
Adaptively Routing P2P Queries Using Association Analysis

Brian D. Connelly, Christopher W. Bowron, Li Xiao, Pang-Ning Tan, and Chen Wang

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824 US

{connel42,bowronch,lxiao,ptan,wang}@cse.msu.edu

Abstract

Unstructured peer-to-peer networks have become a very
popular method for content distribution in the past few
years. By not enforcing strict rules on the network’s
topology or content location, such networks can be created
quickly and easily. Unfortunately, because of the unstruc-
tured nature of these networks, in order to find content,
query messages are flooded to nodes in the network, which
results in a large amount of traffic. This work borrows
the technique of association analysis from the data mining
community and extends it to intelligently forward queries
through the network. Because only a small subset of a
node’s neighbors are forwarded queries, the number of
times those queries are propagated is also reduced, which
results in considerably less network traffic. These savings
enable the networks to scale to much larger sizes, which
allows for more content to be shared and more redundancy
to be added to the system, as well as allowing more users
to take advantage of such networks.

I.. Introduction

The popularity and number of peer-to-peer (P2P) net-
works has exploded in the past several years. They have
proved to be a viable method for the dissemination of
data across a network. Aside from the legal issues faced
by a few existing networks regarding the distribution of
copyrighted material, P2P networks also serve many useful
legitimate purposes, such as load balancing, providing
more flexible and up-to-date routing information [1], man-
aging voice traffic [2], and offering efficient downloads of
free software [3].

Many of the networks in use today follow the model of

unstructured peer-to-peer, which was first widely used in
the Gnutella [4] network. These networks do not impose
any rules as to how the nodes organize themselves or where
shared content is located. This has the benefit of allowing
nodes to join and leave the system without significantly
affecting the entire system.

One disadvantage of this approach, however, is that the
location of content shared on the network is not known. In
order for a user to find a particular piece of content, he or
she ”floods” the network with query messages. In flooding,
a query message is sent to all of a peer’s neighbors, which,
in turn, forward the query to all of their neighbors, and so
on. This behavior results in the query reaching all nodes, so
if any node shares content that matches the user’s query, it
will be found. Because flooding creates so many messages,
the amount of traffic on the network grows considerably
with each node that joins, because that node will propagate
all received queries to each of its neighbors, as well as
issue new queries, which generate many flooded query
messages. The end result of this large volume of traffic
is that current networks using unstructured P2P reach a
limit in the number of users who can concurrently use the
system.

This paper presents a new approach to limiting the
number of queries which are flooded in the network. This
approach uses the concept of association analysis, which
has been studied extensively in the data mining community.
By extending association analysis to include measures of
quality for rule sets and driving the rule generation process
by feedback, nodes intelligently forward query messages to
a subset of neighbors that are likely to continue forwarding
queries towards nodes that share the desired content.
Because this significantly reduces the number of query
messages that are flooded while maintaining the ability
to successfully locate content, the overall traffic on the
network is decreased, allowing more users to make use



of the network simultaneously. As this approach does not
change the protocol used by unstructured P2P networks,
it can be deployed in nodes in current systems without
requiring that all nodes support this method.

The structure of this paper is as follows: Section II
selects and discusses some of the work that has been
done to lessen the effects of flooding. Section III intro-
duces the concept of association analysis and some of the
measures used to determine the quality of the results that
are generated. Additionally, a family of algorithms which
take advantage of association analysis is described. The
design and simulation methodologies used to validate these
algorithms are detailed in Section IV, and the results from
simulations are presented in Section V. Finally, Section VI
draws conclusions from the work that has been done and
introduces future directions that could be investigated.

II.. Related Work

Much work has been done to address the problem
of flooding in unstructured peer-to-peer networks. These
works usually fall into one of three categories: limiting the
scope of a query so that queries are flooded less frequently,
forwarding the query to a select subset of neighbors instead
of flooding, and re-designing the network so that flooding
doesn’t have to be performed.

Several ideas have emerged in the first category that
have benefited the system. The first is associating a time-
to-live (TTL) value with each query, which sets the number
of times that a query can be forwarded. A second technique
is expanding-ring search [5], which gives query messages
a low TTL and increases the TTL if the queries continue to
not find content. Although these techniques can decrease
the number of query messages sent through the network,
limiting the scope of a query can prevent it from finding a
host. Also, because expanding ring searches increase TTL
until a hit is found, nearby nodes may receive the query
several times, which is an increase in traffic.

