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Abstract—Modern Browsers have become sophisticated appli-
cations, providing a portal to the web. Browsers host a complex
mix of interpreters such as HTML and JavaScript, allowing not
only useful functionality but also malicious activities, known as
browser-hijacking. These attacks can be particularly difficult to
detect, as they usually operate within the scope of normal browser
behaviour. CryptoJacking is a form of browser-hijacking that has
emerged as a result of the increased popularity and profitability
of cryptocurrencies, and the introduction of new cryptocurrencies
that promote CPU-based mining.

This paper proposes MANiC (Multi-step AssessmeNt for
Crypto-miners), a system to detect CryptoJacking websites. It
uses regular expressions that are compiled in accordance with
the API structure of different miner families. This allows the de-
tection of crypto-mining scripts and the extraction of parameters
that could be used to detect suspicious behaviour associated with
CryptoJacking. When MANiC was used to analyse the Alexa
top 1m websites, it detected 887 malicious URLs containing
miners from 11 different families and demonstrated favourable
results when compared to related CryptoJacking research. We
demonstrate that MANiC can be used to provide insights into
this new threat, to identify new potential features of interest and
to establish a ground-truth dataset, assisting future research.

Index Terms—CryptoJacking, Drive-by Mining, Crypto-
mining, Malware, Browser Security, Web-based Threats

I. INTRODUCTION

In 2008, an entity operating under the pseudonym Satoshi
Nakamoto presented a decentralised peer-to-peer (P2P) cryp-
tocurrency called Bitcoin [1]. These pseudonymous virtual
coins are generated by a mining process which involves
solving a proof of work for a transaction block. If a user
successfully mines a block, they are rewarded with Bitcoins.
The number of Bitcoins they receive is determined by the
number of blocks that have already been mined; every time
210,000 blocks are mined, the reward halves. This process will
continue until all 21 million Bitcoins have been mined which
is expected to be within the next 120 years [2].

Bitcoin mining becomes more computationally expensive
over time, requiring higher computational resources to com-
pete for a continuously decreasing reward. Dedicated hard-
ware, such as ASICs (Application-Specific Integrated Cir-
cuits), are now the equipment of choice, designed and de-
ployed specifically for mining purposes. Some users form
mining pools, where they share their computational resources
and any rewards they receive, increasing the chances of
obtaining a reward, but lowering the value [3].

While Bitcoin was the first cryptocurrency, it is certainly not
the last. There are currently 1633 cryptocurrencies operating in
a market worth over $350 billion [4]. One of these currencies
is Monero, known for its privacy-preserving features. The

Monero mining process is similar to that of Bitcoin, in
that it relies on proof-of-work and rewards miners. However,
the computational process is memory-hard, requires a large
amount of memory and is better suited to CPU-based mining
than the ASIC-based mining that has taken over the Bitcoin
mining market [5].

Miners found that the increasing resource costs associated
with Bitcoin mining were making the potential reward less
enticing, but cyber-criminals found a way to take advantage
of Bitcoin mining and the profits it can generate through
the production and distribution of crypto-mining malware.
This malware infects a victim’s computer and configures
cryptocurrency mining software, diverting all revenue directly
to the attacker, without incurring any of the resource costs.
With a large botnet of infected computers [6] or an abundance
of computational power [7], this can be a very lucrative attack.

The CPU-friendly design of the Monero mining process
enabled a new phenomenon of browser-based mining. In
September 2017, CoinHive released a JavaScript file to enable
in-browser mining [8] and was quickly followed by other
providers offering a similar service, e.g. CoinHave, JSECoin
and CryptoLoot. If one of these scripts is integrated into a
website, it will hijack the CPU of any visitors to mine Monero.

Ad-blockers and anti-malware vendors quickly started
blocking these scripts, but CoinHive argued that their script
offers a legitimate alternative to ads [9] and site owners should
be responsible for informing their users that the mining is
taking place. To combat the blocking of their initial script,
CoinHive released a new script called AuthedMine, which will
never start mining without explicitly asking for user consent.
AuthedMine is currently not blocked by any ad-blocker or
anti-virus product [10].

