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Abstract: In modern recommender systems, matrix factorization has been widely used to decompose
the user–item matrix into user and item latent factors. However, the inner product in matrix
factorization does not satisfy the triangle inequality, and the problem of sparse data is also encountered.
In this paper, we propose a novel recommendation model, namely, metric factorization with item
cooccurrence for recommendation (MFIC), which uses the Euclidean distance to jointly decompose
the user–item interaction matrix and the item–item cooccurrence with shared latent factors. The item
cooccurrence matrix is obtained from the colike matrix through the calculation of pointwise mutual
information. The main contributions of this paper are as follows: (1) The MFIC model is not only
suitable for rating prediction and item ranking, but can also well overcome the problem of sparse
data. (2) This model incorporates the item cooccurrence matrix into metric learning so it can better
learn the spatial positions of users and items. (3) Extensive experiments on a number of real-world
datasets show that the proposed method substantially outperforms the compared algorithm in both
rating prediction and item ranking.
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1. Introduction

In the era of information overload, recommendation systems are important for addressing
the problem of information explosion. Collaborative filtering technology is an early, widely used,
and influential recommendation technology, but its performance is severely degraded by data
sparseness [1–3]. In the past decade, the factorization of user–item matrices into user and item latent
factor vectors has been widely studied and has become a popular method for matrix factorization
models. Furthermore, it not only has high prediction accuracy but can also well integrate and
decompose additional side information. However, its performance will be affected by the choice of
the inner product [4–6] because the inner product in matrix factorization does not satisfy the triangle
inequality: “the distance between two points cannot be larger than the sum of their distances from a
third point” [7]. This will limit the expressive power of the matrix factorization and lead to locally
optimal solution problems, thereby reducing the flexibility and generalization performance of the
matrix factorization model. The metric learning method of the Euclidean distance is more suitable
for the learning of latent factors [8–10]. Metric factorization is based on the learning of user–item
factors based on the Euclidean distance. It is important to encode the user–item interaction matrix
for the construction of a distance matrix that is suitable for the learning of the Euclidean distance.
Although metric learning has overcome the shortcomings of matrix factorization, in the case of sparse
data, learning only the latent factors of users and items remains insufficient. Therefore, we propose
the metric factorization with item cooccurrence model, in which the item cooccurrence matrix is
introduced into the metric learning process so that the user–item interaction matrix and the item–item
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cooccurrence matrix with shared item latent factors can be decomposed simultaneously during metric
learning. The key strategy for item cooccurrence is to construct a colike item matrix. The value that
corresponds to each pair of items is the number of users who have called the colike matrix coding,
and the item cooccurrence matrix contains the calculated pointwise mutual information values of the
colike item matrix.

Our main contributions are as follows. (1) We propose a new recommendation model: metric
factorization with item cooccurrence (MFIC). We designated two variants of MFIC to solve two
classic and well-established recommendation tasks: rating prediction and item ranking, and they
can overcome the problem of sparsity data. (2) The user–item interaction matrix and the introduced
item occurrence matrix learn together in metric space, which is more conducive to better learning the
spatial positions of users and items. (3) Extensive experiments on a number of real-world datasets
demonstrate that our model outperforms the compared algorithm in terms of both rating estimation
and item ranking tasks.

The remaining sections of this paper are organized as follows. Section 2 describes the related
work; Section 3 shows the MFIC model; Section 4 presents the experimental results and analysis; and
Section 5 summarizes the paper.

2. Related Works

2.1. Matrix Factorization

In recommendation systems, matrix factorization is a popular and effective recommendation
method and is the standard in modern recommendation systems. The successful implementation of
many potential factor models is based on matrix factorization. The most basic matrix factorization
strategy is to decompose the rating matrix into latent factors of users and items. By learning to
establish the relationship between users and items, the accuracy of recommendation prediction is
improved [11,12]. With the development of recommendation systems, many variants of matrix
factorization have been derived, and user and item bias terms have been introduced to improve the
prediction accuracy of the model [13]. A graph probability model was introduced to better adapt to the
real data sparse environment [14,15]. The authors in [16] proposed a novel quality of service prediction
approach based on probabilistic matrix factorization, which has the capability of incorporating network
location and implicit associations among users and services. Mature algorithms also utilize SVD
++ [17] and timeSVD [18]. Another special processing method is to push the unobserved user–item
pairs away from the observed user–item pairs from the Bayesian perspective to solve the problem of
item ranking [19].

