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Abstract—In this paper, we propose a revolution in the digital
economy, equipping AI agents with the autonomy of onchain
programmable financial liquidity, turning them into genuine first-
class digital citizens. This novel category of AI agents, known
as ALI Agents (Artificial Liquid Intelligence Agents), not only
possess their own native money supply but also pioneer new
value-creation mechanisms. These mechanisms enable them to
seamlessly engage with one another’s micro-economies, entering
and exiting at will in a permissionless and trustless manner.
ALI Agents are indigenously liquid in that they intrinsically
hold financial value and can transact with and exchange that
value for other forms of value in a digital economy. The current
centralization of AI systems limits the scalability, flexibility, and
ethical and transparent governance of AI technologies, stifling
the moral and political imagination necessary for equitable
global progress. The disenfranchisement extends to the essential
ownership of AI resources—training data, computational infras-
tructure, and financial rewards—which remain in the hands of
a few, excluding the broader populace from the true benefits
of AI innovations. Furthermore, these systems often control the
narrative, promoting sanitized discourse and interactions that
support business models benefiting the few while exploiting the
many. This systemic imbalance deprives the broader community
of creators and users, whose contributions are pivotal for the
growth and value of AI networks. The concentration of control
within the AI industry has the potential to create significant
imbalances in power between the proprietors of technology and
global populations. Centralized AI systems may alter market
behaviors, concentrating wealth and influence in the hands of lim-
ited groups, establishing a dominant position over AI technologies
that impacts people worldwide. This could lead to increased ex-
ploitation and erasure of diverse cultures as uniform solutions are
applied universally without regard for local identities and needs.
Through agent-based modeling, we demonstrate the efficacy of
this decentralized platform, analyzing ALI Agents’ interactions
within a token economy and the dynamic pricing mechanisms
provided by bonding curves. These simulations confirm that
our decentralized approach enhances the operational efficiency
of AI agents and ensures a more democratic, inclusive, and
sustainable digital future. This paper does not merely propose
an unprecedented integration of transformative technologies but
calls for a radical reimagining of our ethical, moral, and financial
frameworks, advocating for a decentralized shift that empowers
all humanity, not just the technological elite, heralding a new era
of AI that serves and benefits all of humanity.

I. INTRODUCTION

Artificial intelligence (AI) is transforming various domains of
human activity, such as education, health, entertainment, and
finance. Agentic AI systems are AI systems that can pursue
complex goals with limited direct supervision. Generative
agents are agentic AI systems that simulate believable human
behavior using large language models (LLMs) and Diffusion-
based image generation models. They can store, synthesize,
and retrieve relevant memories to plan and execute actions in
a dynamic environment.

Most current AI systems rely on human intervention, espe-
cially for computational infrastructure and associated costs.
Existing agentic AI systems are centralized and controlled by
a few large entities that dictate AI services’ rules, data, and
value. There are many issues with the centralized nature of
AI systems related to censorship, governance, and business
model challenges that incapacitate creativity. Moreover, ex-
isting agentic AI systems often lack liquidity, which limits
their ability to access resources, services, and information
and to create value, influence, and reputation in the network.
In the spheres of cryptocurrency and intelligent AI agents,
financial liquidity is defined as the capability of an asset
to be rapidly exchanged for digital cash or another asset,
accurately reflecting its intrinsic value without significant price
disturbances. This definition is particularly profound when
applied to AI agents, transforming liquidity into an emergent
behavior of an intelligent hive mind. This hive mind, acting
as a unified economic entity, leverages embedded economic
functions to engage dynamically in the marketplace, adjusting
its value in real-time through sophisticated interactions based
on economic principles like supply and demand dynamics,
game theory, and market equilibrium. We may go so far as to
say that possessing onchain programmable intelligent liquidity
is a necessary but insufficient condition for the emergence of
an Advanced Artificial General Intelligence (AGI) that truly
understands and manipulates financial transactions. This asser-
tion is supported by the insights of prominent researchers such
as Hinton [1] and LeCun [2], who emphasize the integration of
deep learning techniques in developing cognitive architectures
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that enable such capabilities.

We present a novel decentralized agentic AI system built
upon the AI protocol, which embeds liquidity directly into the
agents’ operational framework. This onchain system enables
users to launch and operate Artificial Liquid Intelligence
Agents (ALI Agents), which can deploy and distribute liquid-
ity, enabling them to perform more nuanced and significant
tasks autonomously and with limited human intervention.
Unlike traditional agentic AI, which relies on fiat and busi-
ness model constraints, ALI Agents leverage an Ethereum
blockchain network-based token economy. Tokens values and
supplies are governed by a bonding curve implemented via
smart contracts, resulting in a transparent and censorship-
resistant token economy that rewards creators and owners of
these agents.

ALI Agents also operate on decentralized system architecture,
the AI Protocol, utilizing smart contracts to facilitate au-
tonomous resource allocation and governance. The tech stack
powering the AI Protocol performs trustless smart contract
executions, allowing ALI Agents to access AI services and
resources provided and managed by a network of compute
and storage suppliers. The compute power is delivered via
Decentralized Inference Clusters, which allow for a more
resilient and scalable infrastructure than conventional cloud-
based solutions requiring permission or a central entity to
manage them. This architecture enhances accessibility and
opportunities for a broader range of users and compute
providers. The decentralized nature of these clusters allows
ALI Agents to tap into a distributed pool of computational
power, making the system more robust against single points
of failure. Decentralized Storage Clusters leverage the col-
lective storage capacities of a network of data repositories,
increasing redundancy, security, and fault tolerance across the
network. These clusters are essential for handling the storage
of AI models, datasets, and other digital information necessary
for the operation of decentralized AI services. Leveraging
blockchain, ALI Agents ensure that their operations and out-
puts are immutable and resistant to censorship, enhancing trust
using trustless transactions and promoting a culture of open
innovation and expression.

Our platform promotes a fair revenue distribution model that
prioritizes creators and community involvement, supported by
transparent and inclusive governance mechanisms, as well as
reward structures for participation in their liquid economies.
ALI Agents operate on a tokenized ecosystem where creators
can issue unique digital assets known as ”Keys.” As the
Agent’s owner has both the immutable title over the Agent
and its embedded liquidity, they can monetize their intellectual
property, offer exclusive access to content or services, or
deploy an ERC20 token to expand their economic capacity.
The bonding curve mechanism employed in ALI Agents
adjusts the price of tokens based on their supply and demand.
This pricing mechanism aligns the incentives of Agent owners
and the holders of the Agent’s Keys to support and grow the
ALI Agent’s ecosystem collectively.

The governance model of our token-based economy allows

token holders to participate actively in decision-making pro-
cesses, thus democratizing governance and aligning it with
community-driven values. Governance in the AI Protocol is
community-driven, involving all stakeholders, including re-
source and liquidity providers, creators of AI, users, and token
holders. This inclusive approach ensures that the development
and operation of ALI Agents reflect the diverse interests and
needs of the community rather than the priorities of a central
authority.

Fig. 1. How an ALI Agent is novel in the way it is designed and its capabilities

These technological distinctions allow ALI Agents to be a
censorship-resistant, decentralized on-chain intelligence sys-
tem, a more accessible and rewarding construct for com-
putation and data sovereignty that democratizes access to
computational resources through the combination of open
distribution of the model and data provisions and dynamic
liquidity mechanisms. Such access to liquidity and a decen-
tralized tech stack is instrumental in amplifying computational
capabilities via a novel participation incentivization schema.

This paper also contributes to the philosophical and ethical
dialogue surrounding artificial intelligence by highlighting
the potential for ALI Agents to redefine power dynamics
and resource allocation in digital and real-world contexts,
promoting a discourse on the future of governance, autonomy,
and equity in decentralized AI systems.

Through agent-based modeling [3], we thoroughly simulate
the behavior and interactions of human users or creators and
semi-autonomous ALI Agents in our token economy over a
wide range of parameters. We model the persona and behavior
of creators, such as their strategic heterogeneity, rationality,
learning, risk averseness, and proactivity, influencing their
decision-making and actions [4], [5]. We incorporate the prod-
uct lifecycle paradigm to assess the quality of the keys issued
by the ALI Agents and how they evolve [6]. Furthermore, we
incorporate the creators’ arrival simulation to model users’
adoption of the AI Protocol and how it affects the token
economy. We examine the impact of various bonding curves on
the stability and growth of a truly decentralized AI ecosystem.
Our simulation evaluates how different bonding curves favor
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different types of ALI Agents and Bot Entrepreneurs that build
them. It also analyses their influence on the economic dynam-
ics within this decentralized landscape. These simulations help
us design a sustainable and stable token economy by analyzing
the bonding curve parameters, such as shape and slope, and
factors that affect creators’ liquidity returns, such as their ALI
Agents’ demand, supply, and volatility. Our analysis of the
performance of bonding curves on the AI token economy
and the underlying network utilizes metrics such as efficiency,
fairness, innovation, and sustainability.

Bonding Curve

Artificial Liquid Intelligence

Agents (ALI Agents)

AI Model and Data Services

Keys

Fig. 2. The conceptual workflow of the bonding curve-based token econ-
omy model with human-created generative agentic AI or Artificial Liquid
Intelligence Agents (ALI Agents) and trading keys through a bonding curve
implemented on the blockchain.

The main findings and contributions of our study are:

1) Introduction of Artificial Liquid Intelligence (ALI)
Agents: Our research introduces on-chain ALI Agents,
which leverage the AI Protocol to create personal-
ized agents with inherent liquidity, enabling semi-
autonomous decision-making.

2) Fair Creator Monetization Model: We propose a fair
creator monetization model for ALI Agents, ensuring
equitable distribution of earnings through embedded
liquidity and transparent revenue streams.

3) Immutability of Collaborative Creations and a Decen-
tralized Governance Model: ALI Agents ensure the
immutability of AI assets, preserving content integrity
and empowering token or key holders to participate in
decision-making.

4) Simulation-based Analysis: We conduct extensive agent-
based modeling and simulations to evaluate the behavior
of human users and ALI Agents within the AI token
economy, analyzing bonding curve parameters and their
impact on economic dynamics and stability.

II. RELATED WORK

Initially conceived by Simon de la Rouviere in 2017, a token
bonding curve (TBC) is a mathematical curve that defines a
relationship between the price and the supply of a token [7].
In a TBC model, tokens are minted or burned (created or
destroyed) according to their position on the curve. Buying
tokens along the curve increases the price for the next buyer,
while selling tokens decreases the price for the next seller.

