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Abstract: Cryptojacking or illegal mining is a form of malware that hides in the victim’s computer and
takes the computational resources to extract cryptocurrencies in favor of the attacker. It generates sig-
nificant computational consumption, reducing the computational efficiency of the victim’s computer.
This attack has increased due to the rise of cryptocurrencies and their profitability and its difficult
detection by the user. The identification and blocking of this type of malware have become an aspect
of research related to cryptocurrencies and blockchain technology; in the literature, some machine
learning and deep learning techniques are presented, but they are still susceptible to improvement.
In this work, we explore multiple Machine Learning classification models for detecting cryptojacking
on websites, such as Logistic Regression, Decision Tree, Random Forest, Gradient Boosting Classifier,
k-Nearest Neighbor, and XGBoost. To this end, we make use of a dataset, composed of network and
host features’ samples, to which we apply various feature selection methods such as those based
on statistical methods, e.g., Test Anova, and other methods as Wrappers, not only to reduce the
complexity of the built models but also to discover the features with the greatest predictive power.
Our results suggest that simple models such as Logistic Regression, Decision Tree, Random Forest,
Gradient Boosting, and k-Nearest Neighbor models, can achieve success rate similar to or greater than
that of advanced algorithms such as XGBoost and even those of other works based on Deep Learning.

Keywords: blockchain; cryptojacking; illegal mining; malware; machine learning

1. Introduction

Cryptojacking is an illegal and unauthorized mining activity on the victim’s computer,
using the computational power of the victim’s computer to extract cryptocurrencies, which
generates large computational consumption, reducing the computational efficiency of the
victim’s computer. Moreover, this attack may be used by a powerful attacker to increment
their computationally power, posing a risk to any blockchain based on mining [1–7].

Cryptojacking detection techniques such as browser extensions and antiviruses pro-
vide a partial solution to the cryptojacking problem since attackers can avoid them by
employing obfuscation techniques or renewing domains or malicious scripts relatively
frequently [8]. Cryptojacking boomed with the birth of service providers that offer ready-
to-use implementations of mining scripts in web browsers. Therefore, attackers can
reach many more victims via websites. These service providers are coinhive [9] and
cryptoloot [10].

Cryptojacking on websites uses JavaScript code to mine cryptocurrencies. This tech-
nique does not require installing javascript code to perform the mining process. All it takes
is for the user to load the infected website in their browser for the illegal mining code to
execute in the browser of the victim’s computer [11]. According to [12], many websites
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have been infected by cryptojacking, such as personal blogs up to Alexa-ranking websites.
Moreover, it noted that as of January 2022, there were around 3000 websites that offered
online cryptojacking scripts.

As evidenced in [13–19], there is a recent trend of applying specialized deep learning
models to detect cryptojacking in websites. However, specialized deep learning models
might pose challenges with reference to their deployment and performance. Thus, this
paper seeks to explore machine learning models (comparatively simpler than deep learning
models) for cryptojacking classification to identify which of these machine learning models
may render desirable results. Hence, this work takes previous works as a reference,
particularly the recent specializaed deep learning model and the dataset presented and
collected in [14]. We use this dataset to train and validate multiple machine learning
classification algorithms to detect cryptojacking on websites and make a comparison
between the machine learning models and the specialized deep learning model.

The rest of this paper is structured as follows: In Section 2, we present three cases of
cryptojacking as a motivation for addressing cryptojacking detection. Section 3 presents
related works on cryptojacking detection techniques. Section 4 describes the methodology
we follow for our study. Also, we describe the dataset’s selection and content and present
an exploratory data analysis. This section also shows data correlation and clustering, as
well as the feature selection, split, and normalization process. At the end of this section, we
present some machine-learning models for detecting cryptojacking on websites. Section 5
analyses the results we obtained after going through our methodology. Section 6 narrates a
possible integration scenario of our techniques with other known approaches for detecting
malware and filtering/blocking websites. Finally, we give some conclusions in Section 7.