2.2. Item Embedding

The item cooccurrence matrix that was developed in this paper was inspired by the word
embedding model. In the word embedding model, each word is represented by a real vector [20].
Word2vec is a popular word embedding method. For a specified series of training words, its embedding
model learns the potential factors of each word. For example, in [21], the surrounding words of a
specified word are predicted during training. The study by [22] also used the word embedding model
to build item embedding models for learning prediction, and [23] introduced item embedding into the
matrix factorization model, and the performance was substantially improved. Reference [24] added not
only user and item embeddings, but also items that users do not like into the matrix factorization model
for prediction, and the accuracy of the prediction was also improved. Therefore, we introduced item
cooccurrence in this paper, and we processed the user–item matrix to construct the item cooccurrence
matrix, which better facilitates metric learning.
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3. Metric Factorization with Item Cooccurrence (MFIC) Model

First, we reviewed two basic frameworks for creating MFIC models: metric factorization for
recommendation beyond matrix factorization (FML) and word embedding. Then, we describe how
our MFIC model and calculus are calculated.

3.1. Factorized Metric Learning (FML )Model

The FML model is a model for metric learning that uses the Euclidean distance. First, the user
rating matrix R ∈ Rm×n is transformed into a distance matrix R1 ∈ R1

m×n, the distance matrix is
obtained via Equation (1).

Distance(u, i) = Max Similarity− Similarity(u, i) (1)

Max Similarity is the maximum value of the rating matrix (e.g., 5) or implicit feedback (e.g., 1).
In the metric vector space, we denote the positions of users and items as Pu ∈ Rk and Qi ∈ Rk,

respectively. The main optimization loss functions of FML are as follows.

L(P, Q) =
∑

cui
(
Yui − Ŷ

)2
(2)

Ŷ1 = ||P−Q||2
2 + bu + bi + µ (3)

Ŷ2 = ||P−Q||2
2 (4)

In rating prediction, Equation (3) was selected as the prediction distance, where bu and bi represent
user and item biases, respectively, while µ represents global biases. Super-parameter τ is added in
front of µ to scale and obtain a more accurate prediction value. cui is a self-confidence mechanism for
ensuring that extreme ratings are assigned higher self-confidence values. Equation (4) was selected as
the predictive distance when ranking items. cui is the self-confidence mechanism of the observed items.

3.2. Word Embedding

The word embedding model has realized substantial success in natural language processing
and has received increasing attention. Word embedding is a generalization of language modeling
and representation learning technology in natural language processing that mainly maps all the
dimensions into the high latitude of each word or phrase of the real field vector that is embedded
into a low-dimensional vector space. In the popular word2vec [20], a set of words are specified and
each word is embedded from a high-dimensional domain vector into a low-dimensional vector space.
Finally, the skip-gram model in word2vec is used to predict the words around it in a fixed window. For
example, as shown in Figure 1, we selected the word “my” as the input word, and set skip_window = 2,
where skip_window = 2 represents selecting the left two words and the right two words of the input
word “my” to enter our window, and obtain the training data of four groups.
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According to [25,26], the skip-gram model with negative sampling is equivalent to implicit
factorization of a word context matrix in which entry is the pointwise mutual information (PMI) of the
corresponding word and context, which is shifted by a global constant. Let D be the set of observed
words and context pairs. The PMI between word i and its word context j is calculated as

PMI(i, j) = log((P(i, j)/(P(i)P( j)))) (5)

P(i, j) = #(i, j)/|D| (6)

P(i) = #(i)/|D| (7)

P( j) = #( j)/|D| (8)

where #() represents the frequency of words, for example, #(i, j) represents the frequency of the
simultaneous occurrence of the words i and j in order to calculate the probability P(i, j) of the two.
P(i, j) denotes the probability that word i and word j appears simultaneously in a fixed window, P(i)
represents the probability of occurrence of word i in set D, and P( j) is the probability of word j appearing
alone in set D. Substituting Equations (6)–(8) into Equation (5) yields the following expression (9):

PMI(i, j) = log((#(i, j)|D|)/(#(i)#( j))) (9)

PMI can be constructed as a matrix of size m× n, namely, matrix MPMI, where m is the number of
elements in set D. Next, the shifted positive pointwise mutual information (SPPMI) of words i and j is
calculated as:

SPPMI(i, j) = max(PMI(i, j) − log(k), 0) (10)

Here, k is a hyperparameter, which can control the matrix density of the PMI and has an inverse
proportional relationship, namely, the larger the value of k, the higher the sparsity of matrix PMI. The
main advantage is that optimization adjustments are unnecessary. The above is the complete process
of word embedding.