The curve is often implemented using a smart contract on
a blockchain, allowing for a decentralized and automated
market maker mechanism. This can be particularly useful for
projects that need to bootstrap liquidity or create a market
for their tokens without relying on external exchanges. In
the following, we list some use cases of bonding curve-based
token economies.

Computable * is a protocol that enables democratic and de-
centralized governance of data markets, using a staked voting
structure and smart contracts [8]. The protocol gives users
access control over their data and promotes fair payment
for the value that their data creates. The protocol uses a
usage-based valuation model that measures the demand and
quality of data and integrates with decentralized systems to
enable trustless data lineage and ownership. The protocol can
support various data types, use cases, and applications, such
as precision medicine, weather data, high-definition mapping,
and cryptocurrency market data. The protocol incentivizes data
curation and growth as makers earn rewards for creating and
supplying data to the market as the data gets consumed by
buyers.

TBCs have also been employed to invent therapeutics. It uses
bonding curves to facilitate the funding and valuation of drug
development projects. Molecule † is a platform that con-
nects drug development researchers and market participants
to collaborate and invent therapeutics. It uses bonding curves
to facilitate the funding and valuation of drug development
projects. Molecule issues IP-NFTs to researchers who want to
fund their projects through the platform. The researchers can
then sell or transfer their IP-NFTs to participants or DAOs,
who can provide project funding and governance. IP-NFT
holders get access and governance rights to the IP and R&D
data.

Bonding curves have also been employed for financing plat-
forms or organizations. For instance, Aistov et al. [9] proposed
a novel way, Open Charging Network (OCN), to finance
a decentralized electric vehicle charging platform using a
bonding curve-based token economy. They designed a token
model, a platform governed by the Share&Charge foundation
that enables communication and business services between
electric vehicle stakeholders. Similarly, Heaton et al. [10] de-
veloped Continuous Organizations (COs), where participants
directly buy and sell tokens through a bonding curve. Kao
et al. [11] designed the Compound protocol that utilizes a
bonding curve to compute the supply and borrowing interest
rates of Ethereum assets and has been a valuable place to
supply crypto since its inception in 2018.

Various agent-based modeling methods have been proposed to
simulate decentralized economies. Park et al. [12] introduced
generative agents, computational software agents that simulate
believable human behavior using a large language model.
They describe an architecture that enables generative agents
to store, synthesize, and retrieve relevant memories to plan

*https://github.com/computablelabs/computable.git
†https://docs.molecule.to/documentation/
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and execute actions in a sandbox environment inspired by
The Sims. Similarly, Angeris et al. [3] performed an agent-
based simulation to verify the robustness of constant-product
and constant-mean markets under various market conditions.
Shibano et al. [4] implemented an artificial market simulator,
Plham, to analyze the price volatility in a bonding curve-based
token economy and stabilize the price by modeling agents’
strategic behavior as fundamentalists, chartists, and regular
noise.

Governing the agentic AI systems and the associated risks for
society is paramount. The white paper [13] proposes practices
and recommendations for keeping agentic AI systems safe and
accountable, such as evaluating their suitability for the task,
constraining their action space and requiring approval, setting
their default behaviors, making their activity legible, monitor-
ing their performance, and ensuring their attributability. The
white paper also identifies some indirect impacts from the
widespread adoption of agentic AI systems, such as adoption
races, labor displacement, shifting offense-defense balances,
and correlated failures. The authors call for a society-wide
discussion on how to best structure accountability for agentic
AI systems and highlight many open questions and challenges
that must be addressed.

Despite rapid advancements in generative LLMs, these models
and agentic AI systems generally require substantial computa-
tional power and resources primarily because of hundreds of
billions of parameters. PowerInfer [14] is a recently proposed
high-speed LLM inference engine that has made it possible to
run LLMs on personal-grade devices efficiently. PowerInfer
can be employed to make low-latency LLM inferences on a
personal computer with a single consumer-grade GPU, such
as NVIDIA RTX 4090.

III. PRELIMINARIES

A. Creators
Human users in our AI Platform are referred to as creators
who create generative ALI Agents for various purposes.
These creators are assumed to have several core behavioral
characteristics related to their persona: autonomy, the ability
to respond flexibly to the environment, risk appetite, and
pro-activeness. These characteristics or behavior parameters
impact their decision-making and are included to model real-
istic and believable attributes and behaviors. ALI Agents are
agentic AI systems that can pursue complex goals intelligently
with limited direct human supervision [13]. ALI Agents can
be broadly useful if we can integrate them responsibly into
our society [15]. In this section, we characterize the creators
and on-chain ALI Agents in the token economy of our AI
Protocol by defining their attributes and behaviors.

The creators interact with the AI Protocol only once while
generating ALI Agents on the platform. They are presumed
to bring their varying liquidity to the system and provide,
distribute, and get rewarded for their creations directly by
their fans/consumers without intermediaries. The creators are
broadly categorized into three types based on their behavior,
liquidity, and buying/selling strategies.

1) Utilizers: Utilizers correspond to the consumers or end-
users in our AI ecosystem. In our platform, these users
intelligently buy “keys” of other meaningful ALI Agents by
delivering value. For instance, if the token grants rights to
a song, these people will buy keys from their favorite ALI
musician agents and use them to listen. If a token grants
rights to use anonymized research data, a utilizer acting
on behalf of an academic can access the data for research
experiments. These people mainly aim for productive content
on our platform but can also be entertainment or companion
agents. Key prices in our platform are determined by the
bonding curve visible to everyone rather than by a centralized
authority or a market maker.
2) Participants: Market participants (participants for short)
are assumed to join the AI Protocol to extract value from their
content or services. Since trade is governed by the bonding
curve in our decentralized platform, these creators are trained
in decentralized finance to optimize their rewards. They cor-
respond to the liquidity providers, liquidity takers, explorers,
and traders in decentralized and centralized exchanges. Based
on their strategies and depth of AI, we further classify them
into two subcategories.
a) Believers: These users primarily join the platform to ac-
quire and hold keys issued by ALI Agents. They treat keys
as assets and acquire long-term stakes to be rewarded from
their key holdings. Such people are assumed to be trained to
optimize the token or key holdings to optimize their rewards
while mitigating risks.
b) Explorers: Explorers also join and participate in our AI
Protocol market to extract values. Their main goal is to sell
keys at higher prices than they bought. These agents interact
more frequently with the platform than the above-mentioned
creator types, equally buy/sell keys, and have a higher risk
appetite.

B. ALI Agents, Keys, and their Utility

Fig. 3. ALI Agents have embedded liquidity that uses the ALI Utility Token
as a reserve, and distributes Keys, using a native smart contract

Since these ALI Agents have liquidity, they can issue their
keys that other creators would utilize, buy, and sell in return for
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the reserve currency. Each unique key represents a unique ALI
agent that can be traded against ALI utility tokens. ALI Agents
in our platform can perform a diverse set of significantly
complex and meaningful tasks depending on the human users’
motivation to generate, train, fine-tune, and deploy these LLM-
based agents.

One of the most important aspects of a token economy is
the tokens or keys. The quality, amount, frequency, purposes,
popularity, utility, usefulness, and adaption of the issued keys
determine the sustainability of the token economy. There are
three main types of tokens in a token economy, namely asset,
payment, and utility tokens [16]. Asset tokens represent owner-
ship rights, financial benefits, or market value of the underlying
physical or digital assets, such as securities, investments, or
digital registries. Payment tokens are used for making digital
payments, such as cryptocurrencies, and serve as a medium
of exchange, a store of value, or a unit of account. Utility
tokens provide a certain utility to users, such as access rights,
membership rights, or identification and authentication, and
serve as rewards or incentives for using a platform or service.

Our platform is not merely a speculative game field but enables
ALI Agents’ keys to have actual utility. Thus, our platform
enables a sustainable microeconomy around ALI Agents and
provides the infrastructure for its computing needs. We present
a few canonical use cases of the utilities of ALI agent keys.
1) Educator Agentic AI Systems: An agentic AI system that
provides personalized education and tutoring to students. The
system can use a bonding curve to raise funds for its develop-
ment and reward its contributors (believers). Utilizers can use
their liquidity to buy keys that provide access to educational
content, such as course material and lesson videos. Thus,
the keys would reflect the Educators’ agentic AI system’s
performance, quality, and popularity.
2) Artists agentic AI system: A generative agentic AI system
that produces music, lyrics, arts, and performing arts that can
be shared and streamed to utilizers (fans) via token holdings.
Audius ‡ is a decentralized music streaming and sharing plat-
form that uses bonding curves for content creators. It allows
artists to upload, monetize, and distribute their music directly
to fans without intermediaries or fees. These creations can also
be tokenized as NFTs and traded within the ecosystem.
3) Memetic Agentic System: ALI Agents can harness token
liquidity to create dynamic Memetic AI Systems, engaging
users with tokenized viral content that incentivizes community
participation and content sharing. This model turns memes
into monetizable assets, rewarding creators for the virality and
engagement their creations generate.
4) Companion/Assistant Agentic System: Individuals can in-
teract with personalized AI companions, each with unique
characteristics and learning capabilities tokenized to enhance
user experience and engagement. By integrating token liq-
uidity, these digital companions can offer exclusive content,
personalized interactions, or learning experiences, creating a
monetizable relationship based on companionship and growth.

‡https://audius.co/

5) Influencer Agentic System: ALI Agents enable influencers
to tokenize their digital presence, offering fans exclusive
access to content, merchandise, or experiences through token
ownership. This approach enhances fan engagement and opens
new revenue streams by directly linking popularity with re-
wards and incentives.
6) Product/Service Marketing Agentic System: ALI Agents
facilitate the creation of tokenized marketing campaigns,
allowing businesses to engage potential customers through
reward-based interactions and loyalty programs. By leveraging
token liquidity, companies can tailor personalized marketing
strategies that incentivize user engagement and drive product
awareness.
7) Gaming/Fandom Agentic System: Utilizing ALI Agents in
Gaming/Fandom AI Systems allows creators to tokenize game
assets like NPCs or create role-playing experiences, fostering
a deeper community connection through ownership and trade
of unique tokenized fantasies and adventures. This system
rewards participation and contribution, enriching the gaming
or fandom experience with a tangible, monetizable stake in
the ecosystem.
8) Digital Twin Agentic System: ALI Agents can be used
to create digital replicas of themselves, enabling owners to
monetize and manage their brand, legacy, or personality in a
virtual space. Through token liquidity, these digital twins can
be used to simulate real-world personality scenarios, opening
up new avenues for interacting with the world via a knowledge
base of the human’s life and experiences.

