and the Data Triage architecture that we use to imple-
ment delay constraints. We presented a theoretical analysis
of scheduling and provisioning for Data Triage, as well as a
formally-based, practical query rewrite scheme that allows us
to implement Data Triage without modifying the core of the
query engine. Finally, we used our implementation to perform
experiments that demonstrate the Data Triage can satisfy win-
dowed delay constraints on an underprovisioned stream query
processor.
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