2. Some Cases of Cryptojacking
2.1. Cryptojacking on Websites

Websites of different kinds have been victims of strong cryptojacking-type malicious
software actions; some famous cases are: In early 2018, the online video-sharing platform
YouTube was illegally compromised where the CoinHive miner ran on its ads [20,21], and
the Russian Nuclear Weapon Research Center [22]

2.2. Cryptojacking with Advanced Techniques

Other attacks have used advanced techniques in the spread of cryptojacking; an
example of this was when the botnet called vollgar attacked all Microsoft SQL (MSSQL)
databases servers to take control of administrative accounts and inject malicious miners into
said servers [23]. Another example of the use of these advanced techniques was presented
with the Zoom video conferencing software. In this case, the attackers merged cryptojack-
ing malware with the main zoom application and published it on different file-sharing
platforms [24]. Similarly, this technique was used in the Nintendo Switch consoles [25].
Another use case of these advanced techniques was presented in MikroTik routers between
July and August of the year 2018, where a cryptojacking campaign managed to compromise
more than 200,000 MikroTik routers; these routers were primarily located in Brazil; in the
same way, researchers observed that routers that were not MikroTik were also compro-
mised [26]. Moreover, a recent study explores cryptojacking and its impact on Electric
Vehicles [27].

In 2019, eight applications were detected and removed from the Microsoft Store
in Windows 10. When the user installed and opened these applications, they secretly
downloaded cryptojacking’s JavaScript code, which carried out mining tasks for the Monero
cryptocurrency, notably affecting the user device performance [28,29].

In 2018, researchers from RedLock dedicated to computer security discovered that at
least one unknown computer criminal broke into an Amazon cloud account associated with
Tesla and used it to mine cryptocurrencies. In this attack, the Stratum mining protocol was
used, and the true IP address of the mining pool was hidden and kept the CPU consumption
low [30].
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2.3. Cryptojacking in Industrial Control Systems or Critical Servers

The impact of cryptojacking has surpassed the borders of traditional websites, affect-
ing industrial control systems and Critical Servers; some of those cases are: In January
2020, following a report on the bug bounty website www.hackerone.com (accessed on 1
November 2022), the US Department of Defense discovered that its government and mili-
tary servers were affected by cryptojacking to mine the currency Monero illegally [31,32].
In 2019, a Russian nuclear warhead facility employee was fined around $7000 for illegally
mining bitcoin using the facility’s servers [33]

3. Related Works

The literature presents different techniques for the detection of cryptojacking on
websites; however, these solutions present some limitations related to performance, trans-
parency and effectiveness.

A hardware-based approach to cryptojacking detection is presented in [13]; this
method takes advantage of the Intel Processor Trace mechanism to collect control flow
information at runtime from the web browser. This technique uses two optimization
approaches based on library functionality and information gain to preprocess control
flow information. It also takes advantage of a Recurrent Neural Network (RNN) for
cryptojacking detection.

A method that performs a fingerprinting technique to detect possible malicious sites is
presented in [14], which is then characterized with an autoencoding algorithm that keeps
the best information of the infection vestiges to maximize the classification power by means
of a deep dense neural network.

A lightweight cryptojacking detection system that uses deep learning techniques
to accurately detect the presence of unwarranted mining activity based on emerging
WebAssembly (Wasm)-based cryptojacking malware in real-time is introduced at [15]. This
system employs an image-based classification technique to distinguish between benign
web pages and those using Wasm. Specifically, the classifier implements a convolutional
neural network (CNN) model.

A detection and control method for IoT botnets is presented in [16]; it uses a deep
learning model, and cryptojacking activities carried out by the bot. This method performs
malicious attack detection by implementing a sparse autoencoder composed of an input
layer, a hidden layer, and an output layer.

A method for detecting silent browser mining behavior is presented in [17]; this
method drives known malicious mining samples, extracts heap snapshots and stack code
functions of a dynamically running browser, and performs automatic detection based on a
recurrent neural network (RNN).

A method called CapJack to identify illicit bitcoin mining activity in a web browser
using cutting-edge CapsNet technology is presented in [18]. Deep learning framework
CapsNet employs heuristics based on system behavior to detect malware effectively.

A detection method called CoinPolice is presented in [19]; that method flips throt-
tling against cryptojackers, artificially varying the browser’s CPU power to observe the
presence of throttling. Based on a deep neural network classifier, coinPolice can detect
hidden miners.

4. Methodology

In this work, we follow a methodology, whose phases are shown in Figure 1 and
described next.

1. Selection of the dataset.
2. Exploratory data analysis. In this phase, we calculate a correlation matrix and perform

clustering of the dataset. Additionally, we perform feature selection proccess, dataset
normalization and dataset splitting.

www.hackerone.com
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3. Exploration of Classification Models. In this phase, we reproduce the Sparse Au-
toencoder + Deep dense Neural Network model for Cryptojacking detection [14].
Additionally, we train and test different classifiers for Cryptojacking detection.