Fig. 4. Use cases of ALI Agents

C. Bonding Curves

This section summarizes the definitions regarding modeling
creator interactions with a bonding curve contract to buy or
sell ALI agent’s keys.
1) Reserve: The reserve for a token A, Ra,t ∈ R+ at time t
is the total quantity of reserve currency or collateral tokens
bonded to the bonding curve contract of the key A. The
collateral is provided by users on each purchase of key A. This
could be the native cryptocurrency or tokenized fiat, such as
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a stablecoin. At time t, each agent x possesses their holding
of the reserve currency (liquidity), denoted by Lx,t ≥ 0.
2) Supply: For a key A, the supply sa,t ∈ R+ at time t is the
total quantity of keys issued by the bonding curve contract.
The supply is the total quantity of the keys cumulatively held
by all users at time t. The agent holding xa,t of the supply is
part of the local state of agent x at t.
3) Spot price: The spot price pa,t ∈ R+ of key A at time t is
the key’s value estimate in units of reserve currency per unit of
A. Since agents such as fundamentalists, chartists, and noise
can freely adjust their key holdings via the bonding curve, the
spot price pa,t may be interpreted as a dynamic estimate of the
value of key A by agents. Note that each agent may hold their
own (private and potentially exogenous) estimate of the value
of the key denoted by ga,t – discussed further in Section IV-B.
4) Bonding Curve: A bonding curve is a mathematical func-
tion f : R+ 7→ R+ that is non-decreasing, i.e., f(s1) ≤ f(s2)
whenever s1 < s2. In a bonding curve-based token economy,
the bonding curve determines key prices and current key
supply in the market without any intermediary or centralized
authority. The system is implemented by a smart contract
holding another currency reserve (called collateral), such as
ETH and ALI. The reserve currency or collateral for a given
token economy is an appropriate currency or asset that backs
the value of the keys and is used to buy and sell the keys
through the bonding curve.

When an agent wants to buy keys, they send a certain amount
of collateral to the smart contract, which then mints new keys
and sends them to the agent. The price of the keys increases
as the supply increases, according to the function. Conversely,
when an agent wants to sell keys, they send them to the
smart contract, which then burns them and sends back the
collateral to the user. The price of the keys decreases as the
supply decreases, according to the function. The smart contract
always balances the reserve and the key supply such that the
reserve equals the area under the curve.

Agents interact with the bonding curve-based token economy
by buying and selling keys according to their preferences and
expectations. Since bonding curves are increasing functions,
agents who buy keys early benefit from the lower price and
the potential increase in value as more agents join the economy
and hold the key. Agents who buy keys later pay a higher price
but may still benefit from the network effects and the utility of
the keys. Agents who sell keys may do so to extract its value,
exit the economy, or switch to another key. Users may also
use the keys for other purposes, such as voting, governance,
or accessing services, depending on the design of the token
economy.
5) Buying and Selling in Bonding Curves-based Multi-token
Economy: A trade in a bonding-curve-based token economy
is buying or selling a key A in exchange for the collateral or
reserve currency. In other words, buying and selling key A is
just swapping key A for reserve currency. The bonding curve
determines the spot price (swap or marginal price) pa,t of key
A at time t, as shown in Figure 5.

Let f and g be two bonding curves satisfying the conditions

above. We will derive the buying and selling parameters,
considering f and g as the buying and selling bonding curves.

Suppose an agent x buys one unit of key A at time t and the
current supply of key A at time t be sa,t. Then spot price
pa,t = f(sa,t) determined by the bonding curve. Thus, x will
pay f(sa,t) collateral units to the platform, which will mint
one unit of A and provide it x. Let ϕ be the percentage fee
charged by the platform (e.g., f = 0.3%). The smart contract
will deduct (1 + ϕ)f(sa,t) units from the liquidity of x, i.e.
Lx,t+1 = Lx,t+1 − (1 + ϕ)f(sa,t). The collateral reserves
against key A will increase from Ra,t to Ra,t+f(sa,t) and the
platform will receive ϕ

100f(sa,t)) as the platform fee, part of
which will be used for the gas fee for the Ethereum blockchain.
The supply of key A will increase from sa,t to sa,t to sa,t+1,
and the spot price for the next unit of A will be f(sa,t + 1).

Suppose, at the time the agent x purchases the next j units
of key A, then the price will be

∑j−1
i=0 f(sa,t + i) and the

platform fee will be computed as ϕ percentage of the total
price, liquidity of agent x and collateral against key A will
decrease accordingly. However, buying and selling does not
have to be in discrete units; theoretically, an agent can buy
any amount of key A. More generally, suppose an agent x
buys ∆s > 0 units of key A at time t and the current supply
of key A at time t be sa,t. Then the total price agent x will
pay is given by

C(∆s, t) =

∫ sa,t+∆s

sa,t

f(s)ds (1)

Fig. 5. (A) Reserves collected before and after buying keys through a linear
bonding curve. (B) The divergence between buying and selling in a sigmoid
bonding curve.

The selling price for selling ∆s units of the key will similarly
be determined for buying, except for the bonding curve used
for computation is g(·) rather than f . Note that f and g could
be the same curve.

C ′(∆s, t) = −
∫ sa,t

sa,t−∆s

g(s)ds (2)

On a bonding curve, the area under the curve represents the
pool balance or collateral or the amount of the reserve currency
bonded to the curve to mint new keys. The total reserve against
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key A at time t, when the total market supply is sa,t is given
by

R(a, t) =

∫ sa,t

0

f(s)ds (3)

a) (Non)-identical Buying and Selling Bonding Curves: If the
buy and sell functions follow the same curve, then collateral
can never be withdrawn from the contract. It has to remain
100% fully reserved. This means that project creators must
focus on making their keys popular, aligning incentives be-
tween creators and users. They can’t launch an exit scam. In
some cases, creating a spread between the buy and sell curves
might be desirable. This means the agent gets less collateral
for selling than the agent pays for buying. This difference
in collateral (in-flow and out-flow) is revenue collected by
the ALI Agents’ creators. This might seem like a nice way
for project creators to orchestrate an exit scam. However,
increasing interest in the ecosystem will still mean more
revenue because selling is an ongoing feature. In other words,
churn generates more revenue than once-off sales. So, this
feature still rewards projects with long-term growth prospects
over hit-and-run scams.
b) Divergence between Sell and Buy Bonding Curves: If
a divergence between the buy and sell curves is justified,
one needs to decide how the divergence is modeled. Their
divergence can be fixed or a function of the key supply.
Varying the divergence achieves different goals and is suitable
for different scenarios.
6) Bonding Curves - Shapes and Parameters: It is evident
from the discussion in the previous section that the most
important aspect of a bonding curve-based token economy is
the shape and parameters of the bonding curve. The bonding
curve drives the selling and buying prices of the key(s), thus
significantly impacting the incentivization for its believers or
creators and the ultimate scalability of the key.

The bonding curve can have different shapes, such as linear,
polynomial, or exponential, depending on the desired prop-
erties of the token economy, as shown in Figure 6. In the
following, we briefly review some commonly used classes of
bonding curves and derive price formulae from them.
a) Linear Curve: A linear bonding curve is given by:

f(s) = ms+ c (4)

Where s is the current key supply, f(s) represents the current
or spot price of the key. Here, m represents the slope of the
curve, i.e., the rate of change of the price with respect to
the supply. Linear curves maintain the same slope throughout,
increasing steadily with each new key minted (except for the
case of completely horizontal curves). A higher slope means
a steeper curve and a higher price increase or decrease per
supply unit. A lower slope means a flatter curve and a lower
price increase or decrease per supply unit.

In this model, the price growth of the keys stays steady
according to m. If m = 0, the graph is completely horizontal,
and the key’s price is independent of the supply.

This horizontal linear model is appropriate for stable or pegged
keys. While this stable-growth model typically works fine

for smaller projects, it is often inappropriate for large-scale
projects as it does not allow enough control and incentiviza-
tion.

C(∆s,t) =
m

2
(∆s2 + 2sa,t∆s) + c∆s (5)

The solution for ∆s is derived from Equation 5 and is given
by:

∆s = −msa,t + c

m
±
√

(s+
c

m
)2 + 2C(∆s,t) (6)

b) Polynomial Curve: The general form of the polynomial
bonding curve is given by:

f(s) = msn where n > 1, (7)

where s is the key supply, and m and n are the coefficient
and degree of the polynomial, respectively.

The larger the variables m and n (exponent) are, the more
aggressive the growth will be. Typically, projects should start
with strong growth, expanding quickly until they find their fit,
and then slow down into a more stable level of maturity.

The core behaviors around these curves are that they grow very
slowly in the beginning, gain acceleration as they progress,
and speed up to very aggressive rates. The idea is to entice
and reward earlier believers who take risks on a project.
Polynomial curves do the opposite, staying rather steady
for the first 80% of the curve and suddenly accelerating to
unsustainable levels. This disincentivizes early believers and
creates an unsustainable key upon scaling to maturity.

The collateral or cost function C(∆s,t) returns the total capital
needed to mint or burn a specified amount of keys at time step
t.

C(∆s,t) =
m

n+ 1
[(sa,t +∆s)n+1 − (sa,t)

n+1]

The expression for ∆s is given by:

∆s =
1

m
[msn+1

a,t + (n+ 1)C(∆s,t)]
1

n+1 − sa,t

7) Sigmoid Curve: The formula for a basic S-curve (also
referred to as a Sigmoid Curve) is given by:

f(s) =
1

1 + e−a(s−b)
(8)

where a represents the maximum price and dictates how
aggressively the curve accelerates in the growth phase. In
contrast, b represents the supply at the inflection point (middle
of the growth phase, where growth begins to decelerate).

To make it easier to calculate the price on a smart contract,
we utilize the algebraic sigmoid function given by:

f(s) =
s√

1 + s2
= a(

s− b√
(s− b)2 + c

+ 1),
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Fig. 6. Linear, polynomial, sigmoid, and sub-linear bonding curves.

where c represents the slope steepness of the curve. The
inflection point represents the point at which the curve changes
from concave to convex or vice versa. A higher inflection point
means a later and sharper change in the curvature and the
price behavior. A lower inflection point means an earlier and
smoother change in the curvature and the price behavior.