Because of the shortcomings of approaches that limit
the scope of queries, new methods have emerged which
fall within the second category. By forwarding queries to
a select subset of a node’s neighbors, the amount of traffic
is reduced not only at those nodes, but down the line, as
less propagation is done. k-random walks [6] select one
or more neighbors to which messages will be sent. This
approach allows the TTL for queries to be quite large,
since the number of messages required to support this is
lower. As paths are found to be unsuccessful, a node may
choose new neighbors to use. This approach may require
more time to locate the content, as the number of nodes
being searched at a given time may be much smaller.

Another set of approaches that fits within this second
category exploits the concept of interest-based locality,

which states that because users have a limited set of
interests, a node that has provided hits previously is likely
to share the same interests, and since the user is likely to
query for content that falls within these interest groups,
the overlap may mean that the other node shares this new
content. By keeping a list of shortcuts to other nodes [7],
a peer first sees if any of its shortcuts share the content
that is being looked for before resorting to flooding. More
advanced uses of this idea [8] [9] build additional, higher-
level topologies, allowing nodes with similar interests to
be ”close” to each other.

Finally, a different approach within this category for-
wards query messages to a small subset of neighbors
based on the estimated ”goodness” of those neighbors [10],
which is similar to the basis for the work presented in
this paper. By keeping a table of each neighbor node and
the number of documents classified within a defined set of
topics that are reachable via that neighbor, a node forwards
a query on to the neighbor estimated to lead to the most
number of documents whose topics match those in the
query.

Considerable work has been done in the third category
as well, and the most notable contributions to come out of
this are the structured category of P2P networks such as
CAN [11], Chord [12], and Pastry [13]. These networks
impose a set of rules which govern where the nodes may be
located in the topology, as well as where the files or indices
are stored. Queries can efficiently find content by following
the rules of the system. However, the rigid structure of the
network complicates node joins and departures, and if a
certain set of the nodes fail simultaneously, the network
can become disconnected. Another problem is that queries
must match the content exactly, so wild card searches or
searches which contain a permutation of the words will
not find the corresponding content.

In an additional class of networks that imposes structure
upon the network, nodes connect to a ”superpeer” that
maintains an index of the contents of each node connected
to it [14]. When a node issues a query, it first sends the
message to its superpeer, which compares the query to its
index. If one of the other nodes attached to that superpeer
is sharing the desired content, the querying node is notified
of this and can initiate a download from the hosting peer.
If none of the nodes connected to that superpeer hosts
content matching the query, the superpeer then floods the
query to the other superpeers, which compare the query
with their indices. Although this approach has the benefit
of reducing the number of hops required for queries, it can
still suffer from the effects of flooding on larger systems.



III.. Routing Queries with Association Analysis

This section describes how association analysis can
be used to make routing decisions. We briefly introduce
association analysis and then discuss the theory behind its
use in query routing. Finally, a family of algorithms are
presented that generate and use rules to route incoming
query messages.

A.. Association Analysis

Association analysis is the process of extracting inter-
esting relationships hidden in large data sets [15] [16].
Since its introduction, considerable research has been
performed within the data mining community to expand
this work and implement it for use in various problem
domains.

The relationships extracted by association analysis, re-
ferred to as association rules, are represented in the form
{A} → {B}, and can be interpreted as: if event A occurs,
B is likely to also occur. The event on the left side of
the rule is known as the antecedent, and the event on
the right is known as the consequent. Both antecedents
and consequents can contain more than one event, so
association rules of the form {A,C, D, F, H} → {B,N}
may also be mined.

One classical application for association rule mining
is market basket analysis. For example, the transactions
made at a grocery store are analyzed, and it is discovered
that people who buy diapers also tend to buy beer. A rule
for this phenomenon would be written as {Diapers} →
{Beer}. Such rules could be used by managers in deter-
mining how to stock their shelves. Perhaps by placing beer
in an aisle near diapers, sales of beer might increase.

