
Citation: Malik, A.W.; Anwar, Z. Do

Charging Stations Benefit from

Cryptojacking? A Novel Framework

for Its Financial Impact Analysis on

Electric Vehicles. Energies 2022, 15,

5773. https://doi.org/10.3390/

en15165773

Academic Editor: Adolfo Dannier

Received: 16 July 2022

Accepted: 6 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Do Charging Stations Benefit from Cryptojacking? A Novel
Framework for Its Financial Impact Analysis on Electric Vehicles
Asad Waqar Malik 1,2 and Zahid Anwar 2,*

1 Department of Computing, National University of Sciences and Technology (NUST),
Islamabad 44000, Pakistan

2 Department of Computer Science, North Dakota State University (NDSU), Fargo, ND 58105, USA
* Correspondence: zahid.anwar@ndsu.edu

Abstract: Electric vehicles (EVs) are becoming popular due to their efficiency, eco-friendliness, and the
increasing cost of fossil fuel. EVs support a variety of apps because they house powerful processors
and allow for increased connectivity. This makes them an attractive target of stealthy cryptomining
malware. Recent incidents demonstrate that both the EV and its communication model are vulnerable
to cryptojacking attacks. The goal of this research is to explore the extent to which cryptojacking
impacts EVs in terms of recharging and cost. We assert that while cryptojacking provides a financial
advantage to attackers, it can severely degrade efficiency and cause battery loss. In this paper we
present a simulation model for connected EVs, the cryptomining software, and the road infrastructure.
A novel framework is proposed that incorporates these models and allows an objective quantification
of the extent of this economic damage and the advantage to the attacker. Our results indicate that
batteries of infected cars drain more quickly than those of normal cars, forcing them to return more
frequently to the charging station for a recharge. When just 10% of EVs are infected we observed
70.6% more refueling requests. Moreover, if the hacker infects a charging station then he can make a
USD 436.4 profit per day from just 32 infected EVs. Overall, our results demonstrate that cryptojackers
injected into EVs indirectly provide a financial advantage to the charging stations at the cost of an
increased energy strain on society.

Keywords: connected vehicles; cryptojacking; battery life; financial impact

1. Introduction

Congress recently passed the Infrastructure law allocating USD 15 billion for electrical
vehicle (EV) charging stations, electric buses, and ferries. To reduce climate change, the
government targets that 50% of vehicles sold be electric by 2030. EVs are becoming
popular due to their fuel efficiency, eco-friendliness, and because of the increasing cost
of fossil fuel. According to the US DoE, between 2015 and 2020, the number of charging
stations more than doubled, and in 2021 alone, they grew by over 55%. Modern EVs house
powerful processors that support a variety of apps to provide services such as turn-by-turn
navigation, remote vehicle diagnostics, and infotainment. Moreover, they can efficiently
run third-party applications such as cryptomining. In a recent incident [1], a user hacked
his 2018 Tesla Model 3 to mine Ethereum to make USD 800 per month. Some EV companies
themselves are designing cars to mine cryptocurrency when parked [2].

Problem statement—Cryptojacking is a malicious activity that entails the unauthorized
use of a victim’s device resources such as CPU and memory to mine cryptocurrency. This
causes a drain on battery life and reduces system performance. Furthermore, if a large
number of vehicles are infected, this energy drain would lead to frequent recharge demand
and ultimately cause long queues at EV charging stations, thereby negatively impacting
society. The goal of this research is to investigate the impact of cryptojacking attacks on EV
energy, efficiency of the charging infrastructure, and attacker profit.
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Motivation—Many apps on the official Microsoft store and Google Play Store [3] have
cryptojacking software hidden inside them. Recently, Norton received furious comments
regarding a cryptominer that it installed with its 360 antivirus product subscriptions
without clear intimation to the end-user [4]. EVs provide a computing platform for running
in-vehicle apps and services, which makes them an appropriate target for hackers looking
to launch cryptomining attacks because of several reasons: (1) the advanced onboard
computing hardware is ideally suited for this kind of workload, (2) the user interface
makes it extremely difficult to detect for people having limited technical knowledge,
and (3) currently, there exist limited preventive controls. Attackers have already started
launching cryptojacking attacks on EV companies [5].