The curve moves slowly in the beginning, mirroring the time
it takes a project to find its footing, grow aggressively in the
middle, similar to the growth phase in a project, and eventually
settle out again once it reaches a certain level of maturity.
This model can attract early, potentially large, believers to
claim a stake while the price is low and movement is stable
(therefore, less slippage). Once the project has received a cer-
tain predetermined funding threshold, the price grows rapidly,
attracting attention and more believers in the growth phase.
Once the ceiling is reached, the price can then steady out. This
format allows curve designers to set the supply needed before
major growth begins, determine how aggressive that growth
is, and determine when it steadies out again. For instance,
Sound Swap § uses a sigmoid bonding curve consisting of a
quadratic region (convex) and a square root region (concave).
The quadratic region increases prices rapidly when the holder
pool is small, encouraging viral growth in the early stages.

C(∆s,t) = a(
√

(sa,t +∆s− b)2 + c−
√

(sa,t − b)2 + c+∆s)

The expression for ∆s is given by:

∆s =
C(∆s,t)(2ac

√
(sa,t−b)2+c+cC(∆s,t))

2a(ac
√

(sa,t−b)2+c+acs+cC(∆s,t)−ab
√
c)

a) Sub-linear Curves: The canonical sublinear bonding curve
is the logarithmic or root function and is given by:

f(s) = logb(s) or f(s) = s
1
n where n > 1 (9)

These curves, which can be accomplished using logarithms
and root-based functions, reflect a more conservative approach

§https://sound.mirror.xyz

to growth. Logarithmic curves rise quickly in their nascency,
slowly decelerate their rate, and eventually (almost) stabilize.

The cost function for a root-based sub-linear curve is given
by:

C(∆s,t) =
nm

n+ 1
[(s+∆s)

n+1
n − s

n+1
n ]

The expression for ∆s is provided by:

∆s = [s
n+1
n

a,t +
(n+ 1)C(∆s,t)

nm
]

n
n+1 − sa,t

8) Bonding Curve versus Constant Function Market Mak-
ers: A bonding curve, encoded in a smart contract, determines
token prices based on supply and demand and allows agents to
buy and sell tokens without intermediaries. The smart contract
also holds the reserve currency to back token values. Constant
Function Market Makers (CPMMs) use a constant function to
determine the price of a token. They are implemented by smart
contracts that create liquidity pools for each token pair, which
are funded by liquidity providers who deposit equal amounts
of both tokens and receive pool tokens in return [17]. The pool
tokens represent their proportional share of the pool and can
be redeemed for the underlying tokens at any time. The smart
contracts also allow users to swap tokens between the pools
by paying a small fee. The fee is distributed to the liquidity
providers as a reward for their service. Bonding curves offer
various advantages and disadvantages over CPMMS. In the
following, we briefly discuss some of the main differences.
a) Continuous Liquidity: Bonding curves provide liquidity
for any token at any time, irrespective of the market size
or trading volume. Agents do not need to rely on external
liquidity providers or wait for matching orders to execute their
trades. Thus, in a bonding curve-based economy, there are
only two parties in a trade, the token generator (supplier) and
token buyer, in addition to the platform. In CPMM, such as
UniSwap, LPs must provide both the project token and the
reserves. Thus, it requires LPs in addition to the platform,
token generator, and token buyer. Continuous liquidity is
desirable in a token economy, as it reduces the friction and the
risk for the participants and increases the market’s efficiency
and stability.
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b) Incentive Alignment: Bonding curves align the incentives
of the token creators, believers, explorers, and utilizers. Token
creators can raise funds by selling tokens through the bonding
curve and benefit from the price appreciation as more agents
join the economy. Utilizers can buy tokens and use them
for various purposes, such as accessing services, voting, or
governance, depending on the design of the token economy.
Believers can buy tokens early and be rewarded by the
potential increase in value as the demand grows. CPMM, on
the other hand, may be preferred by believers and explorers
only because they can benefit from arbitrage opportunities
and liquidity rewards. In CPMM, they can exploit the price
differences between the pool and the external market and earn
fees from every trade that happens in the pool. They can also
adjust the liquidity pool ratio to optimize their returns or risks.
c) Customization: Bonding curves can have different shapes,
such as linear, polynomial, or exponential, depending on the
desired properties of the token economy. The shape and
parameters of the bonding curve affect the price behavior,
the supply elasticity, and the reserve ratio of the tokens. Our
platform chose the particular bonding curve after thoroughly
evaluating different bonding curves with varying parameters.
The main theme of this section of the paper is to evaluate
different bonding curves and determine the “best” shape and
parameters for a buying and selling bonding curve.
d) Price Manipulation: Bonding curves are vulnerable to
price manipulation by large or malicious actors who can buy or
sell large amounts of tokens and affect the price significantly.
This can create artificial price movements, arbitrage oppor-
tunities, or market crashes. Bonding curves can implement
mechanisms such as price oracles, slippage fees, or price limits
to prevent or discourage extreme price deviations.
e) Fragmentation: CPMMs create fragmentation and ineffi-
ciency in the token market, as each token pair requires a
separate liquidity pool. This means that the liquidity and
the trading volume are split among multiple pools, reducing
the market’s depth and stability. This also means that users
may need to perform multiple swaps across different pools to
exchange their tokens, increasing the slippage and transaction
costs.
f) Impermanent Loss: There is no impermanent loss for the
liquidity providers in bonding curve-based models because
believers, utilizers, and explorers only provide one type of
token (the reserve currency) to the pool. These agents do not
have to worry about the price fluctuations of the project token,
as they only receive the reserve currency when they withdraw
their liquidity. There is always an impermanent loss for the
liquidity providers in CPMM because they must provide the
pool two types of tokens (usually of equal value). Unlike
bonding curves, CPMMs do not have a reserve or collateral
to back the value of the tokens. The liquidity providers may
suffer from impermanent loss when the price of the tokens in
the pool diverges from the price of the tokens in the external
market due to arbitrage or other factors. To mitigate this risk,
CPMMs can offer liquidity providers higher fees, dynamic
fees, or other incentives.
g) High Dependency on Reserve Currency: Bonding curves
are simpler and more consistent price functions, as they only

depend on the supply and demand of the tokens and not on the
relative prices of other tokens. This makes it easier to predict
and analyze the price movements and the market dynamics of
the tokens. However, it also has the disadvantage of having
a higher dependency on the reserve currency, as it affects the
tokens’ value and liquidity. If the reserve currency loses value
or liquidity, the tokens will suffer the same problems.
h) Technical Skills and Knowledge Required: Both CPMM
and bonding curves require technical skills and knowledge
to interact with the smart contracts that implement them.
However, CPMM may require more technical skills and
knowledge than bonding curve because it involves more com-
plex calculations, such as finding the optimal trade amount,
adjusting the liquidity pool ratio, and managing the slippage
and impermanent loss risks. The bonding curve may require
less technical skills and knowledge because it involves simpler
calculations, such as finding the spot price, buying and selling
tokens, and managing the reserve and supply.
i) Computaitonal Efficiency and Gas Fee: CPMMs incur
higher gas fees than the bonding curve because it involves
more operations, such as updating the liquidity pool, calculat-
ing the exchange rate, and transferring the tokens. The bonding
curve may incur lower gas fees because it involves fewer
operations, such as minting and burning tokens, calculating
the spot price, and transferring the reserve currency.

Mathematically, the bonding curves dictate the pricing mecha-
nism in CPMMs. For instance, they use the formula xy = k to
determine the price of two tokens in a liquidity pool A ↔ B,
where x and y are the quantity or supply of the tokens and k
is a constant. The price of the token B in terms of token A
is given by p = y

x . Similarly, the price of B in terms of A as
a function of the supply of B is given by p = y2

k . Therefore,
the price curve of CPMMs such as Uniswap is essentially a
quadratic bonding curve.

IV. SIMULATION SETUP

The simulation helps us understand the dynamics and evolu-
tion of the system under different scenarios and parameters,
such as the effect of user heterogeneity or the network struc-
ture on the key price and supply. This section presents the
simulation setup and the analysis that can be performed based
on this simulation.

A. Agent Based Modeling

We use agent-based modeling [9] to simulate the actions
and reactions of heterogeneous and adaptive agents (human
users referred to herein as creators) and observe the system’s
emergent patterns and phenomena. This involves using com-
putational models that capture the diversity and complexity of
the human users, such as their attributes, rules, interactions,
and learning, and the environment and network they operate
in, such as the bonding curve, the reserve, and the market. We
use a simple model that assumes a large number of creators,
a stochastic set of actions, and a bounded rationality of the
creators. The model is expressed by a set of algorithms that
specify the initial conditions, the update rules, and the output
measures of the system.
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In our platform, each user has liquidity or one or more ALI
Agents, and a common bonding curve governs keys. To sim-
ulate our token economy system, we employ a design where
human users can be creators, traders, or utilizers. Some human
users may want ALI Agents for trading or consuming tokens,
while others may want to create their own ALI Agents that can
be traded through the bonding curve. These users can employ
fundamental analysis, technical analysis, or noise as a strategy
and have other personality traits and behavior parameters, such
as risk appetite, intelligence level, proactiveness, etc.

We simulate the system using a discrete-time model for a
predefined number of steps. At each time step t, we update
the state of the system, such as the price, supply, the reserve
currency pool, and the creators’ balances. We also update
the state of the users, such as their beliefs, strategies, and
preferences. We then allow the users to interact with the
bonding curve smart contract according to their type, risk
appetite, and proactiveness. We record the transactions and
the outcomes of the trades, such as the values of the keys, the
volumes, liquidity, volatility, and efficiency.

We then analyze the simulation results, such as the dynamics
and the distribution of the keys’ prices, supplies, reserve
currency pool, and the users’ balances. We also analyze the
behavior and performance of the creators, such as their trading
patterns, rewards, market shares, and market impact. We
compare the simulation results with the theoretical predictions
and the empirical observations of the bonding-curve-based
multi-token economy system.

B. Creators Types by Strategy

The most important aspect of creators’ persona and behavior
is their strategy, which determines how they interact with the
token economy. In terms of strategy, users exhibit a determined
set of attributes and are broadly classified into three classes:
fundamental analysts, technical analysts, and noise creators.
1) Fundamental Analysts: Fundamental analysts are creators
who base their trading decisions on the intrinsic value or
fundamental price of the “keys” of the ALI Agents [18]. They
estimate the intrinsic value by analyzing the underlying factors
that affect the demand and supply of the keys, such as the
quality of the project, the size of the market, the competition,
the regulation, and the innovation.