When using association analysis, many rules may be
generated, and it is important to evaluate their usefulness.
As another example, it may be found that people who buy
caviar also tend to buy sugar ({Caviar} → {Sugar}).
Although this rule is interesting, it is not particularly use-
ful, because people rarely buy caviar. In order to quantify
this usefulness, the measures of support and confidence are
used [15].

Support is the fraction of all transactions that contain
both the antecedent and consequent. The support is likely
to be low for the rule {Caviar} → {Sugar}, because
purchases containing both of these items are quite rare.
However, purchases containing diapers and beer occur
much more often, so the support for {Diapers} →
{Beer} will be higher.

Confidence measures how often the consequent occurs
in transactions containing the antecedent over all transac-
tions containing the antecedent. If a high percentage of
the transactions containing caviar also contain sugar, then

the confidence of the {Caviar} → {Sugar} rule will be
high.

Both measures provide valuable information about the
quality of the rules, so each must be considered. Pruning,
the process of removing association rules, may be done
by removing any rules where either measure falls below
a threshold. The choice of thresholds will depend on the
application domain and the data available.

B.. Design Rationale

This paper borrows the concept of association analysis
and applies it to the problem of flooding in decentralized,
unstructured peer-to-peer networks. The basic idea of this
approach is for each node to generate a rule set based
on query and reply messages that it has received in the
past and use these rules to forward future queries. For
example, if the node receives a query message from one
of its neighbors, forwards it on, and later receives a reply
message for that query, it now knows that because it
forwarded the query to a particular neighbor, that path led
to a node on the network which had content matching the
query.

Interest-based locality tells us that a node that has
satisfied a query for a particular piece of content will
likely be able to satisfy future queries for content that fall
within the same interests as the first. Because of this, future
queries should try to reach the same server node to take
advantage of interest-based locality. If the query follows
the same path, it will arrive at that node quickly and
without having to travel along many unnecessary paths.
This can be accomplished by simply routing the query to
the next hop on that path, instead of sending it along all
paths.

A secondary benefit of this approach is that all nodes
in the network do not need to support this routing method
in order for one node to use it, although the bene-
fits increase as the number of nodes using this routing
technique increases. Additionally, this technique preserves
the anonymity of the host issuing the query, which is
another characteristic of many unstructured P2P networks.
Finally, if hits aren’t found for a particular query when
using this approach, the node can still revert to flooding,
so the quality of the search results should not decrease
dramatically.

1) Association Rules for Query Routing: The associa-
tion rules that will be generated for use in query routing
are of the form {host1} → {host2}, where host1 is a
neighbor from which the node receives queries, and host2
is a neighbor who is the next hop on a path that has led to
hits for earlier queries coming from host1. Because both
the antecedent and consequent contain only one item, rule
generation and rule set pruning can be done easily.



First, hosts forwarding a query are paired with the hosts
that respond to the queries. From this list of hosts, pairs
are removed that have been used less than a set number of
times, a process which is known as support pruning. This
number can be set depending on the quality of the desired
rule sets. If this threshold is set low, many rule sets may
be generated and used, as more pairs will be included. If
the threshold is set high, the number of rule sets generated
may be much lower. Although this would seem to result
in smaller, higher-quality rule sets which yield comparable
results to larger rule sets, this may not necessarily be the
case, because future queries which use this concise rule set
may come from hosts not in the rule set, and users may
query for content from other interest areas.

It is often the case that more than one rule containing
a given antecedent will exist, meaning that forwarding a
query received from that node to more than one neighbor
node resulted in previous hits. In these situations, future
queries can either be sent to a random subset of neighbors
as with k-random walks, or sent to the k neighbors with
the highest support.

2) Measuring the Quality of Rule Sets: The quality of
the resulting rule sets must be properly measured in order
to determine the effectiveness of this approach. Unfortu-
nately, the traditional measures of support and confidence
are not entirely descriptive for this application. This is due
to the fact that they are measures for individual rules in the
rule set, not the rule sets as a whole. Using these measures
would focus on the hosts from which queries come, instead
of the success of query routing based on the the rule sets
that have been generated.

We define two new measures to address the number of
queries related to generated rule sets. The first measure,
coverage, is denoted by α, and is described in Equation 1.