The EV ecosystem is shown in Figure 1. EVs are essentially mobile computers that can
communicate, store, and process data. Hackers can therefore inject malware using a variety
of attack vectors, including, but not limited to, vulnerable hotspot connections and OBD
dongles, as well as EV communication. There are several examples of such vulnerabilities
being exploited in the past, which are detailed next.

Figure 1. Road network showing cryptojacking infected EVs.

In the past, hackers have used the “TBONE” vulnerability to their advantage [6] in
post-2018 Tesla vehicles, whereby these vehicles are configured to constantly scan for a
wireless network called the “Tesla Service” using credentials hard-coded into the car’s
firmware. Since these credentials are shared widely on Twitter and other forums, hackers
tricked the vehicle into connecting with rogue access points with the same names. This was
achieved by flying a drone close to the car or leaving a router in the vicinity of a parked car.
As a result, the hackers were able to remotely unlock the doors, open the charging port,
and execute commands, just as a driver could, from the car’s infotainment screen. The use
of hard-coded, or otherwise called embedded, credentials by automakers makes these
vehicles vulnerable to malware such as cryptojackers and opens doors for backdoor access.

Further, at the charging terminal, the charging process takes anywhere from 30 min
to an hour. During this time, the driver is typically connected to the station’s network
for using amenities or downloading songs and apps. However, the network may be
compromised. Researchers analyzed the management software as well as mobile and web
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applications used by customers to interact with the charger at 16 charging stations. They
found several web server vulnerabilities [7] for products by Schneider Electric and other
companies. By exploiting these vulnerabilities, hackers can control the charging process,
modify firmware settings, change the billing, access confidential information, and even
utilize the system for mounting other attacks. Schneider Electric acknowledged these
findings and prescribed 12 common vulnerabilities and exposures (CVE) identifiers to the
vulnerabilities found for their products. Some stark examples of how charging station
vulnerabilities can be used for hacktivism are as follows. During the Russia–Ukraine
conflict, a Ukrainian hacker injected an abusive message against Putin [8] into a charging
terminal display on a Russian motorway. In another incident, a team at the University
of Oxford team demonstrated [9] how miscreants can use malicious radio signals to halt
a fleet of electric ambulances from charging at charging terminals. A readily available
software-defined radio placed within 50 yards of the charging station can jam the charging
of nearby vehicles, as in the Brokenwire technique. Its reactivation involves unplugging and
then resetting the process. As an example of multiple charging stations being attacked at the
same time, consider the Isle of Wight Council incident in England. Obnoxious pornographic
material was injected into the display screens of charging points across Quay Road, Ryde,
Cross Street, Cowes, and Freshwater [10]. Additionally, the charging stations were made
unavailable by hackers. The use of the charging station resulted in rebooting it every time.
Furthermore, it is of note that charging station owners may not be very motivated to secure
their networks against cryptojackers. Today, some charging stations use economical but
insecure hardware such as Raspberry Pi devices to control the chargers which have limited
support for secure boot, signed firmware, key storage, hardware encryption, USB port
locking, and tamper resistance [11].

Contribution—We develop a novel framework that models the road network, charging
station infrastructure, EV mobility, energy, and cryptojacker behavior. In our framework,
EVs navigate between source to destination locations using predetermined paths taken
from the Yellow Taxi trip [12] record dataset provided by the NYC government and use
up energy. When the battery level is low, they park at the nearest charging station to
recharge, and are infected based on the threat model assumptions described below. If EVs
are unable to find a charging terminal, they try a different station or wait for their turn.
The framework allows attackers to control the rate of cryptomining either remotely or
through predefined configurations. The higher the throttling rate, the more the number
hashes calculated per time unit, and the higher the battery drain. Hence, a cryptojacker
running at full throttle rate runs the risk that it may be detected more easily by the EV
owner/driver. We introduced a factor called mining to control this rate and observe the
stealth behavior. A higher mining rate can help to detect cryptojacking attacks; however,
a careful selection can provide a stealthy environment for longer persistence inside EVs.
In this regard, we observed the impact of the mining rate on EV energy and hackers’ profit.