We define CryptoJacking as the unauthorised use of a
victim’s browser to perform cryptocurrency mining. The re-
mainder of this paper is organised as follows. Section II
provides a background into CryptoJacking, while Section III
surveys related works. In Section IV we describe our exper-
imental methodology, present our results with an evaluation
and discuss system limitations. We conclude in Section V and
suggest areas of future work.

II. BACKGROUND

CryptoJacking is growing as quickly as it emerged, with
researchers at AdGuard [11] finding that the presence of
mining scripts is increasing by over 30% per month, the most
popular being CoinHive with a 95% share of the market. The
authors also found that over 33,000 websites were running



miners, earning a combined total of $150,000 per month from
over one billion site visits. The data indicate that the same
people run the vast majority of mining scripts, with the top
three CryptoJackers covering more than 8500 websites.

CryptoJacking rates increased by 8500% in Q4 of 2017 [12],
leading anti-malware vendors such as MalwareBytes to list it
as the top threat for 2018 [13]. The research in [14] has shown
that three of the top four malware threats are browser-based
crypto-miners. Other work has suggested that nearly 90% of
Remote Code Execution (RCE) attacks on web servers are
being used to set up drive-by mining [15], demonstrating a
shift in typical RCE payloads from botnets to CryptoJackers.
As the value of cryptocurrencies soars, crypto-mining malware
becomes more lucrative [16], and the trend of CryptoJacking
is likely to continue.

A. Breaches

Crypto-mining scripts may be used legitimately by website
owners to increase overall revenue or as a replacement for
advertising. Whether this should be considered as malicious
or not largely depends on whether the user provides consent.
However, the introduction of crypto-miners due to a breach
is clearly malicious and can affect websites, third-party ser-
vices and browser extensions. Due to the potential to serve
mining scripts to vast numbers of victims, legitimate high-
traffic services are extremely valuable targets for hackers (i.e.
watering-hole attacks).

a) Websites: Notable website breaches include the LA
Times [17] and Tesla’s public cloud service [18], which were
compromised due to a poorly configured Amazon Web Service
(AWS). Two other prominent sites caught running CoinHive
were Showtime and UFC. Showtime declined to make a
statement on the matter, and some researchers pointed out that
it was likely due to a third-party service called New Relic [19].
However, New Relic denied the accusations and suggested that
Showtime developers added the miner. UFC has not responded
to questions, so the origin of the miner is unknown [20].

b) Third-party Services: Many websites utilise third-
party services such as tracking and analytic tools, JavaScript
libraries and advertisements. This presents an opportunity
for the injection of coin-mining scripts into the third-party
services and consequently, the introduction of the scripts into
all websites using the service. Researchers at Trend Micro
discovered one example of this threat, observing a 285% rise in
the number of CoinHive miners in a single day and determined
that the traffic came from DoubleClick advertisements [21].

A popular plugin called Browsealoud was compromised and
used to serve the CoinHive miner to over 4200 websites [22]
including the UK’s Information Commissioner’s Office and
NHS [23]. Another plugin called LiveHelpNow was compro-
mised and used to perform mining on around 1500 sites [24].
PolitiFact, a website designed to verify the factual accuracy
of statements made by US politicians, was compromised via
a third-party JavaScript library. This led to CoinHive being
executed at 100% CPU usage for an unknown portion of the
site’s 3.2 million monthly visitors [25].

c) Browser Extensions: Browser extensions present a
similar threat to third-party services. As an additional bonus
for attackers, the reach of the crypto-mining script is not
limited to specific websites or services. Archive Poster, a
popular Chrome extension, was running a crypto-miner on
an unknown portion of their user base for several days,
allegedly due to the credentials of a developer being stolen
[11]. A Firefox add-on called Image Previewer was also caught
running a crypto-mining script. The code was base64 encoded
to bypass detection and the throttle threshold was set at 50%
[26].

B. Implications

There are some dire threats posed by the desire for increased
computational resources to mine cryptocurrencies. A critical
infrastructure security firm reported that it discovered crypto-
mining malware in the operational technology network of a
water utility in Europe [27]. This is the first known instance
of crypto-mining malware being used against an Industrial
Control System (ICS) and the malware used sophisticated
techniques to prevent detection. The company said that the
attack had a significant impact on the system and could have
caused it to hang or crash.