α =
n

N
(1)

In Equation 1, N represents the total number of unique
queries for which there is a response received within the
test set, and n denotes the number of unique queries for
which there exists an antecedent in a rule that matches the
source of that query.

The second measure, success, is denoted by ρ, and is
calculated using Equation 2.

ρ =
s

n
(2)

In this equation, s represents the number of queries
for which the host issuing the query and the neighbor
sending a reply message are antecedent and consequent,
respectively, of a rule in the rule set. This can be thought
of as the fraction of all rules matching the host issuing the
query that also contain a node that would result in a hit,

should the query be forwarded to that node, following the
rule.

The range of values for α and ρ are between 0 and
1, inclusive. These values can also be thought of as
percentages, so a coverage value of 0.9 indicates that rules
exist for 90% of queries issued.

If the success is low, this means that the rules matching
the node that forwarded a query would not forward that
query on towards a node that would result in a hit.
Alternately, if the success is high, this means that by
following the rules in the rule set, the number of queries
that would be sent towards a node which contain content
matching the query is high.

Of course, success could be high, and the rule sets
generated could still be of little help to the system. This
would be the case when success is high, yet coverage is
low. In other words, the queries matching rules would
be forwarded correctly, but since the number of queries
matching rules is low, the number of queries that could be
resolved using this method is also low. On the other hand,
if coverage is high, but success is low, this would mean
that the rule set has rules for routing many of the incoming
query messages, but the rules would be forwarded to the
wrong neighbors, resulting in query misses. Because of
situations like these, both coverage and success must be
high for a rule set to be effective when using this method.

3) The Static Ruleset Approach: Static Ruleset is the
most simple way in which association rules can be used
to forward queries. In this approach, a rule set is created
by combining query and reply messages seen within a
fixed amount of time, and less-frequently-used pairs are
pruned. This rule set is then used for all subsequent query
messages.

The following pseudocode describes the operation of
Static Ruleset:

STATIC-RULESET

1 R ← GENERATE-RULESET
2 for each block b
3 do RULESET-TEST(R, b)

The benefit of Static Ruleset is its simplicity, and its
main shortcoming is its lack of flexibility. If the types of
content queried for or the neighbors issuing the queries
change over time, the rules may not accurately match these
new situations. As peer-to-peer networks are usually highly
dynamic, this is likely to quickly be the case.

4) The Sliding Window Approach: The second ap-
proach takes the dynamic nature of the network and queries
issued into consideration. Instead of generating one rule
set and using it for all subsequent queries, this method
generates a rule set, uses it for a fixed number of queries,
and then generates a new rule set based on the previous
query and reply messages.



The periodic re-creation of the rule set allows Slid-
ing Window to maintain up-to-date information about
the nodes issuing queries and the nodes which reply to
them. Should the topology of the network change, Sliding
Window would adjust to this in the next block of messages.

Pseudocode for the operation of Sliding Window is
listed below:

SLIDING-WINDOW

1 for each block b
2 do R ← GENERATE-RULESET(b− 1)
3 RULESET-TEST(R, b)

The disadvantage of Sliding Window is that it may
update the rule set too frequently. Although rule set gener-
ation is a fairly simple procedure, it may not be necessary
if the rules used still apply to the queries being issued.

5) The Lazy Sliding Window Approach: The Lazy
Sliding Window approach attempts to maintain an up-to-
date rule set like Sliding Window, but without generating
new rule sets as frequently. Instead of updating the rule set
after every block, this approach updates after the rule set
has been used for a fixed number of blocks. The frequency
of updates is a parameter which can be changed depending
on how closely the rule set should follow changes in the
network.

The following pseudocode implements the Lazy Sliding
Window algorithm, generating new rule sets every 10
blocks:

LAZY-SLIDING-WINDOW

1 trial num← 0
2 for each block b
3 do R ← GENERATE-RULESET(b− 1)
4 trial num← trial num + 1
5 RULESET-TEST(R, b)
6 if trial num mod 10 = 0
7 then R ← GENERATE-RULESET(b)

The benefit of Lazy Sliding Window is the reduction in
the number of rule sets that have to be generated. However,
since rule sets are generated less frequently, they will not
track changes as closely as with Sliding Window. This
could cause the coverage and success for Lazy Sliding
Window to be less than those of Sliding Window, which
results in the number of queries that must be resolved using
flooding to increase. Depending on the system, a small
increase may be acceptable; however, in larger systems,
we still wish to reduce the number of flooded queries as
much as possible.