We observe that the batteries of infected cars drain more quickly than those of normal
cars, forcing them to return more frequently to the same charging station for a recharge.
At a 10% arrival rate, we observed 70.6% more refueling requests. Moreover, if the hacker
infects a charging station, then at this arrival rate he can make a USD 436.4 profit per day
from 32 infected EVs. Thus, it is an advantage to charging station owners if they collude
with the attackers to become points of infection. Our results are consistent with research
works on browser-based cryptojacking [13] that show that mostly third-party websites are
compromised by hackers to deliver cryptojackers. However, unlike browser cryptojacking,
EV cryptojacking provides an additional incentive to the charging stations in that they
receive an increased number of returning customers. While there is no evidence to suggest
that charging station owners are unethical, our goal is to show that EV cryptojacking is a
very real threat, and vulnerable charging stations may help spread infections. Ultimately,
this may undermine the noble cause of reducing climate change that the initiative set out
to accomplish.

Our contributions are as follows.
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1. To the best of our knowledge, this is the first work to highlight EV cryptojacking as a
real threat to the electric charging infrastructure and describe its behavior in detail.

2. A novel framework is proposed that incorporates an EV energy model to analyze
cryptojacking behavior to allow researchers to study the financial impacts of attacks
on different infrastructural configurations. Moreover, various scenarios with different
configurations can be tested using the proposed framework.

3. Our results are significant in that they highlight how cryptojacking can severely
impact the EV battery’s residual energy, leading to increased trips to charging stations,
incur financial burden on EV owners, and provide significant profits to the attacker.
Furthermore, at low levels of mining rate (50% or less), the cryptojacking can proceed
quite stealthily while still providing the attacker sizable profits.

4. A practical set of countermeasures outlined that can mitigate these threats and allow
the vision of green energy in reducing climate change to materialize.

Paper organization—The rest of the paper is structured as follows: Section 2 covers
the related work. The system model is presented in Section 3. Section 4 covers the proposed
framework, while system evaluation is covered in Section 5. Finally, the discussion and
conclusion are presented in Sections 6 and 7.

2. Related Work

Although we found no research related to an analysis of EV cryptojacking, our research
benefits from works related to general cryptojacking techniques. The closest works in this
area are summarized below.

In [14], they analyze in-browser mining trends based on Monero cryptocurrency.
In this case, the user visiting a website pushes JavaScript code that executes stealthily in
the browser to mine cryptocurrency. The authors outline an ethical framework to review
it either as an attack or as a business opportunity. Hong et al. [15] propose a tracker to
detect browser cryptojacker behavior. They discovered 2770 cryptojacking samples from
800k websites. This information is used to develop a comprehensive cryptojacking attack
scenario that includes the attack and its distribution mechanism. However, to stay in stealth
mode, they update their attack domains very frequently. Varlioglu et al. [16] explored
cryptojacking after Coinhive discontinued its services. The authors manually examined
the websites detected in [15] and concluded that 99% of the sites no longer continue
cryptojacking. However, tracking the remaining 1% websites, the authors discovered
that 600+ were unique. There also exist some works that have examined in-browser
cryptocurrency mining in terms of their deployment, expansion, trends, and organized
structures [13,17].

Tekiner et al. [18] presented a systematic study on emerging cryptojacking. The au-
thors explored the challenges in cryptojacking detection and highlight the vulnerabilities in
the system. Musch et al. [19] propose a three-phase analysis approach to identify mining
scripts. The authors conclude that cryptojacking is common, with every 500th site hosting
cryptojacking malware. Thus, the probability of falling victim to a mining attack is con-
siderable for precautionary measurements that they conducted. Authors also show that
cryptojacking drains a significant amount of energy.