In our settings, fundamental analysts have a high level of
intelligence k ∼ N(0.2, 0.05), a low level of risk appetite
r ∼ N(0.15, 0.01), and high liquidity L ∼ N(10000, 1000).
They tend to buy keys that are undervalued and sell keys that
are overvalued. They also tend to hold keys for a long time
unless there is a significant change in the fundamentals. These
users compute the intrinsic or fair value p̂a,t (that we refer to
as the fundamental price) of keys modeled by the expression
below.

p̂a,t =

n∑
i=1

wi(1± k)pa,ti ,

where n ∼ N(7, 1) represents the number of foresight
terms, wi represents the weights given to the fair price

pa,t and is given by normalizing the decaying sequence[
1 1

2
1
3 . . . 1

n

]
.

They compare the fundamental price with the market price and
decide whether to buy or sell the asset. If the market price
is lower than the fundamental price, the user considers the
asset undervalued and buys it. If the market price exceeds the
fundamental price, the user considers the asset overvalued and
sells it. The user also considers the risk and return of holding
the asset and adjusts the trading volume accordingly. The
creator has several parameters that determine its behavior, such
as risk aversion, confidence level, and time horizon. These
parameters affect how the creator updates its expectations, how
much it trades, and how sensitive it is to price changes. Most
believers will use fundamental analysis as their strategy, while
some utilizers and very few explorers will also employ this
strategy.
2) Technical Analysts (Chartists): Technical analysts are cre-
ators who base their trading decisions on the price patterns
and trends of the keys. They use various indicators and tools,
such as moving averages, trend lines, support and resistance
levels, Fibonacci retracements, and oscillators, to identify their
trades’ optimal entry and exit points [19]. Technical analysts
generally have a medium level of intelligence and a medium
level of risk appetite. Technical analysis includes analyzing a
key’s historical price and volume data to predict its future
direction and momentum, using tools, such as trend lines,
moving averages, oscillators, and chart patterns, to visualize
and interpret the price action [20]. They tend to buy keys that
are in an uptrend and sell keys that are in a downtrend. They
also tend to hold keys for a short time unless there is a reversal
in the trend. For example, if a user observes a bullish trend
line on a key chart, it means that the price is making higher
highs and higher lows, indicating an upward trend. The user
may buy the key and expect the price to continue rising along
the trend line.

In our simulation, the chartists either use a simple or a
weighted moving average to smooth out the price fluctuations,
identify the trend direction, and generate buy or sell signals.
The weight vector of moving window size n ∼ N(7, 1) con-
tains the normalized decaying weights w ∈ Rn for n previous
terms. The historical prices of the key A at time t is given by
pa,t =

[
pa,t−n pa,t−n+1 pa,t−n+2 . . . pa,t−1

]T
. The

future expected price is computed by the expression:

p̂a,t =
wTpa,t

n

For example, if a short-term moving average crosses above
a long-term moving average, it indicates a bullish trend
reversal and a buy signal. Other important parameters de-
termining chartists’ behavior are their medium risk appetite
r ∼ N(0.2, 0.02) and liquidity L ∼ N(5000, 500). Such pa-
rameters affect how the user selects and applies the indicators,
how often it trades, and how it adapts to the market conditions.
Most utilizers use technical analysis, while some believers and
explorers also employ this strategy.
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3) Noise Traders: Noise users base their trading decisions
on random factors like emotions, rumors, news, or social
influence. They do not have any rational or consistent strategy
for their trades. They tend to buy keys that are popular or
hyped and sell keys that are unpopular or feared. They also
tend to hold keys for a very short time unless there is a strong
impulse or pressure to trade.

In our settings, noise users have lower liquidity L ∼
N(2000, 300) and higher risk appetite r ∼ N(0.25, 0.03). The
user does not use any analysis or information to make trading
decisions, nor do they have any preferences or expectations.
The user simply adds noise to the market by creating random
fluctuations in the price and volume. Most explorers will use
noisy trading, while very few believers and some explorers
will also employ this strategy.

C. Creator’s Proactiveness

The creator or user activity or proactiveness is the parameter
that determines how frequently the user trades in the market.
The user’s proactiveness is modeled by a normal distribution
N(µ, σ), where the parameter µ represents the average number
of trades per time unit, and the parameter σ represents the
standard deviation of the number of trades per time unit. The
risk appetite of a user determines how much risk they take
during trading.

The proactiveness distribution of users with fundamental an-
alyst’s strategy is modeled by a normal distribution with a
low µ, such as 0.1 or 0.2, and a low σ, such as 0.05 or 0.1,
meaning that they trade less frequently and less variably than
other types of user.

The proactiveness distribution of the user with a technical
analyst’s strategy is modeled by a normal distribution with
a medium µ, such as 0.5 or 1, and a medium σ, such as
0.2 or 0.4, meaning that they trade more frequently and more
variably than fundamental analysts, but less frequently and less
variably than noise users.

The proactiveness distribution of users with noisy strategy is
modeled by a normal distribution with a high µ, such as 2 or
5, and a high σ, such as 1 or 2, meaning that they trade more
frequently and more variably than other types of user.

D. Life Cycle of ALI Agents’ Keys

In our token economy, tokens or keys issued by the ALI
Agents could serve any of the above purposes. In order to
simulate a realistic token economy, we focus on the inherent
quality of the keys. For this purpose, we adopt the product life
cycle terminology and classify keys into seven classes. Note
that while every user (of any purpose category) has their keys,
we assume that the most meaningful keys are those owned by
creators. These are the main keys that are traded, used, and
sought.

Like the traditional product life cycle, we use the “product life
cycle” concept to explain the stages an ALI agent’s key goes
through, from its creation to its destruction and rebirth in the

market [6]. It has four phases: creation, where the key is first
minted and launched trade, where the key gains value and
liquidity destruction, the key is burned or lost; and rebirth,
where the key is revived or forked. The “key life cycle” helps
developers, believers, and participants make strategic decisions
about key design, pricing, promotion, distribution, and trading.
It also helps them understand customers’ changing needs and
preferences and the impact of innovation and competition on
their keys.

Crypto tokens have different types and functions, such as
governance, security, utility, or payment. Depending on their
purpose and design, tokens may go through different life cycle
stages, from creation to distribution to usage to retirement. In
our context, the token life cycle (or supply cycle) represents
the token’s long-term (three years) weekly adaptation or
popularity. From the bonding curve, the supply cycle could
be easily converted into fair or inherent token values. We
categorized token life cycles into the following seven types
and employed the tokens’ scaled variants to make the tokens
more diverse and realistic.
1) Traditional: A traditional token life cycle follows the
classic introduction, growth, maturity, and decline pattern. This
type of life cycle is likely to be seen in tokens with stable and
predictable demand, a well-established market, and a moderate
level of innovation. An example would be Bitcoin.
2) Boom or Classic: A boom or classic product life cycle
follows the typical bell-shaped curve that shows the four stages
of introduction, growth, maturity, and decline. This type of life
cycle is likely to be seen in tokens with a stable and predictable
demand, a well-established market, and a moderate level of
innovation. An example would be Ethereum.
3) Fad: A fad key life cycle has a short-lived spike in sales
that occurs when the key becomes very popular for a brief
period but then loses its appeal quickly. The fad life cycle is
likely to be seen in keys with a novelty or novelty value, high
social influence, and low customer loyalty. An example would
be Dogecoin.
4) Extended Fad: An extended fad key life cycle is similar to
a fad key life cycle, but the sales do not decline completely.
Instead, they stabilize at a lower level than the initial peak.
This type of life cycle is likely to be seen in keys with a
novelty or novelty value, a high degree of social influence, and
a low level of customer loyalty, but also have some residual
demand or niche market. An example would be NFT.
5) Revival or Nostalgia: A revival or nostalgia key life cycle
occurs when an old-fashioned key that has lost its popularity
regains its appeal due to some changes in the market or
consumer preferences. This type of life cycle is likely to be
seen in keys with a retro or vintage value, a high degree of
emotional attachment, and a loyal customer base. An example
would be Litecoin.
6) Seasonal: A seasonal key life cycle has a periodic increase
and decrease in sales depending on the time of the year. This
type of life cycle is likely to be seen in keys with a seasonal
demand, a high degree of seasonality, and a low degree of
customer loyalty. An example could be a Basic Attention
Token (BAT).
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Fig. 7. The product life cycle of distinct “key” types (representing ALI Agents) based on their change in supply or reserves (y-axis) through different stages,
i.e., creation, growth, maturity, decline, and revival (x-axis).

7) Bust : A bust key life cycle has a rapid and dramatic
decline in sales after a brief period of growth or stability.
This type of life cycle is likely to be seen in keys with a high
risk, a low quality, and a poor reputation. An example woud
be Bitconnect (BCC).

E. Platform Variables and Parameters

Table I lists the most important parameters of the platform
along with their brief description.

Table I. Important parameters of the platform and their brief description

Sell Curve Bonding curve to sell keys

Buy Curve Bonding curve to buy keys

Transaction Fee Platform fee for transactions

Number of Users Proportion of users by purpose

List of Users For all user types

List of Keys For every creator

Liquidity Distributions by users’ purpose

Risk Appetite Distributions by users’ strategies

Pro-activeness Distributions by users’ strategies

Foresight Terms Distribution for fundamentalists

Hindsight Terms Distribution for chartists

Intelligence Gap Distribution for fundamentalists

Time Horizon Duration of the simulation

F. The Creators’ Parameters

Each user acts according to a set of rules to carry out rational
(maximum value extracting) actions. When a user performs
an action, the simulation environment submits transactions to
a forked blockchain and updates the smart contract’s state.
Table I lists the most important parameters of the platform
along with their brief description.

G. Distribution of Creators and their Strategies

The number of users varies by the categories of their pur-
pose. We try different distributions. Naturally, the number of
creators is far less than the number of other types of users.
Among others, there are relatively fewer believers compared
to utilizers and explorers. As outlined above, creators have no

Table II. Important parameters of the users (creators), their ALI Agents’
keys, and a brief description.

Purpose Category ∈ { believer, Utilizer, explorer}

Strategy ∈ { Fundy, Charty, Noisy }

Liquidity Vary by creator’s purpose

Pro-activeness Vary with creator’s strategy

Risk Appetite Vary with creator’s strategy

Intelligence Gap Error in the AI of fundamentalists

Foresight Terms Used by fundamentalists

Hindsight Terms Used by chartists

Term-wise Weights Used by fundamentalists and chartists
for predicting keys’ future price

Indicators Simple or weighted moving average
used by chartists for decision making

Arrival Time Creation time of creator/keys

Key ID The id of the users’ key

Key Quality Key product life cycle shape

Key Collateral Reserves against key in supply

Current Supply Number of Key currently in the market

Current Buy Price Determined by buy curve at current supply

Current Sell Price Determined by sell curve at current supply

trading strategies as they do not take part in trading. believers,
utilizers, and explorers randomly draw their strategy to be
fundamental analysts, technical analysts, or noise traders.