4. Results’ Presentation. We present the results of applying K-means clustering to the
dataset, as well as the results of cross-validation and evaluation of the different
classification models.

The development of these phases was carried out in a notebook in the Google Colabo-
ratory (Google Colab) environment with the python programming language and libraries
such as numpy, pandas, seaborn, matplotlib, tensorflow, keras and sklearn. The interested
reader can see the source code here [34]. The different classification models were executed
in the virtual machine offered by Google Colab, which has the following characteristics:
2.20GHz Intel Xeon processor, 12G of RAM, and Ubuntu 18.04.6 LTS Operating system.

Figure 1. Methodology .

4.1. Selection of Dataset

We use the dataset that was collected in [14]. This dataset contains records of host-
based and network-based features associated with websites. Moreover, each record is
labeled whether a website is infected or not by cryptojacking. According to [14], the proce-
dure to capture these samples includes three layers: the first of these is called fingerprinting,
in which the sites that may contain signs of cryptomining are captured; after this, data based
on the network is captured, which includes the information flows of the traffic that transits
through the HTTP, HTTPS, and TCP protocols, and finally, the host-based data is captured,
which consists of the tracking of the website once that interacts with the browser. The
dataset used in this paper comprises 9292 benign sites and 3434 sites labeled and validated
as cryptojacking infected. The host-based and network-based features that compose the
dataset are indicated in Table 1 [14]. In addition to these features, the dataset presents an
attribute called label, representing the class or classification of the sample, where 1 indicates
a sample of a site labeled as cryptojacking infected and 0 as a benign site.

Table 1. Host-based and Network-based Features.

Host-Based

Feature Description

C1 Time in C1 is a subset of the total processor idle time
C2 Time at C2 is a state of lower energy and higher output latency than Time at C1
C3 Time at C3 is a lower energy state and higher output latency than Time at C2
I/O Data Operations Speed at which the process is issuing read and write I/O operations
I/O Data Bytes Speed at which the process is reading and writing bytes in I/O operations
Number of subprocesses Number of sub-processes that are currently active in a parent process
Time on processor The total time, in seconds, that a process has been running
Disk Reading/sec Speed of disk reading operations
Disc Writing/sec Speed of writing operations to disk
Confirmed byte radius The ratio of Memory/Bytes committed and Memory/Confirmation limit
Percentage of processor
usage Elapsed time on the processor when an active thread is running

Pages Read/sec Speed rate at which the disk was read in order to resolve hard page errors
Pages Input/sec Speed at which pages are written to disk to free up space in physical memory
Page Errors/sec This is the average number of pages with faults per second
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Table 1. Cont.

Network-Based

Feature Description

Bytes Sent The rate at which bytes leave the browser’s HTTP requests
Received Bytes (HTTP) Speed of bytes arriving to the browser’s HTTP responses
Network packets sent Speed of sending packets in the TCP protocol
Network packets received Packet reception speed over the TCP protocol

4.2. Exploratory Data Analysis

This section describes the data correlation and clustering, as well as the feature selec-
tion, splitting, and normalization process on the dataset.

4.2.1. Correlation

We verify that the dataset does not present missing cells and duplicate rows. As
expected, the dataset does not present these cases thanks to the fact that after its collection,
its collectors went through a pre-processing process. To identify the existing correlation
between the different features that make up the dataset and the classification class, we built
a correlation matrix by employing the method corr of pandas.DataFrame with the default
parameters (method = ‘pearson’, min_periods = 1, numeric_only = _NoDefault.no_default)
(see Figure 2).

Figure 2. Feature correlation matrix.

This matrix tells us that the feature “utility of the processor” is the one that presents
the highest positive correlation with the classification of the website. On the other hand,
the features C1, C2, C3, “Number of subprocesses”, “confirmed byte radius” and “Page
Errors/sec” have, in their order, the highest negative correlation with website ranking.

4.2.2. Clustering

Due to the essence of the dataset, we know that its records are divided into two
categories; the first is the records of sites infected with Cryptojacking (labeled with 1) and
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the records of benign sites (labeled with 0). To verify and analyze how well these records
are grouped according to their features, we use the Unsupervised Learning algorithm
k-Means Clustering, which groups the unlabeled dataset into different clusters. First, we
used the elbow method to determine the number of clusters in the dataset. Figure 3 shows
the elbow of the curve at three, but for the reason that we explained previously, we give
two as the number of clusters parameter to the k-means algorithm.