Gomes et al. [20] proposed a machine-learning-based technique that monitors the CPU
for cryptojacking detection. The authors argue that the CPU usage of content enriched sites
may be higher; therefore, reliance on CPU monitoring alone is not an accurate solution for
the detection process. However, combining it with machine learning techniques improves
accuracy. In [21], authors proposed a framework termed Mininghunter to track mining
scripts. The framework records all the web traffic that is later compared with others to
identify the pattern based on the repeated keys, thus, classifying the mining camps. Simi-
larly, in [22], the authors observed that cryptojacking execution establishes a bidirectional
WebSocket with the remote server and this communication is easy to monitor through
third-party software. The authors state that browser encryption makes it difficult to analyze
this communication and identify cryptojacking.
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Security for vehicles and IoT devices—Bajpai et al. [23] conducted a vulnerability analysis
of the QNX platform which is an in-vehicle infotainment (IVI) system used in a variety
of modern cars. They then performed experiments to exploit these vulnerabilities and
were able to successfully conduct three specific types of attacks. The first was a proof-
of-concept crypto-ransomware that encrypts data on the IVI system. The second was a
resource exhaustion attack using a fork bomb, and finally they were able to execute code by
exploiting an exposed service on the IVI system. The authors conclude that the same attacks
are applicable to other IVI systems due to the lack of inherent protections against malicious
activity in most real-time operating systems. They suggest that communication between
the IVI system and the vehicle’s controller area network (CAN) be kept to a minimum to
prevent malware from crossing over. In [24], authors proposed the C4IoT framework that
combines elements of security contracts and fog computing to handle security issues in IoT
devices. The authors claim that IoT devices demand a detailed behavioral analysis in order
to adopt a secure default configuration and models of self-configuration. Carlos et al. [25]
proposed the BIoTS hardware design to introduce the blockchain architecture and security
requirements in IoT devices. The main objective is to provide security to the sensor devices
as they have limited processing and data storage capability which makes them vulnerable
to data breaches. In [26], authors presented a secure IoT framework based on zero trust and
blockchain. Zero trust architecture enhances the security aspect beyond the closed network,
and the adoption of blockchain allows for improved device authentication, leading to more
robust access control.

Discussion—Table 1 shows the comparison among proposed and existing work.
The work highlighted is mostly focused on web-browser-based detection schemes, and, to
a smaller extent, Android mobile devices are considered. However, the impact of cryp-
tojacking on electric vehicles has not been explored. According to our literature review,
this is the first work focused on cryptojacking over electric vehicles to observe its financial
implications and impact on the efficiency of charging stations and the society as a whole.
Electric vehicles and charging stations are becoming an important part of nations’ cyber-
physical systems. Thus, the vulnerability in any component can impact the entire society.
In this work, we analyze the impact of cryptojacking in terms of demand–supply, financial
loss, and overall system efficiency.

Table 1. Comparison showing recent advancement in cryptojacking. H: hackers, CS: charging stations.

Authors Detection and Mitigation Focus Financial Societal Beneficiary Efficiency
Technique Area Impact Impact

Tekiner et al. [18] Review work System Browser × × H ×

Stanislav et al. [27] Dynamic metrics Android devices × × NA ×

Gomes et al. [20] Machine learning Web Browser × × H ×

Rauchberger et al. [21] Monitoring Web Traffic Web Browser × × H ×

Wang et al. [28] Byte-code inspection Web Browser × × H ×

Yulianto et al. [29] Taint analysis method Web Browser × × H ×

Nada et al. [30] Throttling evasion tech. App. agnostics × × NA ×

Romano et al. [31] WebAssembly, JavaScript Web Browser × × NA ×

Proposed Work NA Electric Vehicles H/CS
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3. System Model

At a high level, our system model considers r charging stations (a set F) placed at
various locations to facilitate EVs. The energy and adversary model is described below.

3.1. Energy Model

A power-based EV energy consumption model is considered that does not require
collecting vehicle-specific field data. It simply requires the instantaneous speed, acceleration
levels, and the EV characteristics and outputs the energy consumption in kW h/km of the
vehicle for a specific drive cycle, the instantaneous power consumed (in kW), and the state
of charge (SOC) of the electric battery in percentage (%). Assuming there are n electric
vehicles with c charging capacity each, N represents the total number of EVs such that
{1. . . n} ∈ N. EVs are equipped with an onboard computing system, which requires Eb
energy to operate. Em represents the energy consumed due to mileage. Thus, the total
energy can be calculated as in Equation (1).

Et = Em + Eb (1)

Eb depends on the available cores, and number of jobs required to execute per unit time.
EVs use a multicore architecture (represented as {1 . . . m} ∈ M) designed for replication
and redundancy. The process can utilize the m available cores for computation. Every core
can execute q million instructions per second (MIPS). Therefore, the total execution time
is [32]:

T =
m

∑
k=0

z

∑
i=0

Ji/Mk (2)

Here, z is the total number of jobs, and Ji represents the mips of the ith job. Here, Mk is
the processing capacity of the kth core. The total energy per core including the idle state is
computed as

Eb =
m

∑
j=0

Tj ∗ p + p′ × ti (3)

Here, p and p′ represent the power consumption during peak and idle time and ti represents
the core idle time.