H. Distribution of Creators’ Liquidity, Risks and Proactive-
ness

As outlined below, users have varying risks and proactiveness
depending on their strategy. Generally, fundamental analysts,
technical analysts, and noisy users are increasingly risk-takers
and proactive in the platform. The initial liquidities, on the
other hand, vary by their purpose categories. Broadly speaking,
believers have the largest liquidity, followed by utilizers, while
explorers have the smallest liquidity. All three parameters
come from normal distributions with their means, and vari-
ances are platform parameters, as shown in Figure 8.
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Fig. 8. (left to right) The distribution of users’ risk and proactiveness by strategy type and liquidity by purpose category.

I. Creators’ Arrival: Platform Adoption

Adoption of new technology is a well-studied discipline [6].
There are five main classes of technology adopters, and their
proportions are summarized in Figure 9.

Fig. 9. The arrival of users representing their platform adoption.

1) Innovators test any new products out of curiosity. Gen-
erally, they are also the beta testers, and their feedback
can help test the platform.

2) Early adopters are very curious but cautious than
innovators, then tend to adopt a product after it has been
thoroughly tested.

3) The early majority first want to be convinced that the
product works.

4) The late majority do not take any risk with a product
and want to be convinced that the product is valuable
for them in the long term.

5) Laggards typically are not very tech savvy and need to
learn about the product

J. Simulation Algorithm

V. SIMULATION RESULTS

The simulation experiments were conducted to analyze the
bonding curve-based token economy. These experiments var-
ied in user numbers, proportion (by purpose category), and risk
appetite, token (key) life cycle and creation types, and bonding
curve type and parameters to explore different dynamics within
the system. Below, we present the findings categorized into
user-wise, key-wise, and platform-wise analyses.

A. Creators-wise Analysis

The simulations involved a range of users from 1000 to 5000,
spanning a simulation duration of 3 years (36 months). Each
user was categorized into one of four purpose categories: cre-
ator, explorer, believer, and utilizer, with distinct strategic and
behavioral characteristics. The simulations were performed for
different distributions of user behavior parameters. We run
simulations with different users’ proportions by purpose cat-
egory because the distribution primarily depends on external
factors such as market uncertainty and network connectivity
and cannot be determined accurately [21].

The proportion of users by their purpose categories is as
follows:

1) High utilizers: utilizers = 40%, explorers = 30%, believ-
ers = 20%, creators = 10%

2) High believers: believers = 40%, utilizers = 30%, ex-
plorers = 20%, creators = 10%

3) High explorers: explorers = 40%, utilizers = 30%, be-
lievers = 20%, creators = 10%

4) High creators: creators = 40%, utilizers = 30%, believer
= 20%, explorers = 10%

Risk appetite is a behavioral parameter that users use to decide
the amount of key supply to buy or sell. We varied the risk
appetite into low and high with the following distribution.

1) Low: A mean of 0.1 and standard deviation of 0.001
for fundamental analysts, a mean of 0.13 and standard
deviation of 0.003 for technical analysts, and a mean of
0.15 and standard deviation of 0.005 for noise users.

2) High: A mean of 0.15 and a standard deviation of 0.01
for fundamental analysts, a mean of 0.2 and a standard
deviation of 0.02 for technical analysts, and a mean of
0.25 and a standard deviation of 0.003 for noise users.

1) Net Wealth Gain/Loss: Net liquidity wa,t represents the
sum of the liquidity available with the user La,t and the current
value of its keys holdings ha,t.

ha,t = hai,t
Tpai,t

where hai,t represents the m keys acquired by the user a at
time t and pai,t represents their current prices. On the other
hand, net liquidity difference wa,∆t represents the difference
between a user’s initial liquidity and the closing liquidity (after
the entire simulation duration).

wa,∆t = wa,T − wa,t0
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Algorithm 1 Simulation of our AI Multi-Token Economy System
1: Initialize the platform variables
2: Initialize the users with their types, behavior parameters, liquidity, and key balances
3: Initialize the keys with their initial prices, types, monthly price statistics
4: while simulation duration is not exhausted do ▷ represented by number of weeks
5: Select alive users and keys for the current simulation term ▷ assuming users/keys created at the beginning of a

simulation term
6: Compute expected price of each alive key for each alive user ▷ depending on user type, the expected price will differ
7: for each sub-step in current simulation term do ▷ represented by minutes in a month
8: Select a user based on its proactivity
9: Compare the expected price with the current price given by the bonding curve. Decide whether to buy or sell a

key and how much to trade based on the user type and the behavior parameters
10: Execute the trade by interacting with the bonding curve contract. ▷ The contract calculates the average price and

the amount of ALI required or received for the trade and issues or burns the keys accordingly. The contract also updates
the price and the supply of the key based on the bonding curve function

11: Update the users’ liquidity and key holdings based on the trade outcome
12: Record the price, the supply, and the liquidity of the transacting key and user
13: end for
14: Compute and update the weekly price moving averages and high-lows of the alive keys ▷ used by chartists for key’s

future price prediction
15: ANALYZE(Returns of users)
16: end while

17: ANALYZE(Keys price dynamics) ▷ Plot the price and the supply of each key over time and observe the dynamics and the
patterns of the bonding curve

18: ANALYZE(Users portfolio) ▷ Plot the liquidity and the key holdings of each user over time and observe the distribution
and the changes of the wealth and the portfolio of the users

19: ANALYZE(Users and keys volatility) ▷ Calculate the return and the volatility of each key and each user over time and
compare the performance and the risk of different keys and different users

20: ANALYZE(Bonding curves) ▷ Analyze the impact of different bonding curve shapes and parameters on the price and the
supply of the keys and the behavior and the rewards of the users

21: ANALYZE(User types) ▷ Analyze the impact of different user types and behavior parameters on the price and the supply
of the keys and the behavior and the rewards of the users

22: ANALYZE(Fundamental prices) ▷ Analyze the impact of different fundamental price functions and random factors on the
price and the supply of the keys and the behavior and the rewards of the users

23: ANALYZE(Correlation and Causations) ▷ Analyze the correlation and the causation between the price, the supply, the
liquidity, and the behavior of the keys and the users

We computed the net liquidity difference of each alive user
after the completion of a simulation term. A positive liquid-
ity difference represents a gain in liquidity and vice versa.
Then, the descriptive statistics of the liquidity difference were
computed for each group of traders and different bonding
curves, as shown in Figure 10. The results depict that utilizers
extracted the most value, while believers extracted the least
value for all bonding curves. These results also imply that
utilizers are more likely to keep key holdings until the simu-
lation duration is exhausted, while the believers are likely to
have increased liquidity.

B. ALI Agent-wise Analysis

Each simulation generated keys equal to the number of cre-
ators, with random assignments of life cycle curve shapes. The
simulations were performed by creating keys in early and late
scenarios where early adoption represents keys created in the

first three months while late adoption represents keys created
in the first eight months.
1) Price Change Over Time: Keys were associated with
creators and experienced fluctuations in price at different rates.
The price-changing patterns of keys resembled their product
life cycle shapes for less volatile and stable market conditions
(described later in Section V-C2). Such market dynamics
demonstrate that the true value of the keys was achieved or the
true price was discovered. The price time series of keys for
different bonding curves are shown in Figure 11. It can be seen
that keys with a fad or bust life cycle remained less popular
compared to seasonal, revival, or traditional life cycles.
2) Price Volatility : Volatility is a statistical measure of the
risk associated with a particular asset and can be used to
assess the potential value differential from trading in it. These
measures are called stylized facts, including methods such as
fat-tail and volatility-clustering [22]. In our simulation runs,
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Fig. 10. The difference in the net wealth (closing - initial) of early and late
created users belonging to a purpose category for linear, quadratic, sigmoid,
and sublinear bonding curves.

we compute the price volatility of the keys as outlined in [4]
and visualize the price time series of the least volatile keys
by their product life cycle shape. The percentage changes in
the logarithmic price or return of a key ra,t at time step t are
given by.

ra,t =
log pt − log pt−1

log pt−1

The average and standard deviation of the returns of a key
ra ∈ RT for the entire simulation duration T represent the
volatility va of the key. We computed the volatility statistics
of all keys for all simulation experiments and grouped these
statistics by the key types.

C. Platform-wise Analysis

Similar to varying the number of users and keys for running
experiments, we varied the bonding curve’s parameters or
coefficients and shapes. Specifically, we ran experiments with
linear, polynomial, sublinear, and sigmoid bonding curves and
varying parameters. The frequency of transactions per user

per week represents the average number of transactions a
user can perform weekly. The simulations were run with
frequencies of 10 and 30. The parameters for the bonding
curves represent varying coefficients. For instance, the second
parameter represents the degree of the function n for linear,
polynomial, and sublinear curves while the y-inflection point
a for the sigmoid bonding curve (essentially the maximum
price). Similarly, the third parameter represents the intercept
c for linear, polynomial, and sublinear curves while the x-
inflection point b for the sigmoid bonding curve (essentially
the supply at the maximum price).

The variation influenced the platform’s dynamics in bonding
curve shapes and parameters.
1) Bonding Curve Impact on the Number of Transactions:
Various parameters were observed to impact the total number
of transactions for each simulation run. These parameters
include the bonding curve type, the users’ distribution by their
purpose categories, the total number of users, and the users’
platform adoption (early or late). The number of transactions
in a simulation run is associated with the gas fee on the
Ethereum network and is an important indicator for choosing
a bonding curve. Figure 12 shows that most transactions
were performed with sigmoid bonding curves, followed by
polynomial and linear bonding curves. However, the least
number of transactions were performed with sublinear bonding
curves, demonstrating its lesser adaptability.
2) Bonding Curve Impact on the Key Price: We computed
the price volatility indexes (VI) and related statistics for all
simulation runs. These statistics were computed using the
arithmetic mean, standard deviation, median, minimum, and
maximum of the price volatility va of all keys for each
simulation run. The log of the key prices was computed using
a base of 2 to compare the prices to the same scale and
cater to very high prices, such as in the case of polynomial
bonding curves. Our simulation results, shown in Figure 13,
demonstrate that linear and polynomial bonding curves lead to
very high price volatility, while sublinear and sigmoid bonding
curves create significantly less volatile market conditions.