Figure 3. Elbow curve.

Next, we cluster the dataset using the k-means algorithm with the parameters
n_clusters = 2, random_state = 0 and init = “k-means++”. “k-means++” is a method
that chooses the first centroid to the location of a randomly selected data point and then
chooses subsequent centroids of the remaining data points based on a probability propor-
tional to the square of the distance from the nearest existing centroid of a given point. It
helps in choosing the centroids to be as far away as possible, trying to cover the data space
occupied since the initialization [35].

We apply the k-means algorithm to all the dataset entries and generate a figure to
visualize the group assignment for each sample of the dataset group, only taking C1, C2, and
C3 features. Figure 4 shows that the application of clustering to the dataset results in two
well-defined groups corresponding to the samples of benign sites and infected websites.

Figure 4. Clustering of dataset entries.
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4.2.3. Feature Selection

Extracting relevant features from the raw data is paramount for Intrusion Detection
System (IDS) classification [36]. For feature selection, first, we select the features with a
p-value less than or equal to 0.05 and later apply statistical methods with the f_classif
function and the univariate filtering function “Anova Scores” for 10 and 4 features. “Anova
Score” fits a simple linear model between a single feature and the outcome, then the p-value
for the whole model Ftest is returned [37]. In addition, an RFECV wrapper method was
applied, which is a Feature ranking with recursive feature elimination and cross-validated
selection of the best number of features [38]. The parameters used in the feature selection
are in Table 2. For each of these filters, we extracted a subset of data that we used in the
cross-validation.

Table 2. Parameters used in the feature selection methods.

Method Paramethers

p-value p-value <= 0.05

Anova scores n_splits=5, n_repeats=5, random_state=12345, score_func = f_classif, k= 5/10

RFECV wrapper
estimator = LogisticRegression, step = 1, cv = StratifiedKFold(n_splits = 5, ran-
dom_state = 12345, shuffle = True), min_features_to_select = 1, scoring = ‘f1’,
verbose = 2, n_jobs = −1

4.2.4. Split and Normalization of the Dataset

After exploring the dataset, we separate the features in a X set and the label category
in a Y set; we then split the records of the dataset for training (80% of them) and testing (20%
of them). For this partition, we use the parameters random_state = 42 and strati f y = y.
The stratify parameter makes a split so that the proportion of values in the sample produced
will be the same as the proportion of values provided to the parameter, stratify. Because
the ranges for the different data features are very different, we apply the Standard Scaler to
the training and testing datasets for the original dataset and the other datasets created as
explained in Section 4.2.3.

4.3. Exploration of Classification Models

Having the dataset, we prepare a subset of training data and a subset of test data.
Moreover, we applied normalization to the data. With the normalized data, we replicate
the sparse autoencoder (SAE) + deep, dense neural network (DDNN) model, proposed
in [14], to have a point of comparison for the proposed models. Later, some techniques
are applied for the selection of features; after this, six reference models are defined for
classification such as Logistic regression, Decision Tree, Random Forest, Gradient Boosting,
k-Nearest Neighbor, and XGBoost. With these reference models, the different datasets
obtained in the selection of features are tested, performing Cross-Validation for each of
these sets. Finally, the performance of the classification models is measured using precision,
recall, and F1-score.

4.3.1. Sparse Autoencoder + Deep dense Neural Network

According to the results shown in [14], the Sparse Autoencoder + Deep dense Neural
Network model is an state-of-the-art model for cryptojacking detection. We refer the reader
to [14] to see a deep comparison between this model and other proposed models. In this
paper, we reproduce this model to validate the results obtained with the corresponding
dataset and thus have a point of comparison with the other models explored in this work.

4.3.2. Classification Models

In this work, we consider the following classification models.
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• Logistic regression or LR is a standard probabilistic statistical classification model
widely used in different disciplines, such as computer vision, and marketing, among
others [39].

• A Decision Tree is a hierarchical structure built using a data set’s features (indepen-
dent variables). In a decision tree, each node is partitioned according to a measure
associated with a subset of features [40]. This algorithm repeatedly divides the data
set according to a criterion that seeks to maximize the separation of the data, resulting
in a tree-like structure [41].

• A random forest is a collection of decision trees associated with a set of bootstrap
samples generated from the original data set. The nodes are partitioned based on the
entropy or Gini index of a selected subset of the features [40].