The power at wheels (Pw) can be computed using EV features as input; the output is
the energy consumption and the battery’s charge state (represented as SoC). The power at
wheel at time t can be computed using Equation (4) [33]:

Pw(t) = [P1(t) + P2(t)].v(t) (4)

Here, P1 and P2 are defined using Equations (5) and (6):

P1(t) = ℘α(t) + ℘g.cos(θ).(Rr/1000).(r1v(t) + r2) (5)

P2(t) =
1
2

.ρair.A f CDv2(t) + ℘g.sin(θ) (6)

Here, the ℘ represents the EV mass, and α(t) is the acceleration and deceleration.
The g is gravitational acceleration, θ is road grade,Rr, r1, and r2 are the rolling resistance,
with their values depending on road surface condition and tire type. ρair represents the air
mass density, A f denotes the EV’s front area, CD the drag coefficient, and v(t) is the EV
speed at instant t in m/s. Further, the battery state of charge (SoC) may be estimated via
Equation (7).

SoC(t) = SoCi −
N

∑
i=1

∆SoCi(t) (7)
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∆SoCi(t) = SoCi−1(t)−
PEM(t)
3600.Qb

(8)

PEM(t) = [SoCi−1(t)− ∆SoCi(t)] ∗ 3600 ∗Qb (9)

Here, PEM is the consumed electric power that includes the power required by the
auxiliary system, and Q is the battery capacity. Further, the EV operates so as to maintain
the SoC at a minimum of 20% to ensure battery safety. Thus, using the SoC, the energy
consumption for a distance (d in m/s) can be computed as (10):

Em[
kWh
km

] =
1

3, 600, 000
.
∫ t

0
PEM(t)dt.

1
d

(10)

The Pw can be used to compute the maximum energy available to be recovered (Er)
during braking, computed as Equation (11).

Er =
∫ t

P−1
w (t).dt (11)

As stated, Pw can be used to find the recoverable energy generated during braking the
EVs. However, we are not considering it at this time to compute the total available energy.

3.2. Cryptojacking Adversary Model

The attack proceeds as follows: (1) A driver docks an EV at a charging terminal and
connects to the network for amenities via an in-vehicle app. (2) The attacker records the
vehicle information and then embeds a “cryptojacking” process (C) into the requested app.
(3) After charging is complete, the driver drives off, unaware that the EV has become a
victim “zombie”, allowing the miner to run stealthily as a daemon process. (4) The miner
performs computationally complex tasks computing hashes while utilizing EV energy.
(5) The hash results are later offloaded by the attacker based on the vehicle information
collected in step 2. The battery drainage (Bd) due to cryptojacking can then be represented
as Bd = Bi − Bc. Here, Bi is the initial SoC and Bc is energy consumed due to C. However,
if all the cores/GPU are utilized by the C, the Bd factor increases such as M× Bc. Let us
assume that tr is the time required to recover the charge, and W = tr × Bc. Here, Wi is
the power consumed when cryptojacking is active in Vi. Assuming that P is the cost of
electricity in kWh then the total battery loss—the additional money in USD that all the EV
owners pay due to cryptojacking—can be computed as

Total Loss = P ×
n

∑
i=0

Wi (12)

3.3. Efficiency

The efficiency is determined as the ratio of charging requests accepted to the overall
number of requests received to serve from the nearby charging stations. It is an important
matrix to measure the impact of cryptojacking on vicinity stations, which may result in
higher price based on the demand factor. The efficiency is formulated as

Eff =
∑r

i=0 Si

∑r
j=0 Rj

× 100 (13)

Here, S and R represent successful recharging requests and the total requests generated.
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4. Simulation-Based Cryptojacking Framework

The proposed simulation framework is designed to simulate the cryptojacking attack
on electric vehicles. The framework allows electric vehicles to move on the road; take a
path to the destination based on the road traffic. Further, there are intersections on the road,
where vehicles slow down momentarily before crossing. The framework is provisioned to
execute the simulation with varying vehicle arrival rates in the simulation. It also facilitates
adding the charging stations at particular locations along with defined charging spots.