The threat posed to ICS is not the only way that crypto-
mining malware could lead to real physical harm. Recently,
a piece of Android malware called Loapi was discovered on
mobile phones. It was being used to mine Monero so aggres-
sively that it caused visible physical damage [28]. Researchers
at Kaspersky tested the malware in a lab and found that after
two days, the mining caused the battery to bulge so severely
that it warped the case of the phone.

C. Mitigations

Traditional security products such as anti-virus applications
may block CryptoJacking scripts by default. Specific browser
extensions such as NoCoin, minerBlock and NoScripts will
also provide protection, as will many off-the-shelf ad-blockers
[29]. These solutions typically rely on signature-based scan-
ning or URL blacklisting. Websites may implement Subre-
source Integrity (SRI) and Content Security Policy (CSP) to
help protect against CryptoJacking [30].

SRI helps to reduce threats by verifying third-party code
integrity using a SHA-256 hash. Any mismatch indicates the
code has been modified and will be blocked until the web-
master verifies the new hash. CSP provides a whitelist-based
approach to web security and can be used to ensure scripts are
only loaded from trusted providers. When used in conjunction,
SRI and CSP can provide a high level of protection against
CryptoJacking and general web-based malware [31].

D. Evasion

CryptoJacking sites can make use of existing evasion and
anti-analysis techniques employed by web malware. One such
technique is obfuscation, which may be applied to bypass
signature-based detection. In the case of JavaScript, this can
include whitespace, comments, string manipulation, number



substitution, encoding, variable and function name randomisa-
tion, encryption, code logic modification, script division and
DOM-based obfuscation [32].

Sites can employ URL randomisation to bypass blacklists,
this was observed with Minr, a crypto-mining script that
provides automatic code obfuscation and periodically checks
blacklists, modifying URLs accordingly [33]. In a similar
effort to avoid blacklists, websites can load crypto-mining
scripts via proxies [34]. Researchers at MalwareBytes found
that CryptoJackers were also able to achieve persistence. They
accomplished this by hiding a pop-up window beneath the
taskbar to ensure the mining continues long after the browser
is closed [35].

E. Ethics and Legality

The legality of CryptoJacking is unclear. Without explicitly
obtaining user consent or at least informing users, the practice
could be considered a theft of computing resources. Due to its
recent emergence, there are few tested legal cases. A browser-
based mining company called Tidbit faced a legal challenge
in 2015 and eventually settled, agreeing that they would
cease operations entirely. The Attorney General at the time
stated that “No website should tap into a person’s computer
processing power without clearly notifying the person and
giving them the chance to opt out.” [36]. This verdict may
be an indication of how future trials are likely to conclude.

Ethically speaking, CryptoJacking is a grey area. It is
obvious that CryptoJacking resulting from a breach is both
illegal and unethical. There is also a consensus that without
user consent or awareness, the practice is unethical. Some
researchers suggest that even with user consent, the ethics are
blurred because users may not technically understand what
they are agreeing to and what they are receiving in return [37].
This argument could be applied to other areas such as tracking
and advertisements, which are now regulated and accepted as
the norm.

III. RELATED WORK

Eskandari et al. [5] provided a first look at browser-based
CryptoJacking. To evaluate the impact of the threat, they used
a Censys.io BigQuery dataset to determine how many of the
top one million websites indexed by Zmap contained the
coinhive.min.js library over a 3-month period. They observed
the usage of CoinHive miner scripts rise from zero to over
1200 before stabilising at around 800. They verified their re-
sults using the PublicWWW search engine, which indexes the
source code of public websites. Using this method, they found
30,611 websites running CoinHive and 2671 sites running
other miner families.

Later, the authors used the same method of searching
PublicWWW to identify whether the blocking of CoinHive
had led to the increased usage of different miner families,
but found that 92% of websites running miners were still
using CoinHive. They broke down the 8% of non-CoinHive
miners and found that JSEcoin and Crypto-Loot were the most
popular, with a 43% and 26.4% market share respectively. The

remaining 30.6% share was split between four smaller crypto-
miner families.