6) The Adaptive Sliding Window Approach: The final
approach, Adaptive Sliding Window, attempts to maintain
the high coverage and success values possible with Sliding
Window with the reduction in the frequency of updates

seen in Lazy Sliding Window. To accomplish this, Adap-
tive Sliding Window adds thresholds for the coverage and
success of a rule set. In order to capture the dynamic nature
of the network, these thresholds are constantly updated so
that threshold values remain reasonable for all states of the
network. One simple method would be to use the mean of
the previous N values. If either the coverage or success
obtained when using the rule set fall below the threshold,
a new rule set will be generated. This has the effect of
maintaining high-quality rule sets and updating the rule
set only when necessary.

The following pseudocode shows the operation of
Adaptive Sliding Window:

ADAPTIVE-SLIDING-WINDOW

1 for each block b
2 do R ← GENERATE-RULESET(b− 1)
3 ct← CALC-COVERAGE-THRESHOLD(b− 1)
4 st← CALC-SUPPORT-THRESHOLD(b− 1)
5 results← RULESET-TEST(R, b)
6 if results[coverage] < ct
7 then R ← GENERATE-RULESET(b)
8 else if results[success] < st
9 then R ← GENERATE-RULESET(b)

IV.. Methodology

The concept of routing queries based on association
rule sets was thoroughly tested to determine how well
the different methods worked in real-life situations. Also
of interest was how the values for different parameters
used by those methods affected the quality of the rules
generated. First, the data used for these experiments are
introduced in Section IV-A. The simulation program that
was used to test these methods is described in Section IV-
B.

A. P2P Trace Data

Trace data were collected for queries and replies sent
to a modified node in the Gnutella network over a 7-day
period. For queries, the query string, the time of the query,
the IP address of the node that forwarded the query, and a
globally-unique identifier (GUID) assigned to the query by
the issuing node were recorded. For replies, the time the
reply was received, the GUID of the query, the neighbor
from which the reply was sent, the host of the matching
file, and the name of the file matching the query were
recorded.

During the process of importing the data into a re-
lational database, it was discovered that some of the
globally-unique identifiers were not truly unique, and



instances of different queries having the same GUID were
found. Clients that did not properly generate GUIDs are
assumed to be the cause of this. For these instances, only
the record corresponding to the first use of that GUID was
kept. After removing those containing duplicate GUIDs, a
total of 10,514,090 query messages and 3,254,274 reply
messages were deposited into the database.

A table was created to house pairs of query messages
received by the node that collected the data and the reply
messages received in response to those queries. The join
of these data produced 3,254,274 query-reply pairs.

Several additional tables were defined to store tempo-
rary results from the simulator. These tables stored data
such as the current rule set and the block of data being
used to test the rule set. Roughly 2.6 gigabytes of disk
space was required by the fully-populated database.

B. The Query Simulator

A simulator was written to generate rule sets based
on the data in the database and test the generated rule
sets against different query-reply pairs. This simulator was
written in under 500 lines of code using PHP [17], which
was chosen for its simplicity and powerful interface to
databases.

Based on the parameters given, the simulator builds
a rule set based on a defined number of query-reply
pairs (”blocks”) and tests those rules against one or more
proceeding blocks, depending on the method chosen for
the simulation.

The database table representing the rule sets contains
three values for each entry: the host from which one or
more queries were received, a node that returned a reply
message in response to one of those queries, and the
number of times that that node sent reply messages in
response to queries sent from the node that forwarded the
query. The quality of the rules created can be controlled by
a parameter whose value represents the minimum number
of times the source of the query message and the host that
returned a reply message are used within a given block.
Any pairs of hosts that have not been seen that many times
are removed from the rule set.

The time required for simulations to complete varied
depending on the method used in the simulations and
the values of the parameters used. After creating indices
to frequently-searched fields in the database, most sim-
ulations required roughly 45 minutes to complete when
run with block sizes of 10,000 query-reply pairs. As the
block size was increased, the amount of time required
also increased, mostly in part to the larger number of join
operations performed. One simulation using Static Window
with a block size of 50,000 took approximately 3 hours to
complete.