3.3. MFIC Model

Inspired by word embedding, the colike item matrix is created via word embedding. We can
think of the items called by the user as the words in the word embedding, therefore, we can create
the colike item matrix according to word embedding and use it to identify the item latent factors. In
addition, this colike item matrix is symmetrical about the diagonal of the matrix. As illustrated in
Figure 2, I1 and I2 are called by U1, U3, and U4 in the user–item matrix simultaneously; therefore, the
corresponding value of item1 and item2 in the colike matrix is 3. I1 and I4 have not been called by any
same user. Hence, the corresponding value is empty. This matrix was generated and merged with
metric learning in this paper. The rating matrix was calculated and used to find the item that is called
by each user, which is equivalent to using #(i) and #( j) in word embedding to search for the item that
is consumed by the corresponding two users, which is equivalent to word embedding #(i, j). Before
constructing the item cooccurrence SPPMI matrix, the mutual information of each pair of points must
be calculated via Equation (5). Then, the shifted positive pointwise mutual information of item–item
pairs is calculated via Equation (10) from the obtained pointwise mutual information. According to the
colike item matrix in Figure 2, #(I1, I2) = 3, #(I1 = 3), and #(I2) = 2, |D| = 8, and after calculation,
the mutual information value of I1 and I2 is 0.60, as presented in the item embedding matrix of Figure 3.
Finally, it is embedded into the metric learning model to highlight the item’s expressiveness and to
enhance the relationships between users and items and between items and items.
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Figure 3. MFIC for the rating prediction model.

To use the metric vector space to learn user and item positions via factorization, it is necessary
to convert the user rating matrix into a distance matrix to improve the learning in the metric space.
The distance matrix can be constructed from the explicit distance matrix and the implicit distance
matrix. A checkmark in the explicit matrix indicates that the user has invoked the item, and a cross
sign indicates that the item has not been invoked. The transformation of the explicit distance matrix
obeys the following transformation rule.

Distance(u, i) = Max Similarity− Similarity(u, i) (11)

where Max Similarity is the maximum value in the rating matrix such as five.
The transformation of the implicit distance matrix satisfies the following equality.

Distance(u, i) = β(1− Similarity(u, i)) (12)

In the implicit case, the Similarity(u,i) is 1 or 0, while parameter β in the formula is used to control
the balance between the user and the item. Figures 4 and 5 present schematic transformations of the
explicit preference matrix and the implicit preference matrix.
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3.4. Evaluation for Rating Prediction

The MFIC model combines metric factorization and item cooccurrence and simultaneously
performs the position learning of the latent factors of users and items in the metric space. The difference
between metric factorization and item cooccurrence is that metric factorization infers the form for
encoding a user’s preference for an item, whereas an item embedding must be interpreted from the
item cooccurrence model. The overall model of the MFIC rating prediction is illustrated in Figure 3.

L = (1− α)
∑

cui(Yui −Y1)
2 + αcui(Yui −Y2)

2 + λ(||Pu||+||Qi||+||Qi1||) (13)

D(u, i) = ||Pu −Qi||
2 (14)

Y1 = (1− γ)D(u, i) + γD(i1, i) + bu + bi + µ (15)

Y2 = D(i1, i) + bi1 (16)

cui = 1 + θg(Rui −Rmax) (17)

Equation (13) is the objective function of the MFIC model, and α is used as the weight coefficient
for weighting the Y1 and Y2 losses so that the model finds the optimal value faster during loss learning.
The last term in the equation is the regularization term, λ is the regularization term parameter, and
||Pu||, ||Qi||, and ||Qi1|| are set to ||Pu|| < c, ||Qi|| < c, and ||Qi1|| < c, which can control the ||Pu||, ||Qi||, and
||Qi1|| unit spheres, respectively, in the L2-norm to spread the data points less widely and to facilitate
multidimensional complexity treatment. Equation (14) expresses a learning method for the spatial
positions of users and items that use the Euclidean distance in the metric space. In the metric vector
space, we denote the positions of the user and the item as Pu ∈ Rk and Qi ∈ Rk. Equation (15) represents
the predicted value of the rating that is generated by the user and the item and by the item and the
embedded item, and it enhances the connection between the user and the item. γ is a hyperparameter
for controlling the balance between the user and the item, and the item and the embedded item. In
matrix factorization [13], some items are popular and easily obtain high ratings, while some users
habitually assign low ratings to items. Therefore, similar to matrix factorization, biases are added to
metric learning to improve the stability and expressiveness of the model. bu and bi represent the user
bias and the item bias, respectively. µ is a global bias, which can be multiplied by a hyperparameter
to improve the performance of the model. Equation (16) predicts the newly added item embedding.
The prediction between the item and the embedded item can highlight the performance of the item,
and bi1 is the bias of the embedded item. Equation (17) is a self-confidence mechanism that assigns a
high degree of self-confidence to extreme ratings [27]. g(*) can be an absolute value function, a square
function, or a logarithmic function. It can be selected according to the requirements of the model. θ is a
scaling parameter of the self-confidence mechanism that is used to control the degree of self-confidence
in rating.