This paper was published as we were in process of analysing
the data collected from our experiments and served as a useful
benchmark for our results. The work differs from ours in that
it focuses on detecting the presence of mining scripts on web
pages. Our method goes further by extracting and storing data
to gain a greater understanding of CryptoJacking and develop
new detection techniques. Furthermore, simply checking for a
string such as ‘coinhive.min.js’ anywhere within the HTML
body produces false positives (FPs) as many sites mention
the script in a non-malicious context. It also produces false
negatives (FNs) as some sites load mining scripts via a proxy.
Our technique is less prone to these incorrect classifications.

Liu et al. [38] presented BMDetector, a framework that
detects in-browser crypto-miners by hooking JavaScript in
the kernel source of Chrome Webkit, and analysing the data
structure features obtained from the browser heap snapshot
and stack data. Capturing this data at the parser level of
the browser ensures that any obfuscation or encryption is
removed before performing feature extraction. BMDetector
uses these features to perform automated detection based on
RNN (Recurrent Neural Networks) and passes its findings to a
cloud analysis module for verification. When applied to 1159
samples, experimental results demonstrated a 98% detection
rate for original samples and 92% rate for encrypted and
obfuscated samples. This work differs from ours in that it
takes a dynamic approach to detection as opposed to our static,
crawler-based approach.

Wang et al. [39] introduced SEISMIC (Secure In-lined
Script Monitors for Interrupting CryptoJacks), a dynamic
method of identifying in-browser crypto-miners that focuses
on semantic features, which are more difficult to obfuscate
than syntactic features. CryptoJacking scripts typically use
WebAssembly (Wasm), a binary format that allows C, C++ and
Rust code to execute in the browser with a similar performance
to native code. The authors utilise this knowledge in their
approach, which monitors Wasm scripts as they execute to
derive a statistical model of known mining and non-mining
behaviour. They used Intel Processor Tracing (PT) to record
native instruction counts for different types of Wasm web apps
(random, video, game/graphics and mining). Next, they man-
ually identify the top 5 Wasm bytecode instructions and use
the normalised count of their occurrences as feature vectors.
Finally, they use Support Vector Machine (SVM) with linear
kernel function and evaluate their approach using stratified
10-fold cross validation 1900 samples, 500 of which are
miners. The results show that all mining scripts are identified
correctly and, the overall accuracy is 98% or above in all cases.
The authors point out that, although their technique is robust
against syntactic obfuscation, semantic obfuscation could be
applied to crypto-mining scripts to bypass detection, though
this would incur a performance cost. They suggest that future
work should investigate this area when such attacks have been
demonstrated, and samples are available. This work differs
from ours in that it uses a dynamic detection method with the



goal of identifying obfuscated scripts whereas ours focuses
on a purely static approach to detection, with the primary
objective of building a reliable, ground-truth dataset that will
enable future research.

Rüth et al. [40] built a database of around 160 Wasm code
signatures that performed mining activities. They compared
this signature base with Wasm code found on the Alexa 1M
and the .org TLD and determined that most instances of Wasm
code contained mining functionality, the majority of which was
CoinHive (75%). They compared their results with the NoCoin
blocklist and found that some sites blacklisted by NoCoin
did not integrate Wasm code. Random manual inspections of
these sites confirmed that they were false positives. Similarly,
NoCoin failed to identify many sites that contained malicious
Wasm mining code. Up to 82% of the sites detected using
Wasm signatures are not detected by block lists.

The authors go on to analyse the short link forwarding
service provided by CoinHive. A third of all links are created
by a single user and around 85% of links are contributed by 10
users. The majority of these short links can be resolved in less
than 51 seconds (1024 hashes). Analysis of these URLs shows
that the most common link destinations are entertainment &
music and filesharing. Finally, the authors attempt to verify the
CoinHive network size and based on their 4-week observation
data, estimate that it contributes around 1.18% of the mining
power of the Monero network. This equates to about $250,000
a month based on the current price of Monero.