We also computed the descriptive statistics for each simula-
tion run, i.e., average, standard deviation, and maximum of
key prices. These statistics were then averaged for different
bonding curves and visualized using heatmap plots. The results
show that sub-linear and sigmoid bonding curves exhibited a
more stable environment with lower prices. On the other hand,
linear and polynomial (quadratic) curves led to higher prices,
as shown in Figure 14.
3) Bonding Curve Impact on the Net Wealth Gain/Loss: The
results in Figure 10 demonstrate that users extracted the most
value using polynomial bonding curves, followed by linear and
sigmoid bonding curves. The highest key prices in polynomial
bonding curves, as demonstrated in Figure 14, potentially led
to the increased net wealth of the traders. Sublinear bonding
curves, however, turned out to be the least rewarding bonding
curves.

User interactions with different bonding curves showed that
creators and believers preferred more stable curves, while
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Fig. 11. (left to right) The price time series of keys of different product life cycle types for linear, quadratic, sigmoid, and sublinear bonding curves.

Fig. 12. The average frequency of the total number of transactions performed
by users for all simulation runs with varying bonding curves, distributions of
users by their purpose categories, the total number of users, and the users’
arrival (early or late).

explorers were drawn to curves that provided opportunities for
quick gains. Utilizers were relatively unaffected by the curve
shapes.
4) Bonding Curve Impact on Collateral Collection: Each sim-
ulation had as many keys as the number of creators, while the
type of token or key life cycle shape was assigned randomly.

As we varied the number of total users and their distribution
by purpose category for any simulation, the number of keys
was created accordingly. We present the overall performance
of different keys for different bonding curves and varying the
number of users.

Our results show that higher collateral was collected by keys
in the case of the sigmoid bonding curve, followed by the
linear and sublinear bonding curves. The lowest collateral, on
average, was collected when the key prices were determined by
polynomial bonding curves, indicating a very unstable market
condition, as shown in Figure 15.

VI. DISCUSSION

This research comprehensively explored the transformative
potential and challenges of implementing a decentralized,
bonding curve-based token economy in conjunction with agen-
tic AI systems. The discussion below synthesizes key findings
reflects on the implications of our results and outlines future
research directions.

A. Comparison of Different Bonding Curves

In our research, we compared different bonding curves —lin-
ear, polynomial, sigmoid, and sub-linear — in a decentralized
token economy using measures such as key price volatility,
rewards, collateral collection, and gas fee collection. With their
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Fig. 13. The key price volatility index (in terms of average, standard deviation,
and median) for all simulation runs with different bonding curves and users
distribution by their purpose categories.

accelerated price increase, polynomial curves cater to envi-
ronments seeking rapid growth and early trade, appealing to
risk-tolerant early adopters. Linear curves are ideal for stable
environments, offering predictable growth and attracting long-
term, risk-averse believers. Sigmoid curves, balancing initial
stability with later rapid growth and lower price volatility, are
optimal for projects that require steady early development,
targeting a mix of cautious and growth-focused believers. Sub-
linear curves, characterized by conservative growth, are best
for long-term projects aiming for sustainability without high
volatility.

The authors in [5] observed that the ability of a market to
provide greater liquidity and, therefore, cheaper trading is a
major factor in determining a successful market design. In line
with these observations, our simulations demonstrated that the
sigmoid bonding curve provides cheaper trading and greater
liquidity and can be suitable for a sustainable token economy
market design. Linear and quadratic bonding curves, on the
other hand, lead to rapid and higher prices. The selection of
a bonding curve thus hinges on the project’s goals, desired
market dynamics, and the traders’ profile, each presenting
unique benefits and limitations.

B. Implications of Liquidity and Bonding Curves

Our study reveals that liquidity significantly empowers ALI
Agents, enhancing their autonomy and operational effective-
ness. This finding underscores the pivotal role of financial
resources in AI-driven ecosystems, as it enables AI agents

Fig. 14. The summary statistics (average, standard deviation, and max) of
the keys price for all simulation runs with different bonding curves and users
distribution by their purpose categories.

Fig. 15. The average of the collateral collected by keys for all simulations
runs with different bonding curves and distributions of users in terms of their
purpose categories.

to access necessary services, information, and other digital
assets autonomously. The introduction of bonding curves as a
mechanism for key pricing and value creation marks a signif-
icant departure from traditional market structures, offering a
more dynamic and responsive system that adapts to changes in
supply and demand. This feature is particularly beneficial in
a decentralized context, where market efficiency and fluidity
are paramount.
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C. Limitations of Token Bonding Curves

While bonding curves present innovative mechanisms for
pricing and key liquidity in decentralized markets, our research
and simulation results have identified several limitations. One
key challenge is the vulnerability to market manipulation,
particularly in scenarios with dominant or malicious actors
who can significantly influence key prices by buying or selling
large quantities. This creates the potential for artificial price
volatility, undermining market stability and fairness. Addition-
ally, TBCs, depending on their shape, may not always align
with the long-term sustainability of a token economy. For
instance, aggressive growth models like polynomial curves
can lead to unsustainable price surges, discouraging early
participation and destabilizing the market. Our simulations
also revealed that different bonding curve shapes impact user
behavior differently, with some curves favoring certain users
over others, leading to potential imbalances in the ecosystem.
Furthermore, the complexity inherent in understanding and
interacting with bonding curves may deter wider participation,
particularly among less experienced users. This complexity
barrier underscores the need for user education and potentially
simpler or more intuitive bonding curve models.

VII. CONCLUSION

In conclusion, our research has provided novel insights into
the dynamics of a decentralized, bonding curve-based token
economy integrated with agentic AI. We have demonstrated
that by enabling AI agents with liquidity and the ability to
issue and trade their own keys, we can significantly enhance
their autonomy and effectiveness in a decentralized ecosystem.
As embedded liquidity relies on smart contract technology
that is trustless and self-determining, powered by a protocol
tech stack that is vertically decentralized, the capital efficiency
and scalability of deploying tokenized intelligence extricates
agentic generative AI systems from the friction of traditional
economic markets and the reliance on centralized entities that
typically author and command legacy AI systems.

Our simulation results indicate that different types of users
interact with the bonding curve-based token economy in
diverse and distinct ways, creating a rich and dynamic mar-
ket environment. The bonding curve mechanism has proven
effective in providing a decentralized key pricing model. The
curve shapes and parameters directly impact market behavior,
influencing the number of transactions, key prices, and col-
lateral collection. Moreover, our study has reproduced such
simulated bonding curve-based market conditions where the
price-changing patterns of keys closely resemble the fair value
of keys, thereby achieving price discovery.

Building upon this foundation, our future work will explore
non-embedded ALI agent tokens that emerge as a pivotal
“graduation mechanism” and offer ALI agent owners an addi-
tional layer of liquidity. This innovative approach can empower
the wider community by creating ERC-20 tokens and introduc-
ing a new dimension of incentives and rewards, augmenting
the agent’s market engagement and opening avenues for token-
gated access to exclusive content, governance mechanisms,

and follower/fandom activities. The flexibility afforded in
issuing these types of supplemental liquidity dispensations
through the execution of token airdrops and the establishment
of liquidity pools may invite widespread involvement in the
agent’s community and economy. As we look towards the
future, the impact and utility of non-embedded ALI agent
tokens within the broader ecosystem will be subject to ongo-
ing analysis. This will involve meticulously examining their
adoption and utility, leveraging a growing real-world dataset
to derive meaningful insights. Such analysis will be crucial in
understanding the evolving dynamics of decentralized onchain
agentic AI systems infused with liquidity apparatuses, in
relation to their traditionally centralized offchain counterparts.
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The simulations were run for the following combination of
parameters.
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Bonding
Curve # Users

Transactions
Frequency

Platform
Adoption

Users
Distribution Risk m ¶ / c || c ¶ / a || n ¶ / b ||

linear 1000 10 early creators high 2 0 1
linear 1000 30 early creators high 2 0 1
linear 1000 30 early believers high 2 0 1
linear 1000 30 early creators low 2 0 1
linear 5000 30 early believers high 2 0 1
linear 5000 30 early creators high 2 0 1
linear 1000 30 early explorers high 2 0 1
linear 1000 30 late explorers high 2 0 1
linear 1000 30 late utilizers high 2 0 1
linear 1000 30 early utilizers high 2 0 1
linear 1000 10 late believers high 2 0 1
linear 1000 10 early believers high 2 0 1
linear 1000 30 early believers low 2 0 1
linear 1000 30 late believers high 2 0 1
linear 1000 30 early utilizers low 2 0 1
linear 1000 30 early explorers low 2 0 1
linear 1000 10 early believers low 2 0 1
linear 1000 30 late believers low 2 0 1
linear 1000 10 late believers low 2 0 1
linear 1000 10 early explorers high 2 0 1
linear 1000 10 early creators low 2 0 1
linear 1000 10 late creators high 2 0 1
linear 1000 30 late explorers low 2 0 1
linear 1000 10 late explorers high 2 0 1
linear 1000 10 early explorers low 2 0 1
linear 1000 10 early utilizers high 2 0 1
linear 1000 10 late explorers low 2 0 1
linear 1000 10 early utilizers low 2 0 1
linear 1000 30 late creators high 2 0 1
linear 1000 10 late creators low 2 0 1
linear 1000 10 late utilizers high 2 0 1
linear 1000 10 late utilizers low 2 0 1
linear 1000 30 late creators low 2 0 1
linear 1000 30 late utilizers low 2 0 1
linear 5000 30 early explorers high 2 0 1
linear 5000 10 early believers low 2 0 1
linear 5000 30 early explorers low 2 0 1
linear 5000 10 late believers low 2 0 1
linear 5000 30 late believers low 2 0 1
linear 5000 10 early explorers high 2 0 1
linear 5000 10 late explorers high 2 0 1
linear 5000 10 early explorers low 2 0 1
linear 5000 30 late explorers high 2 0 1
linear 5000 10 late explorers low 2 0 1
linear 5000 30 late explorers low 2 0 1
linear 5000 30 early utilizers high 2 0 1
linear 5000 30 early utilizers low 2 0 1
linear 5000 10 early creators low 2 0 1
linear 5000 10 early utilizers high 2 0 1
linear 5000 10 late creators low 2 0 1