The modules of the proposed framework are shown in Figure 2. The manager module
is responsible for assigning resources to the applications, including storage and GPU/CPU.
The storage module is used for data persistence. The EV battery is utilized by the engine
module as well as for software execution. The cryptojacked application executes and
mines hashes which are offloaded to the hackers’ system. The framework allows EVs to
communicate with nearby charging stations through dedicated short-range communication.
This communication is used to identify available charging slots. Here, the charging stations
act as passive entities that can share available slots information on request. The energy
wasted due to cryptomining is estimated in terms of hashes computed. Each EV has a built-
in GPU which is utilized to compute the hashes through the mining process. The framework
facilitates the simulation study by allowing the user to vary the number of crypto-infected
vehicles. The infection rate must be defined in the framework configuration file along with
other parameters, such as mining rate, EV arrival rate (λ), etc.

Figure 2. Architecture of the proposed EV framework illustrating module interactions.

The framework is developed using Anylogic, which is a discrete agent-based simula-
tion framework. EVs are modeled as autonomous agents simulated using the New York Taxi
dataset [12]. Using dedicated short-range communication, EVs can sense nearby vehicles
via heartbeat messages as well as share data with nearby charging stations. The charging
stations are placed near intersections with limited energy refueling spots. We assume that
the recharging time is the same in all charging stations (shown in Table 2). The Manhattan
road network is simulated, with bidirectional road traffic. The vehicle arrival rate is varied
to generate the traffic workload. Further, the evaluation is performed with an initial 10–40%
cryptojacking infected vehicles to observe the resulting increase in recharging demand,
the additional loss incurred, system efficiency, and profit to the attacker.
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Table 2. Simulation config and system specification.

Description Value

Simulation area 3 by 3 km2

Total simulation time 24 h
Simulation repetition 5 (five) times
Vehicle speed 10–60 km/h
Vehicle acceleration/deceleration 1.6/2.6 m/s2

Vehicle arrival rate 100–400
Mobility model New York Taxi dataset
Charging stations 9
Road network Manhattan
GPU power 61.01 MH/s
Energy per MH/s 1.77 W
Charging spot per station 3–6
Charging time 30–40 time units
Crypto Infected vehicles 10–40%
Mining rate 0–100%

System 1.4 GHz Quad-Core Intel Core i5
RAM 8 GB
OS macOS Catalina
Simulator AnyLogic PLE v8.5

5. Evaluation

This section covers the evaluation results measured in terms of charging demand, cost,
energy consumption due to cryptomining, and hackers’ profit. The parameters used for the
simulation are listed in Table 2.

5.1. Recharging Demand

Our results show that cryptojacking attacks decrease residual energy which increases
the frequency at which infected EVs recharge, and thereby this increases the demand
on charging stations. Figure 3a illustrates this increased demand in terms of recharging
requests with increasing EVs arrival rate. The demand variation is computed as the sum
of recharge requests, recharge successfully completed, and recharge rejected due to the
unavailability of vacant spots at the requested time. Note that the demand is consistently
lower for the normal scenario (N) than it is when Cryptojacking is occurring. In this figure,
consider the case where λ = 400. Initially, the charging rate noted for the normal case is
approximately 9.14 (the gray bar), which increases to 16.38 when cryptojacking is employed
(the blue bar). The rate difference is computed as the ratio of the difference to the new value
i.e., 16.38−9.14

16.38 . Therefore, 44% more EVs request a recharge. Further, when the arrival rate
increases, the recharge request rejection rate at the nearby charging stations swells to 46%.

5.2. Total Charging Cost

The impact of cryptojacking in terms of the additional cost paid due to recharging
is shown in Figure 3b. Here, it is assumed that a complete charge incurs of USD 11.47
based on the current market rate for the mid-size Tesla 3.0 model. The impact of cost is
measured with varying EV arrival rates in the simulation model. The dotted line shows
the normal scenario where there is no cryptojacker installed, whereas the colored bars
represent the impact with 10% to 40% cryptojacked EVs. A trend is clearly visible whereby
as the EV arrival increases, the total charging cost increases as well. Thus, at λ = 400,
the increase observed is 35% more than the normal scenario. Admittedly, at λ = 300, the
difference between cost at 30% and 40% cryptojacked vehicles appears to be small (USD
300) and is hard to discern in the figure. We attribute this to the fact that the EV generation
is based on the Poisson distribution, and that in this particular experiment some vehicles
happened to randomly select shorter paths to the destination, masking the increase in
recharging behavior.
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Figure 3. Showing the demand fluctuation due to cryptojacking, the overall cost EV owners paid
(loss), and system efficiency.