Hong et al. [41] proposed MineSweeper, a system that lever-
ages several intrinsic characteristics of crypto-mining code to
detect CryptoJacking, even when obfuscation techniques have
been applied. The authors crawled the Alexa top 1m websites,
visiting three random internal pages of each site to maximise
the chance of detection. Each webpage is stored alongside
any embedded JavaScript and associated network requests and
responses. Initially, an offline parser is applied to the collected
data to filter out known mining families using string-based
pattern matching. The parser then identifies the Wasm-based
mining payload using one of two methods. If the mining
payload is compiled at runtime, this is achieved by dumping
all JavaScript code and searching for keywords relating to the
CryptoNight hashing library. If the payload is retrieved from
an external server (raw or pre-compiled), this is accomplished
by analysing the network requests and responses to and from
the browser’s web worker. Since keyword-based detection
is vulnerable to obfuscation techniques, MineSweeper also
checks for other indicators related to crypto-mining. The
WebSocket frames are logged and analysed to detect any
communication with mining pools by searching for keywords
related to the Stratum protocol which is commonly used. The
CPU usage is recorded although this is used to assist analysis
and gain insights rather than for detection as the system runs
in docker which has various processes which may contribute
to the overall CPU usage. Also, each site is only loaded for
4 seconds during which time the CPU usage is likely to be
high due to the browser performing its initial loading of any
required resources.

During the experiment, the authors detected 1735 web-
sites in the Alexa top 1m performing crypto-mining with
an estimated profit of $188,878.84 with the most profitable
website earning an estimated $17,166.97. They found that
42.88% of the detected websites only applied the crypto-
mining scripts to internal web pages and 82.14% of drive-by
mining services used one or more obfuscation techniques such
as packed code, charCode, renaming, dead code injection and
URL randomisation.

Konoth et al. [42] developed a CMTracker, a behaviour-
based detection system which initially leverages the Chrome
Devtools Protocol (CDP) to crawl websites and perform stack
sampling. The JSON files produced during this stage are used
as the input for two behaviour-based profilers, hash based
and stack structure based. The hash based profiler identifies
low-level hashing functions associated with crypto-mining and
calculates the cumulative time that the website spends using
these functions. The reasoning behind this is that 99% of the
top 100 Alexa websites spend less than 0.47% of their total
execution time on these functions, whereas crypto-mining sites
spend most of their time hashing. Based on this analysis, they
use a threshold of 10% to classify sites as malicious.

The authors recognise that the hash based profiler relies on
text-based pattern matching to identify the hashing functions,
which can easily be obfuscated. To combat this weakness, they
also apply the stack structure-based profiler. This technique
is based on the observation that crypto-mining websites run
heavy workloads with repeated behavioural patterns, but typ-
ical websites rarely repeat the same calling stack for more
than 5.6% of the execution time. They focus this profiler
on dedicated threads which are commonly used by crypto-
mining websites and use a threshold of 30% to classify sites
as malicious.

The authors state that CMTracker detected 2770 unique
crypto-mining samples from 853,936 popular web pages,
including 868 among the Alexa top 100k. They analyse the
collected data in order to provide numerous insights such as
the distribution of CryptoJacking domains by website cate-
gory, the profitability and energy costs of CryptoJacking, the
distribution of wallet IDs, the life-cycle of malicious miners,
the effectiveness of blacklists, the use of evasion techniques
(methods and prevalence) and the infrastructure of mining
campaigns.

Vierthaler et al. [43] presented WebEye, a system which
automates the collection of malicious HTTP traffic. Their goal
was to produce realistic datasets of correctly classified mali-
cious web traffic which could assist researchers in future work,
particularly machine learning (ML). They sourced URLs from
the Alexa top 1m websites, MalwareDomainList and Open-
phish and fed them into their Selenium-based web crawler.
WebEye extracts 58 features from websites and aggregates
the data with metadata obtained from external sources (GeoIP
and Whois).

The authors used Google Safebrowsing, Virustotal and
ClamAV to separate the 500gb of data collected by WebEye
into malicious and benign samples. Out of the 43 million



samples, about 20,000 (0.5%) were labelled as malicious. To
demonstrate how the WebEye dataset can be used for ML,
the authors applied a Random Forest classifier and achieved
a 99% true positive (TP) rate. They indicated that further
optimisations would be needed to improve the FP rate which
was recorded as 17.32%.

This work is similar to ours in that it is a web-crawler
and primarily focuses on building a dataset for future work.
However, WebEye collects all web traffic where we focus
specifically on CryptoJacking sites. WebEye also extracts 58
features from websites to assist in future ML research. While
MANiC does not currently extract these features, we plan to
adapt it in future work to extract a subset of these features
in conjunction with JavaScript obfuscation-based features and
new features which are specific to CryptoJacking, e.g. CPU
usage.