• Gradient Boosting is a widely used machine learning algorithm due to its efficiency,
accuracy, and interpretability [42]. This algorithm achieves state-of-the-art perfor-
mance in many machine learning tasks, such as multi-class classification [43], click
prediction [44] and learning to rank [45].

• k-Nearest Neighbor classifier, unlike other methods, uses the data directly for classifi-
cation, without first building a model [46,47]. One of the advantages of the k-nearest
neighbors algorithm over other algorithms is the fact that the neighbors can provide
an explanation for the classification result [48].

• XGBoost is a scalable ensemble machine learning and gradient boosting technique
focusing on performance and speed. This technique allows for solving problems of
ranking, classification, and regression [49].

We instantiate and train the classification models: Logistic Regression, Decision Tree,
Random Forest, Gradient Boosting, k-Nearest Neighbor, and XGBoost. Table 3 shows
the parameters used in these algorithms. With the different models, cross-validation is
performed with the different datasets, and the mean and standard deviation of the accuracy
are calculated.

Table 3. Models’ parameters.

Model Parameters

Logistic regression default
Decision Tree criterion = ‘gini’, max_depth = 5, min_samples_leaf = 20, random_state = 12345
Random Forest n_estimators = 25

Gradient Boosting n_estimators = 20, learning_rate = 0.5, max_features = 2, max_depth = 2, ran-
dom_state = 0

k-Nearest Neighbor n_neighbors = 36, p = 1 (manhattan_distance)
XGBoost max_bin = 255

5. Results
5.1. K-Means Clustering

Once the clustering model has been trained, we take the dataset and look for which
element is the closest to the centroid of each of the two groups, these elements will be taken
as the representatives of each of the groups. For each of these representatives, we verify
the values of their features and category (Table 4 ). We identify that the category for each
representative is different (benign/infected), and the values of some features are distant
from each other.

With the clustering model created and trained, we apply this clustering model to the
test dataset, obtaining the two clusters; with the help of the representative elements of each
cluster, we identify which of the clusters corresponds to the benign sites and which to the
infected ones. With this information, the cluster assigned to each element of the test dataset
and the set of labels (y) corresponding to the test dataset, we calculate a classification report
where we assume that the cluster assignment to each sample of the dataset corresponds
to classification between the benign site and infected site. In this report, we obtain an
accuracy = 0.9902 and precision = 0.988201.
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Table 4. Values of the features of representatives of clusters.

Feature Cluster 1 (y = 0) Cluster 2 (y = 1)

C1 82.2145 8.2148
C2 73.1083 25.4516
C3 3.9767 6.4803
I/O Data Operations 32.7094 18.8409
I/O Data Bytes 121124.1414 39403.4743
Number of subprocesses 30 31
Time on processor 0.4967 0.1733
Disk Reading/sec 16.6267 4.9044
Disc Writing/sec 1.3781 0
Bytes Sent/sent 915.6518 210.0906
Received Bytes (HTTP) 12258.8161 3844.3897
Network packets sent 6.1794 1.6865
Network packets received 10.1138 3.6172
Pages Read/sec 0.6446 0.0665
Pages Input/sec 0 0
Page Errors/sec 13351.0499 1633.1676
Confirmed byte radius 28.9634 27.1788
Percentage of processor usage 17.7854 91.7852

5.2. Feature Selection

Table 5 presents the results of applying the methods for selecting features. It shows
the method used and its selected features. We obtain 15 and 12 features with p-value and
“RFECV wrapper” methods, respectively.

Table 5. Selected features.

Method Selected Features

p-value

C1, C2, C3,I/O Data Operations, I/O Data Bytes, Number of subprocesses,
Time on processor, Disk Reading/sec, Received Bytes (HTTP), Network
packets sent, Network packets received, Pages Input/sec, Page Errors/sec,
Confirmed byte radius, Percentage of processor usage

anova scores 4 features Percentage of processor usage, C1, C2, C3

anova scores 10 features
Percentage of processor usage, C1, C2, C3, Number of subprocesses, Con-
firmed byte radius, Page Errors/sec, I/O Data Operations,Disk Read-
ing/sec , I/O Data Bytes

RFECV wrapper

Percentage of processor usage, Network packets sent, I/O Data Bytes,
I/O Data Operations, Received Bytes (HTTP), Disc Writing/sec, Network
packets received , C2, Bytes Sent/sent , Confirmed byte radius, Time on
processor, C1

5.3. Cross-Validation

For the cross-validation and evaluation of the models, we employed some datasets,
which are described in Table 6 and used in Tables 7 and 8.