V.. Simulation Results

A total of 22 simulations were run in order to test
the accuracy of the methods developed, as well as to
demonstrate how changing the parameters related to those
methods affects the results. The following sub-sections
describe how each of the proposed algorithms performed.
Unless otherwise noted, the threshold for pruning query-
reply pairs was 10, and the block sizes were 10,000 query-
reply pairs. On average, rule set generation required no
more than a few seconds.

A. Static Ruleset Results

As was predicted, using Static Ruleset resulted in rule
sets being generated that had high coverage and success
for the first few blocks of data that they were tested
against. However, both of these measures dropped quickly.
In fact, once the success had dropped to almost 0 around
the 16th trial, it never rose again. Coverage, on the other
hand, dropped, but remained around 0.4 for several more
trials. This indicates that some of the same hosts were
still forwarding queries, but the hosts that the rule set
would suggest forwarding to would not lead to hits. Over
the 365 trials performed, the average coverage was 0.18,
and the success was under 0.02, which confirms that
Static Ruleset does not perform well over time due to the
dynamic properties of the network. Additional simulations
performed with varying block sizes yielded very similar
results.

B. Sliding Window Results

Simulations showed that Sliding Window performs very
well. For the simulation results shown in Figure 1, the
average coverage was over 0.80, and the average success
was just under 0.79, demonstrating that Sliding Window
can result in a large reduction in the number of query
messages that need to be flooded.

Because Sliding Window has two parameters—the size
of the block used and the minimum threshold used when
pruning query-reply pairs—additional simulations were
run to determine how changes in these values affect the
coverage and success of Sliding Window. Adjustments to
the block size affect the reactiveness of the algorithm.
Although Sliding Window considers more hosts when
generating rulesets with larger blocks, a longer amount
of time has elapsed, meaning some rules may be stale.
Smaller blocks result in rules which contain more recently-
seen hosts, but may have less support. The coverage of
Sliding Window when used with different block sizes is
shown in Figure 2. The results of other simulations are
not shown in this paper. The data do show that Sliding



Fig. 1. Coverage and Success of Sliding Win-
dow over time

Fig. 2. Coverage Sliding Window over time
using different block sizes.

Window achieves very similar levels of coverage when
either the block size or the query-reply pair threshold is
altered. This demonstrates that only a small number of
query-reply pairs are needed to successfully forward the
majority queries without flooding.

C. Lazy Sliding Window Results

Lazy Sliding Window performed as expected. Following
rule set generations, coverage and success values were
high, and they tapered down as time passed. A typical
set of simulation results are shown in Figure 3. For this
simulation, the average coverage and success values were
each 0.59, which is considerably greater than those of
Static Ruleset, and less than those of Sliding Window.
Further simulations were performed with varying block
sizes, and similar results were found for each.

Fig. 3. Coverage and Success of Lazy Sliding
Window over time. Each generated rule set
was used for 10 blocks.

D. Adaptive Sliding Window Results

Simulations using Adaptive Sliding Window performed
very well. Following rule set generations, coverage and
success values were high, and a slight drop in their values
could be seen as the rule sets were used for subsequent
blocks. Because of the thresholds, however, the decreases
in coverage and success were never dramatic.

Figure 4 shows the coverage and success values ob-
tained from a typical simulation. The average coverage
was 0.78, and the average success was 0.77. used with a
threshold of 0.7 for both coverage and success. On average,
new rule sets were generated every 1.7 blocks.

When the number of previous values used for threshold
calculation was increased to 50, rule sets were generated
every 1.9 blocks, which is almost half as many rule set
generations as Sliding Window. The average coverage
value for this simulation was 0.79, and the average success
was 0.76, which comes very close to values obtained in
Sliding Window experiments.

VI.. Conclusions and Future Work

Simulations of the methods introduced in this paper
show that selectively forwarding query messages based on
rules generated through the use of association analysis can
lead to a dramatic reduction in the number of queries that
are flooded. Because of this, results to queries may be
received more quickly, and the networks can support more
simultaneous queries, allowing the number of users who
can efficiently and successfully use the network to grow.