IV. EXPERIMENT

A. Methodology

 

Fig. 1. Miner object structure and content (extracted parameters)

We developed MANiC, a python-based crawler imple-
mented using Scrapy [44], a fast and powerful scraping and
web crawling framework. When provided with a list of URLs,
MANiC opens each in succession, logging any that fail to
load. If the webpage opens without error, the contents of all
script tags on the page are extracted and parsed, discarding
any duplicates in the process. To scan for miners, MANiC
uses a collection of regular expressions which are based on the
API syntax structure used to implement and configure various
miner families.

If MANiC detects a match, it attempts to extract 21 pa-
rameters and store them in a miner object as shown in Figure
1. Any miner objects that do not contain a family and site
key are discarded and the page is flagged as suspicious for

manual analysis. MANiC will continue this process until all
scripts have been tested for each miner family, irrespective
of whether the URL has already been classified as malicious.
This is important because some websites host multiple mining
scripts which are from different families or use different
configurations.

If MANiC successfully detects and extracts a miner, it logs
the URL as malicious and exports the objects to both JSON
and SQL format. The malicious JavaScript and entire HTML
body are also stored for future work. If MANiC fails to detect
any miners, it searches the entire HTML body for suspicious
keywords that indicate a miner may be present. If it finds any
of these keywords on the page, it logs the URL as suspicious
and records the detected keywords to assist manual analysis
later. If MANiC fails to extract any miner objects or detect
any suspicious keywords, it logs the URL as benign.

We tested MANiC against a collection of 5441 URLs that
had previously been identified as CryptoJacking sites, but
the dataset was problematic for a few reasons. Firstly, the
dataset was almost six months old, and due to the recent
emergence and publicity of crypto-mining, some sites are
likely to have removed or deactivated the scripts after a trial
period. Similarly, sites which had been injected with crypto-
mining scripts resulting from a breach may have since detected
and removed the scripts. Secondly, the technique used to detect
the crypto-mining scripts was not explained, and therefore the
accuracy cannot be verified.

Although we could not rely on the data for our experimental
results, the data proved useful as we were able to manually
analyse MANiC’s results and use the insights to fine-tune reg-
ular expressions and improve the detection process. This was
an iterative process and involved manually analysing URLs
detected as benign, suspicious and malicious and updating
MANiC accordingly. To evaluate the state of CryptoJacking
on the web, we ran MANiC against the Alexa top 1 million
websites (March-June 2018). We performed this experiment on
a desktop machine using Ubuntu 17.10, an Intel Core i7-6700
3.4GHz CPU, 16GB RAM and a 250MB internet connection.

B. Results

TABLE I
DETECTION RESULTS

URLs Alexa 1m

Total 988,399
Benign 913,550
Malicious 887
Suspicious 415
Failed 63,002

The results from Table 1 show that miner objects were
successfully extracted from 887 URLs, and suspicious key-
words were detected on a further 415 URLs. Due to the recent
emergence of CryptoJacking and ease in which the scripts can
be deactivated and removed, there is currently a lack of reliable
datasets to formally verify the accuracy of results. Initially,
to determine the false positive (FP) rate, we tested MANiC



against the top 10,000 domains on the OpenDNS list [45]
which are considered to be benign. MANiC classified three of
these URLs as malicious but manual analysis confirmed that
these sites did, in fact, contain mining scripts.

Later, we manually analysed the 1302 URLs classified
as malicious or suspicious. We determined that 99.21% of
the malicious URLs were, in fact, malicious and had been
correctly classified by MANiC. However, 14.7% of the suspi-
cious URLs were malicious but were not properly classified
by MANiC, primarily due to obfuscation. The remaining
85.3% were labelled as suspicious for various reasons; the
script was loaded but not referenced, the mining code was
commented out or, more commonly, the site simply mentioned
a CryptoJacking related word in a non-malicious context, e.g.
a news site or blog.