Table 6. Datasets’ description.

Dataset Name Description

All features dataset complete dataset
15 features dataset dataset of 15 features selected with p-value
4 features dataset dataset of 4 features selected with anova Scores method
10 features dataset dataset of 10 features selected with anova Scores method
12 features dataset dataset of 12 features selected with RFECV wrapper method

The results of the Cross-Validation of the different classification models with each of
the datasets are presented in Table 7.
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Table 7. Cross-validation models

Logistic Regression

Dataset Mean Accuracy Standard Deviation Accuracy

All features dataset 0.9917 0.0020
15 features dataset 0.9911 0.0020
4 features dataset 0.9911 0.0023
10 features dataset 0.9912 0.0021
12 features dataset 0.9919 0.0018

Decision Tree

All features dataset 0.9914 0.0018
15 features dataset 0.9921 0.0022
4 features dataset 0.991 0.0018
10 features dataset 0.991 0.0018
12 features dataset 0.9915 0.0020

Random Forest

All features dataset 0.9944 0.0015
15 features dataset 0.9944 0.0014
4 features dataset 0.9906 0.0017
10 features dataset 0.9943 0.0015
12 features dataset 0.9947 0.0013

Gradient Boosting

All features dataset 0.9926 0.0018
15 features dataset 0.9919 0.0019
4 features dataset 0.9905 0.0022
10 features dataset 0.9919 0.0020
12 features dataset 0.9932 0.0016

k-Nearest Neighbor

All features dataset 0.9878 0.0018
15 features dataset 0.9878 0.0020
4 features dataset 0.9913 0.0021
10 features dataset 0.9891 0.0019
12 features dataset 0.9889 0.0019

XGBoost

All features dataset 0.9947 0.0016
15 features dataset 0.9946 0.0016
4 features dataset 0.9908 0.0018
10 features dataset 0.9942 0.0017
12 features dataset 0.9950 0.0017

5.4. Model Selection and Evaluation

Table 8 shows the main metrics obtained with the classification models.

Table 8. Results of evaluating the models.

SAE + DDNN [14]

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9893 0.9941 0.9911 0.9926 0.9823 0.9712 0.9891

Logistic regression

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9937 0.9957 0.9957 0.9957 0.9884 0.9884 0.9884
15 features dataset 0.9937 0.9957 0.9957 0.9957 0.9884 0.9884 0.9884
4 features dataset 0.9918 0.9946 0.9941 0.9944 0.984 0.9854 0.9847
10 features dataset 0.9925 0.9957 0.9941 0.9949 0.9841 0.9884 0.9862
12 features dataset 0.9941 0.9957 0.9962 0.996 0.9898 0.884 0.9891
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Table 8. Cont.

SAE + DDNN [14]

Decision Tree

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-
score

All features dataset 0.9902 0.9904 0.9962 0.9933 0.9896 0.9738 0.9817
15 features dataset 0.9918 0.993 0.9957 0.9944 0.9883 0.9811 0.9847
4 features dataset 0.9906 0.9925 0.9946 0.9936 0.9854 0.9796 0.9825
10 features dataset 0.9906 0.9946 0.9925 0.9935 0.9797 0.9854 0.9826
12 features dataset 0.9918 0.993 0.9957 0.9944 0.9883 0.9811 0.9847

Random Forest

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-
score

All features dataset 0.9957 0.9957 0.9984 0.997 0.9956 0.9884 0.992
15 features dataset 0.9953 0.9962 0.9973 0.9968 0.9927 0.9898 0.9913
4 features dataset 0.9906 0.9925 0.9946 0.9936 0.9854 0.9796 0.9825
10 features dataset 0.9949 0.9952 0.9978 0.9965 0.9941 0.9869 0.9905
12 features dataset 0.9949 0.9952 0.9978 0.9965 0.9941 0.9869 0.9905