The creation of rule sets from streams has also been
investigated in the data mining community [18]. An ad-
ditional algorithm is currently in development that would



Fig. 4. Coverage and Success of Adaptive
Sliding Window over time using the previous
10 values for threshold calculation.

create rule sets for query routing and update these rules
immediately as query and reply messages are received.
This method will allow rules to constantly be kept up-to-
date without the overhead created by periodically gener-
ating entire rule sets. Initial simulations have been very
promising, and consistently show coverage and success
values above 90%.

The addition of confidence-based pruning to the rule
generation stage could be one way of reducing the size
of rule sets while retaining high coverage and success.
Adding dimensions such as the query strings during rule
generation and then clustering based on this information
could also aid in increasing the quality of the rule sets.

One dramatic use for the rules generated using asso-
ciation analysis would be to re-arrange the topology of
the overlay network. For example, instead of forwarding
query messages to a neighbor, which will in turn forward
the message on to one of its neighbors, a node could ask its
neighbors to which node they would forward queries from
it. Once the node has this information, it could attempt to
make this third node a new neighbor, which would result
in queries being forwarded in the future requiring one less
hop in the path to its target.

Methods introduced in this paper could be successfully
used in conjunction with other approaches. For interest-
based shortcuts, association rules could be used to route
queries that have not been successfully replied to when
using the shortcuts. This would serve as one last chance
to avoid flooding. Another way in which these two ap-
proaches could be combined would be to use association
rules to manage which shortcuts the nodes maintain. Al-
though that solution would not take advantage the methods
shown in this paper, it is a potential application for
association rules which may lead to higher success rates
when using shortcuts. Additionally, association rules could

be kept for each interest group when used with association
overlays. This would allow for efficient querying within
each interest group, as well as possibly improving inter-
interest-group queries if a rule set for this purpose were
also maintained.

References

[1] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proceedings of the 18th ACM
Symposium on Operating Systems Principles, Banff, Canada, 2001.

[2] Skype, “http://www.skype.com.”
[3] B. Cohen, “Bittorrent, http://www.bittorrent.com.”
[4] Gnutella, “http://www.gnutella.com.”
[5] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and

replication in unstructured peer-to-peer networks,” in Proceedings
of the 16th international conference on Supercomputing, New York,
New York, USA, 2002, pp. 84–95.

[6] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-
to-peer networks,” in Proceedings of IEEE INFOCOM, 2004.

[7] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient content
location using interest-based locality in peer-to-peer systems,” in
Proceedings of IEEE INFOCOM, 2003.

[8] E. Cohen, A. Fiat, and H. Kaplan, “A case for associative peer to
peer overlays,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1,
pp. 95–100, 2003.

[9] L. Guo, S. Jiang, L. Xiao, and X. Zhang, “Fast and low-cost
search schemes by exploiting localities in P2P networks,” Journal
of Parallel and Distributed Computing, vol. 65, no. 6, pp. 729–742,
2005.

[10] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer
systems,” in Proceedings of the 28th Conference on Distributed
Computing Systems, 2002.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content addressable network,” in Proceedings of ACM
SIGCOMM, 2001.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proceedings of the 2001 conference on appli-
cations, technologies, architectures, and protocols for computer
communications. ACM Press, 2001, pp. 149–160.

[13] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” Lecture
Notes in Computer Science, vol. 2218, p. 329, 2001.

[14] B. Yang and H. Garcia-Molina, “Designing a super-peer network,”
in Proceeedings of the IEEE International Conference on Data
Engineering, 2003.

[15] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association
rules between sets of items in large databases,” in Proceedings of
the 1993 ACM SIGMOD International Conference on Management
of Data, P. Buneman and S. Jajodia, Eds., Washington, D.C., 26–
28 1993, pp. 207–216.

[16] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: A
performance perspective,” in Special Issue on Learning and Discov-
ery in Knowledge-Based Databases, N. Cercone and M. Tsuchiya,
Eds. Washington, U.S.A.: Institute of Electrical and Electronics
Engineers, 1993, no. 5(6), pp. 914–925.

[17] R. Lerdorf, “PHP: Hypertext preprocessor, http://www.php.net.”
[18] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,

“Models and issues in data stream systems,” in Proceedings of 21st
ACM Symposium on Principles of Database Systems (PODS), 2002.