We recognise that the false negative (FN) rate is likely to be
higher than these figures indicate because heavily obfuscated
scripts wouldn’t be detected as malicious or suspicious. Sim-
ilarly, we appreciate that there may be unobserved exceptions
which have not been identified due to the absence of a
large, ground-truth dataset and the impracticality of manually
analysing every URL in the Alexa top 1m.

TABLE II
DISTRIBUTION OF MINER FAMILIES

Family MANiC [5]

CoinHive 685 443
CryptoLoot 107 46
JSECoin 95 58
WebMinePool 16 N/A
DeepMiner 10 N/A
Papoto 2 2
Coinerra 1 N/A
ProjectPoi 1 1
MinerWorker 1 N/A
CryptoNoter 1 N/A
RandomSatoshiMiner 1 N/A
CoinImp 0 4
AFMiner 0 1
Minr 0 1

The results from Table 2 show the distribution of miner
families found in the Alexa top 1m dataset using MANiC and
the technique described in [5]. CoinHive remains the most
popular with a 74% share in the market, and the remaining
26% is divided among alternative families. The results pre-
sented in [5] showed that CoinHive had a 92% market share
so this could be an indication that the popularity of CoinHive
is dropping in favour of alternative families.

The chart in Figure 2 shows the level of throttling that
sites apply to their CoinHive scripts to limit the percentage
of CPU resources utilised on the victim’s machine, where
100% indicates that the site will utilise as much CPU power
as possible. The most commonly applied throttling parameter
was 70-80%, closely followed by 50-60%. This indicates that
most sites are aiming to avoid detection and minimise the
impact on user experience. The average configured throttling
level detected was 56.49% although this does not include any
sites which failed to specify a throttle value, e.g. CoinHive

 

Fig. 2. Throttling level applied to CryptoJacking sites

utilises 100% of the CPU by default. The dotted bar shows
the number of CoinHive sites that did not specify a throttle
value. This increases the average to 70.26%, indicating that
the impact of CryptoJacking on user experience is more severe
than may be intended.

35.74% of the 887 malicious URLs were found to be using
a site key that was detected on more than one URL. The most
highly occurring site key was found on 65 different websites,
indicating that the CryptoJacking script is being operated by
the same person or group. It may also be an indicator of an
attack, e.g. if an attacker compromises multiple websites and
injects mining scripts, the profits will all go to the same wallet
address.

C. Evaluation

There is an agreement between the results of the MANiC
experiment on the Alexa top 1m websites and the results in
[5], although MANiC had a higher detection rate and greater
accuracy. MANiC successfully extracted 920 miners from the
887 URLs in the Alexa top 1m index and classified a further
415 URLs as suspicious, 61 of which were identified as
malicious through manual analysis.

To accurately compare our results, we replicated the exper-
iment from [5] using the same Google BigQuery commands
and the Censys.io dataset that was recorded during the same
period as the MANiC experiment. The results of this compari-
son are shown in Table 3. Using their method we detected 515
URLs suspected of hosting mining scripts. MANiC classified
430 of these URLs as malicious and 42 as suspicious. MANiC
also identified 457 additional malicious URLs that were not
detected using the technique described in [5].

Further analysis of these results showed why the results dif-
fered. The technique used by the authors of [5] simply checks
for the presence of the string ‘coinhive.min.js’ anywhere in the
HTML body. This is problematic for two reasons. Firstly, it
creates FPs because some sites will load the script but not
activate it, e.g. not referenced in code or commented out.
Similarly, some sites will mention the string in a non-malicious
context, e.g. news, blogs and tutorials. These scenarios would



lead to a malicious classification using the technique described
in [5] but MANiC correctly labels them as suspicious.

Secondly, it creates FNs because some sites load mining
scripts via proxies to bypass ad-blockers and blacklists. These
mining sites would not be detected using the method in [5],
but MANiC classifies them correctly when they use the same
method to build and activate the mining code. We observed
such cases repeatedly and validated that MANiC correctly
classified the sites while the technique from [5] did not. Any
other variations in the statistics between our experiment and
[5] can be accounted for by the increased use of obfuscation
and evasion techniques and a genuine fluctuation in the number
of CryptoJacking sites.