5.3. Efficiency

The system efficiency reflects the number of recharge requests successfully entertained
by a nearby charging station. In Figure 4, the x-axis represents crypto-infected EVs. At
λ = 100, due to the low number of EVs in the simulation, all recharge requests can be
easily entertained by nearby stations, even when 50% of these vehicles are compromised.
However, with an increase in the EV arrival rate, a clear dip in system efficiency can been
observed. With λ = 400, the number of recharge requests increases manyfold, and in
most cases, vacant spots are unavailable. This results in a significant financial impact on
EV users.
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Figure 4. Showing the impact on system efficiency with varying cryptojacking rate.

5.4. Crypto Energy Consumption

The main purpose of cryptojacking is to compute hashes using the energy and compute
resources of electric vehicles. This waste of energy has a direct consequence on the charging
stations, thus causing a congested situation at charging stations. Figure 5 shows the energy
consumption due to cryptojacking with variable EVs arrival rate in the simulation. Here,
we assumed that every EV has a graphical processing unit able to compute a million hashes
per second. The GPU processing capability and energy consumed per million hashes
are listed in Table 2. The figure shows the increasing trend in all cases, with λ = 400,
and 40% initial crypto-infected vehicles causing an overall significant energy consumption.
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Thus, with more energy consumption due to cryptomining, more recharging requests are
generated on nearby stations.
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Figure 5. Cryptojacking energy consumption.

5.5. Cryptojacking Impact under Stealth Mode

This subsection covers the impact of the mining rate that may have a direct impact on
detection strategies. Two main parameters are explored, namely, energy and hackers’ profit.
The results reported are computed with varying mining rates termed as α = [0,1]. Here,
α = 1 means that cryptomining executes the entire time the vehicle is active in a simulation,
whereas lower values of α limit the mining rate. The purpose of using α is to allow the
malware to persist longer in the EV by introducing stealth capability in cryptojacking
attacks. At higher α values, more energy is consumed; thus, it becomes relatively easy to
detect such attacks on electric vehicles. A conservative selection negatively impacts the
hackers’ profit but the malware can maintain persistence for longer periods of time.

The baseline graph of energy usage at varying mining rates is shown in Figure 6,
constructed using the estimated values given in [34]. The gray highlighted region depicts
the baseline battery performance when the EV is driving normally. The green region above
represents the increased drain when driving on a similar pattern but with a cryptojacker
running at different mining rates. To compute the profit value, let P be the profit earned for
a cryptojacking activity of ∆t sec. Let h be the hash rate of the device in hashes/second.
The marketplace pays USD 223.19 per XMR (where XMR is currency unit measured in
terms of hashes; here we assumed 1 MH = 0.179). Therefore, the profit P earned in
∆t = 130, where ∆t represents the cryptomining time of a session, is computed as [35]
P(XMR) = 0.179× (α× hashes)× ∆t/105.
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40
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α = 0.25
α = 0.5

α = 1

time

Energy(kWh)

Figure 6. Impact of cryptojacking, showing energy consumption with cryptojacking at different
throttles.

Figure 7 shows the hacker’s profit per day with a variable arrival rate. The profit
reported in Figure 7a uses α = 1, whereas Figure 7b shows the hacker’s profit with α value
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equal to 0.5. Infected vehicles with cryptojacking executing at a maximum mining rate of
α = 1 provides the maximum earnings. With 40% cryptojacked vehicles, and λ = 100, the
earning reported is USD 528.5; which reaches USD 2142.2 at λ = 400. Similarly, the profit
value reduces to USD 262.5 at λ = 100 with α = 0.5. Thus, the tradeoff in profit is the stealth
operation, which can help the malware to stay undetected for a longer period of time.
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Figure 7. Earnings per day with variable cryptojacked infected vehicles with varying α values.

5.6. Cryptojacking Attack through Charging Station

Our experiments have so far assumed that at the start of simulation a certain propor-
tion of EVs are already infected (determined by the infection rate) by having previously
visited an infected charging station or otherwise. Here, we are interested in understanding
the spread behavior in a congested urban environment by introducing a compromised
charging station where EVs can dock and inadvertantly become infected during the course
of the simulation.