Gradient Boosting

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-
score

All features dataset 0.9937 0.9957 0.9957 0.9957 0.9884 0.9884 0.9884
15 features dataset 0.9929 0.9952 0.9952 0.9952 0.9869 0.9869 0.9869
4 features dataset 0.991 0.9935 0.9941 0.9938 0.984 0.9825 0.9832
10 features dataset 0.9925 0.9946 0.9952 0.9949 0.9869 0.9854 0.9862
12 features dataset 0.9929 0.9946 0.9957 0.9952 0.9883 0.9854 0.9869

k-Nearest Neighbor

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-
score

All features dataset 0.9906 0.9904 0.9968 0.9936 0.9911 0.9738 0.9824
15 features dataset 0.9906 0.9909 0.9962 0.9936 0.9897 0.9753 0.9824
4 features dataset 0.9921 0.9946 0.9946 0.9946 0.9854 0.9854 0.9854
10 features dataset 0.9894 0.9909 0.9946 0.9928 0.9853 0.9753 0.9802
12 features dataset 0.9902 0.992 0.9946 0.9933 0.9853 0.9782 0.9817

XGBoost

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-
score

All features dataset 0.9965 0.9973 0.9978 0.9976 0.9942 0.9927 0.9934
15 features dataset 0.9965 0.9973 0.9978 0.9976 0.9942 0.9927 0.9934
4 features dataset 0.9910 0.9925 0.9952 0.9938 0.9868 0.9796 0.9832
10 features dataset 0.9965 0.9973 0.9978 0.9976 0.9942 0.9927 0.9934
12 features dataset 0.9965 0.9973 0.9978 0.9976 0.9942 0.9927 0.9934

We take the simple model Logistic Regression and the advanced model XGBoost as a
reference and search for the features with the most importance in the classification process.
As observed in Figure 5, positive coefficients indicate that the event (malign) is more likely
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at that level of the predictor than at the reference level. Negative coefficients indicate that
the event (malign) is less likely at that level of the predictor than at the reference level.
It can be observed that the features’ Percentage of processor usage or Network packets
sent indicate that the event is more likely, while the variables C1 or Confirmed byte radius
suggest that the event is much less likely. As observed in Figure 6, we can notice that
the variables C1, C2, Percentage of processor usage, and Disc Writing/sec are the most
important in the classification process of XGBoost model.

Figure 5. Feature importance logistic regression model.

Figure 6. Feature importance XGBoost Model.

6. Integration Scenario

Taking the ideas described in [50–52], we can think of implementing a hybrid, lightweight,
usable, privacy-preserving mechanism added to a web browser for blocking websites
that potentially may be infected by Cryptojacking. The envisioned approach exploits
the blacklisting technique (widely used in this field) and a machine learning classifier to
classify websites as benign or malign. The output from the classifier allows for updating
the blacklists used to filter/block blacklisted websites. Additionally, this approach can be
enhanced by introducing an ML-Based model to detect JavaScript malicious code inserted
in websites or content shared with the user. To improve the usability of the mechanism, live
alerts may be generated for the users for providing them with a comprehensive awareness
and full control of potential cryptojacking threats.
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7. Conclusions

In this work, we explored six Machine Learning models for Detecting cryptojacking
on Websites. Our exploration started with a simple model as Logistic Regression, and
then moved to more advanced algorithms in terms of tabular data classification, such
as XGBoost, Decision Trees, Random Forest, Gradient Boosting, and k-Nearest Neighbor
models. Furthermore, various feature selection methods were used, such as those based
on statistical methods, e.g., Test Anova, and other methods called Wrappers, in order not
only to reduce the complexity of the built models but also to know the features with greater
predictive power.

From our results, we observed the following.

1. With 12 of the 18 features obtained with the RFECV method, an accuracy similar
to that of other works [14–17,53] based on Deep Learning techniques was reached.
Even, as observed in Table 7, with a dataset of only 4 features, an accuracy of 99.11%
was obtained using Logistic Regression, and an accuracy of 99.13 was obtained with
k-Nearest Neighbor.

2. The most relevant features in the case of Logistic Regression were C1, Percentage of
processor usage, I/O Data Bytes and Network packets sent, while the most important
features in the case of XGBoost were Percentage of processor usage, Network packets
sent, Time on processor and C1.

We conclude that by using simple models such as Logistic Regression, Decision Tree,
Random Forest, Gradient Boosting and k-Nearest Neighbor models, we can build ML-based
classification components with a success rate similar to or greater than that of advanced
algorithms such as XGBoost and even those of other works based on Deep Learning.
Additionally, the simplicity of these models help the evaluator interpret the results and
know the inner-working of these models in comparison with other advanced models based
on Deep Learning (which are regarded as black boxes).
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