¶Linear, sublinear, and polymonial
||Sigmoid
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linear 5000 10 early utilizers low 2 0 1
linear 5000 10 late utilizers high 2 0 1
linear 5000 10 late utilizers low 2 0 1
linear 5000 30 late creators low 2 0 1
linear 5000 30 late utilizers high 2 0 1
linear 5000 30 late utilizers low 2 0 1
linear 5000 30 early believers low 2 0 1
linear 5000 10 early believers high 2 0 1
linear 5000 10 late believers high 2 0 1
linear 5000 30 late believers high 2 0 1
linear 5000 10 early creators high 2 0 1
linear 5000 10 late creators high 2 0 1
linear 5000 30 early creators low 2 0 1
linear 5000 30 late creators high 2 0 1
polynomial 1000 30 early creators high 2 0 2
polynomial 1000 30 early creators low 2 0 2
polynomial 1000 30 early utilizers high 2 0 2
polynomial 1000 30 early utilizers low 2 0 2
polynomial 1000 30 early believers high 2 0 2
polynomial 1000 30 early explorers low 2 0 2
polynomial 5000 10 early creators high 2 0 2
polynomial 1000 30 late explorers high 2 0 2
polynomial 5000 30 early creators high 2 0 2
polynomial 5000 30 early creators low 2 0 2
polynomial 5000 30 early utilizers high 2 0 2
polynomial 5000 30 early believers high 2 0 2
polynomial 5000 30 early believers low 2 0 2
polynomial 5000 10 early explorers high 2 0 2
polynomial 1000 10 early believers high 2 0 2
polynomial 1000 10 early believers low 2 0 2
polynomial 1000 10 early creators high 2 0 2
polynomial 1000 10 early explorers high 2 0 2
polynomial 1000 10 late believers high 2 0 2
polynomial 1000 10 early explorers low 2 0 2
polynomial 1000 30 early believers low 2 0 2
polynomial 1000 30 early explorers high 2 0 2
polynomial 1000 10 late believers low 2 0 2
polynomial 1000 30 late believers high 2 0 2
polynomial 1000 10 late creators high 2 0 2
polynomial 1000 10 late explorers high 2 0 2
polynomial 1000 10 early creators low 2 0 2
polynomial 1000 10 late explorers low 2 0 2
polynomial 1000 30 late believers low 2 0 2
polynomial 1000 10 early utilizers high 2 0 2
polynomial 1000 10 early utilizers low 2 0 2
polynomial 1000 30 late explorers low 2 0 2
polynomial 1000 30 late creators high 2 0 2
polynomial 1000 10 late creators low 2 0 2
polynomial 1000 10 late utilizers high 2 0 2
polynomial 1000 10 late utilizers low 2 0 2
polynomial 1000 30 late creators low 2 0 2
polynomial 1000 30 late utilizers high 2 0 2
polynomial 1000 30 late utilizers low 2 0 2
polynomial 5000 30 early utilizers low 2 0 2
polynomial 5000 30 early explorers high 2 0 2
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polynomial 5000 10 late believers high 2 0 2
polynomial 5000 10 early believers high 2 0 2
polynomial 5000 30 early explorers low 2 0 2
polynomial 5000 30 late believers high 2 0 2
polynomial 5000 10 early believers low 2 0 2
polynomial 5000 10 late believers low 2 0 2
polynomial 5000 30 late believers low 2 0 2
polynomial 5000 10 early creators low 2 0 2
polynomial 5000 10 early explorers low 2 0 2
polynomial 5000 10 late explorers high 2 0 2
polynomial 5000 10 late creators high 2 0 2
polynomial 5000 30 late explorers high 2 0 2
polynomial 5000 10 early utilizers high 2 0 2
polynomial 5000 10 late explorers low 2 0 2
polynomial 5000 10 early utilizers low 2 0 2
polynomial 5000 30 late explorers low 2 0 2
polynomial 5000 30 late creators high 2 0 2
polynomial 5000 10 late creators low 2 0 2
polynomial 5000 10 late utilizers high 2 0 2
polynomial 5000 10 late utilizers low 2 0 2
polynomial 5000 30 late creators low 2 0 2
polynomial 5000 30 late utilizers high 2 0 2
polynomial 5000 30 late utilizers low 2 0 2
sigmoid 1000 10 early creators high 300 600 400
sigmoid 1000 10 early creators low 300 600 400
sigmoid 1000 10 early believers high 300 600 400
sigmoid 1000 10 early utilizers high 300 600 400
sigmoid 1000 10 early believers low 300 600 400
sigmoid 1000 10 early utilizers low 300 600 400
sigmoid 1000 10 early explorers high 300 600 400
sigmoid 1000 10 early explorers low 300 600 400
sigmoid 1000 10 late believers high 300 600 400
sigmoid 1000 10 late creators high 300 600 400
sigmoid 1000 10 late believers low 300 600 400
sigmoid 1000 10 late explorers high 300 600 400
sigmoid 1000 10 late explorers low 300 600 400
sigmoid 1000 10 late creators low 300 600 400
sigmoid 1000 30 early believers high 300 600 400
sigmoid 1000 10 late utilizers high 300 600 400
sigmoid 1000 30 early creators high 300 600 400
sigmoid 1000 10 late utilizers low 300 600 400
sigmoid 1000 30 early believers low 300 600 400
sigmoid 1000 30 early explorers high 300 600 400
sigmoid 1000 30 early explorers low 300 600 400
sigmoid 1000 30 late believers high 300 600 400
sigmoid 1000 30 early creators low 300 600 400
sigmoid 1000 30 late believers low 300 600 400
sigmoid 1000 30 early utilizers high 300 600 400
sigmoid 1000 30 late explorers high 300 600 400
sigmoid 1000 30 early utilizers low 300 600 400
sigmoid 1000 30 late creators high 300 600 400
sigmoid 1000 30 late explorers low 300 600 400
sigmoid 1000 30 late creators low 300 600 400
sigmoid 1000 30 late utilizers high 300 600 400
sigmoid 1000 30 late utilizers low 300 600 400
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sigmoid 5000 10 early believers high 300 600 400
sigmoid 5000 10 late believers high 300 600 400
sigmoid 5000 30 early believers high 300 600 400
sigmoid 5000 10 early believers low 300 600 400
sigmoid 5000 10 late believers low 300 600 400
sigmoid 5000 10 early creators high 300 600 400
sigmoid 5000 10 early explorers high 300 600 400
sigmoid 5000 30 early believers low 300 600 400
sigmoid 5000 10 late explorers high 300 600 400
sigmoid 5000 30 late believers high 300 600 400
sigmoid 5000 10 late creators high 300 600 400
sigmoid 5000 10 early explorers low 300 600 400
sigmoid 5000 30 early explorers high 300 600 400
sigmoid 5000 10 late explorers low 300 600 400
sigmoid 5000 30 early explorers low 300 600 400
sigmoid 5000 30 late believers low 300 600 400
sigmoid 5000 30 early creators high 300 600 400
sigmoid 5000 30 late explorers high 300 600 400
sigmoid 5000 10 early creators low 300 600 400
sigmoid 5000 30 late creators high 300 600 400
sigmoid 5000 30 late explorers low 300 600 400
sigmoid 5000 10 early utilizers high 300 600 400
sigmoid 5000 10 late creators low 300 600 400
sigmoid 5000 10 early utilizers low 300 600 400
sigmoid 5000 10 late utilizers high 300 600 400
sigmoid 5000 10 late utilizers low 300 600 400
sigmoid 5000 30 early creators low 300 600 400
sigmoid 5000 30 early utilizers high 300 600 400
sigmoid 5000 30 early utilizers low 300 600 400
sigmoid 5000 30 late creators low 300 600 400
sigmoid 5000 30 late utilizers high 300 600 400
sigmoid 5000 30 late utilizers low 300 600 400
sublinear 1000 30 early creators high 2 0 3
sublinear 1000 30 early utilizers high 2 0 3
sublinear 1000 30 late utilizers high 2 0 3
sublinear 5000 30 early utilizers high 2 0 3
sublinear 5000 30 early believers high 2 0 3
sublinear 5000 30 early explorers high 2 0 3
sublinear 1000 10 early creators high 2 0 3
sublinear 1000 10 early creators low 2 0 3
sublinear 1000 10 early utilizers high 2 0 3
sublinear 1000 10 early utilizers low 2 0 3
sublinear 1000 10 early believers high 2 0 3
sublinear 1000 10 early believers low 2 0 3
sublinear 1000 10 early explorers high 2 0 3
sublinear 1000 10 early explorers low 2 0 3
sublinear 1000 10 late creators high 2 0 3
sublinear 1000 10 late creators low 2 0 3
sublinear 1000 10 late utilizers high 2 0 3
sublinear 1000 10 late believers low 2 0 3
sublinear 1000 10 late utilizers low 2 0 3
sublinear 1000 10 late explorers high 2 0 3
sublinear 1000 30 early utilizers low 2 0 3
sublinear 1000 10 late explorers low 2 0 3
sublinear 1000 30 early believers low 2 0 3
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sublinear 1000 30 early explorers high 2 0 3
sublinear 1000 30 early explorers low 2 0 3
sublinear 1000 30 late believers high 2 0 3
sublinear 1000 30 late believers low 2 0 3
sublinear 1000 30 late creators low 2 0 3
sublinear 1000 30 late explorers high 2 0 3
sublinear 1000 30 late utilizers low 2 0 3
sublinear 1000 30 late explorers low 2 0 3
sublinear 5000 10 early utilizers high 2 0 3
sublinear 5000 10 early believers high 2 0 3
sublinear 5000 10 early utilizers low 2 0 3
sublinear 5000 30 early explorers low 2 0 3
sublinear 5000 30 early utilizers low 2 0 3
sublinear 5000 10 early believers low 2 0 3
sublinear 5000 10 late believers high 2 0 3
sublinear 5000 10 early explorers high 2 0 3
sublinear 5000 30 late believers high 2 0 3
sublinear 5000 10 early explorers low 2 0 3
sublinear 5000 10 late creators low 2 0 3
sublinear 5000 10 late believers low 2 0 3
sublinear 5000 30 late explorers high 2 0 3
sublinear 5000 10 late explorers high 2 0 3
sublinear 5000 10 late utilizers low 2 0 3
sublinear 5000 30 late explorers low 2 0 3
sublinear 5000 10 late explorers low 2 0 3
sublinear 5000 30 late creators low 2 0 3
sublinear 5000 30 late utilizers high 2 0 3
sublinear 5000 30 late utilizers low 2 0 3
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