Figure 8 shows the ratio of infected and uninfected vehicles. Initially, no vehicle
is crypto-infected, at λ = 100, 173 vehicles are infected; whereas in a more congested
environment with λ = 400, 670 vehicles are infected. It is worth noting that this high rate of
spread depicts the infection through just a single compromised charging station. This can
increase manyfold if charging stations decide to collude to infect EVs.
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Figure 8. Infection spread through a compromised charging station.

6. Discussion

Our results indicate that infected EVs require frequent charging, which may cause
price hikes with increased demand. Managing a higher influx with limited spots is challeng-
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ing and leads to longer waiting times. This creates a societal imbalance where normal users
are unable to obtain a timely recharge. The beneficiaries of cryptojacking are not only the
hackers but also the charging stations, as they earn more profit. Thus, without proper regu-
lations, there are chances that the charging stations may become the source of cryptojacking
attacks. EV owners having limited technical knowledge are soft targets for cryptojacking
attacks. An EV needs lower maintenance than a car that relies on mechanical moving parts,
which reduces routine trips to the service station. This in turn reduces the chances that
malicious activities would be detected by professional servicemen at a repair shop. An EV
battery is designed to last for a certain number of complete charging and discharging cycles.
A lithium-ion battery lasts for approximately 1000 to 1500 cycles. Cryptojacking will cause
owners to charge the EV battery more frequently, placing stress on the battery, reducing its
capacity by a fraction each time. Compounding over time, the battery’s lifespan will reduce,
forcing frequent battery replacement, and place extra financial burden on the EV owner.

There is a strong need for proactive defense, for which two strategies are suggested
in Table 3. The first focuses on security, hardening the charging station design, and the
other, the EV’s resistance to cryptojacking. Charging stations should use hardware that
relies on a secure root of trust such as a trusted platform module (TPM). This would allow
secure boot and ensure that the operating system and apps are trusted. The hardware itself
should be tamper-resistant so that hackers may not substitute their own components or
conduct man-in-the-middle attacks by intercepting the communications. Since an infected
charging station can communicate with an EV, there is a need for protocols that allow for
mutual authentication and encryption of the information communicated. EVs themselves
should not blindly rely on the app store providing them with high-integrity apps but
rather should self-verify and monitor apps for malicious behavior. Apps with embedded
cryptojacking functionality will use more CPU and memory than normal apps, which may
be detected using machine learning algorithms. Code signing and verification should also
be supported.

Table 3. Defensive strategies.

Category Description

Charging
Station
Design

1. Utilize hardware in charging terminals that is resistant to physical attacks
and allows for secure boot.
2. The procedure for charging an EV at a public charging point must allow
for the identification, authentication, and safeguarding of information that
passes between the charger and the vehicle. This will require cryptography.

EV
Intrusion
Detection
Mechanisms

1. EVs should deploy their own intrusion detection systems that monitor
apps for spike in CPU usage, decrease in performance, and overheating,
using machine learning and AI techniques.
2. Provision of security features in EV apps that allow for overlay protection,
root detection, and code integrity checks.

7. Conclusions

The proposed framework is designed to study the impact of cryptojacking attacks
on electric vehicles. These attacks are analyzed to see the financial impact from a wide
perspective. According to our literature review, this is the first contribution that not
only covers cryptojacking attacks on EVs but also measures the impact from various
societal aspects. The results indicate that EV cryptojacking attacks impact society in
terms of sustainability, which can directly impact the demand and supply. Thus, a more
organized attack can cause an extreme situation. The experimental analysis highlights the
monetary benefit for the attackers. Further, the framework lays the foundation to build
more sophisticated attacks on EVs. In the future, we will enhance our framework to include
mitigation strategies and further attack scenarios. Moreover, we are also interested in
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extending this work towards charging station spots scheduling and exploring the spread of
infection via vehicle-to-vehicle communication.

Future Directions

In the future, we are planning to extend this work to propose various mitigation
strategies which help identify cryptojacking behavior or block the malware injection. We
believe it is an open area for researchers to explore. One such direction could be the use of
multidimensional maps [36] that can emit more signals than the hacker can process, making
it difficult to inject malware. Similarly, the role of genetic algorithms can be explored to
identify the malicious processes running inside the electric vehicles as well as optimize
energy [37].
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