To compare MANiC to a state-of-the-art dynamic anal-
ysis system, we installed and configured CMTracker [42].
Although the techniques used by this system are novel and
well-suited to obfuscated crypto-mining scripts, side-by-side
testing revealed that the CMTracker often failed to detect non-
obfuscated mining scripts which were consistently identified
by MANiC. We selected a random subset of 100 URLs
from the Alexa top 1m which were detected by MANiC and
verified that they contained mining scripts. The results of this
comparison are shown in Table 3. When we tested these URLs
with CMTracker’s unaltered source code it was only able to
correctly detect 44% of these sites as malicious.

TABLE III
EVALUATION

Paper Dataset Our Result Their Results

[5] Alexa 1m 887 515
[42] Subset 100 100 44

The FN rate of MANiC is low because the system checks
for various suspicious keywords. This means that if MANiC
fails to detect and extract any mining scripts but finds a miner
related keyword, the URL will be classified as suspicious. It is
then subject to further manual analysis to verify the result and
identify any flaws in the detection process. There are some
exceptions to this rule, most notably the use of obfuscation,
which often makes the miner undetectable and may prevent
the detection of suspicious keywords.

The FP rate of MANiC is also low because to be classified
as malicious, a miner object containing a sufficient level
of data must be extracted. As the requirements are very
specific, anything that falls outside of these restrictions will
be classified as suspicious.

A limitation of the present system is its inability to process
dynamic JavaScript. Initially, Splash was used in conjunction
with Scrapy to ensure web pages are fully rendered before
analysis. Unfortunately, this introduced a severe performance
overhead and was subject to regular, unpredictable crashing
which appears to be a common issue with the Splash frame-
work.

Another potential limitation is MANiC’s crawl depth. Cur-
rently, MANiC only analyses the homepage of each URL
rather than every page on the site. This means that if a site

only has mining code on specific pages or an injected iFrame,
it may not be detected. Similarly, external JavaScript files are
not analysed. These limitations can be overcome with relative
ease, but the performance cost may outweigh the benefit in
some cases. For example, most sites will apply crypto-mining
scripts on each webpage to maximise profit. Increasing the
crawl depth would severely decrease the speed of MANiC,
with little improvement to the accuracy.

V. CONCLUSIONS AND FUTURE WORK

This paper provided a look at a new emerging threat
called CryptoJacking. We gave an overview of the history and
implications of this threat and presented MANiC, a web-based
crawler that uses regular expressions to detect crypto-mining
scripts and extract a collection of parameters. When tested
against the Alexa top 1m websites, our technique proved to be
more effective than current research focused on CryptoJacking
and was less prone to FPs and FNs.

The data we extracted from the crypto-mining websites
serves three purposes. Firstly, it allows us to compile the first
ground-truth dataset of crypto-mining URLs. We are currently
in the process of developing a web app with MANiC running
on the back-end, compiling a daily list of CryptoJacking
websites. This service will be accessible by researchers who
require access to our dataset for their experiments and will
include functionality to test specific, user-supplied URLs for
crypto-mining scripts.

Secondly, the data provides insights into the threat such as
the distribution of miner families, the average throttling level
applied and the proportion of websites that share the same
wallet address. During our experiment, we observed how the
use of ad-blockers and blacklists has impacted CryptoJacking,
leading some sites to use proxies, obfuscation and other
evasion techniques.

Finally, the collection of suspicious URLs allows us to man-
ually analyse sites suspected of CryptoJacking and identify
new techniques that are being employed to bypass detection.
We can use this information to iteratively improve the accuracy
of MANiC and identify new features that may assist ML
research.

In future work, we plan to address some of the limitations
described earlier and focus on detecting crypto-mining scripts
that employ evasion techniques, particularly obfuscation. The
detection and analysis of obfuscated JavaScript is an open
research problem and can be approached from a static or
dynamic perspective. We also plan to adapt MANiC to extract
features from the website in addition to the crypto-mining
scripts. Initially, the 58 features described in [43] will be taken
into consideration.

The CPU-usage of websites alone is not enough to deter-
mine if a site is performing crypto-mining as throttling levels
can be applied and sites may have genuinely high CPU-usage
depending on the content. However, if we consider the CPU-
usage alongside a range of other features typical of malicious
websites, it could achieve high accuracy. Future work may
focus on applying ML techniques to a combination of these



features and any new features that have been identified by
MANiC.
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