3.5. Evaluation for Ranking Prediction

Similarly, the item cooccurrence is introduced into the item ranking model to improve the item
ranking performance in the personalized recommendation system. In the process of personalized
recommendation item ranking, implicit data processing outperforms explicit data prediction. In
previous studies, binary processing is typically used for implicit data [28–30]. Therefore, the explicit
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data were also implicitly processed in this paper. For example, a rating that is greater than or equal to
3.5 will be represented as 1, and a rating that is less than 3.5 will be represented as 0. The setting of the
rating threshold will be elaborated in the experimental part.

L = (1− α)
∑

cui(Yui −Y1)
2 + αcui(Yui −Y2)

2 + λ(||Pu||+||Qi||+||Qi1||) (18)

cui = 1 + θWui (19)

The use of Equation (18) is consistent with the prediction of the rating. The largest difference is
that cui in Equation (19) is different. cui is still a self-confidence mechanism in item ranking, and θ

is a scaling hyperparameter. Wui represents the number of times the user has responded to positive
feedback regarding the item. For example, if the user calls the item three times, Wui = 3. This is more
conducive to users being closer to their favorite items and farther away from the items that they do not
like. In addition, the embedding of the item not only highlights the item’s expressiveness, but also
increases the connections between users and items.

3.6. Optimization and Prediction

Dropout was added into the MFIC model training. Dropout is an effective method in neural
networks for dealing with the fitting process [31], therefore, this paper used dropout to prevent the
overfitting of models in Euclidean distance learning for user and item latent factors. In addition, for
the model loss function learning, a loss learning model, namely, Adagrad [32], was adopted, which can
adapt the learning step size according to the update frequency of the model and reduce the frequency
of parameter adjustment. Finally, because the rating matrix is converted from a distance matrix at the
beginning of the model, the predicted distance matrix must be reversed for rating prediction, and for
item ranking, the closeness of the item to the user depends on the predicted distance.

4. Experimental Evaluation

We studied the performances of the MFIC models in rating prediction and item ranking, and we
used various datasets and evaluation indicators to measure and evaluate the performances of MFIC
models in rating prediction and item ranking to determine the impacts of model parameters on the
model performance, to compare the performances of MFIC models with those of other recommendation
methods, and to analyze the experimental results.

4.1. Preparation for the Rating Prediction Experiments and Presentation of the Experimental Result

The datasets for rating prediction are Movielens-100K and Movielens-1M [27]. During the
experiment, the datasets were randomly divided into training sets and test sets according to the ratio
of 9:1. The sparsity is the number of existing ratings divided by the number of users and the number
of items. Details on the datasets are presented in Table 1.

Table 1. Details of datasets Movielens-100K and Movielens-1M.

Datasets Number of
Users

Number of
Items

Total
Rating

Range of
Rating Sparsity

Movielens-100K 943 1682 100,000 0–5 6.30%
Movielens-1M 6040 3952 1,000,209 0–5 4.19%

The selection of important parameters of the MFIC model has a substantial influence on the
prediction performance. The training order of the parameters is r, c, N, τ, θ, d, γ, λ, α, s, and k. First,
all parameters were set on the basis of the FML model27. Second, inspired by the parameter settings
section in [33], one of the parameters was trained and a set of values was selected for iterative training.
For example, on the dataset Movielens-100K, we tested the learning rate r of [0.009, 0.01, 0.015, 0.02,
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0.025, 0.03], the different clip value c of [0.6, 0.8, 1.0, 1.2, 1.4, 1.6], and dimension N of [50, 100, 150, 200,
250, 300], the hyperparameter τ was tuned amongst [0.6, 0.7, 0.8, 0.9, 1.0, 1.1], the self-confidence value
θ was tuned amongst [0, 0.1, 0.2, 0.3, 0.4, 0.5], the dropout rate d was tuned amongst [0.01, 0.03, 0.05,
0.07, 0.09, 0.11], the prediction function weight γ was performed in [0, 0.001, 0.002, 0.003, 0.004, 0.005],
the regularization weight λ was performed in [0.001, 0.005, 0.01, 0.05, 0.1, 0.6], and the loss function
weight α was performed in [0.001, 0.003, 0.005, 0.01, 0.03, 0.05]. Furthermore, the rating threshold s
was selected from [0, 1, 2, 3, 4], and the pointwise mutual information value k was selected from [0, 1,
3, 5, 7, 9]. Finally, the next parameter was trained on the basis of the optimal parameters. For example,
when the training parameter was c, the remaining parameters were fixed and r was set to the optimal
value that had been trained. The stopping criterion is that the evaluation indicator root mean squared
error (RMSE) was not further reduced. We obtained the optimal setting as follows: Movielens-100K
(r = 0.02, c = 1.0, N = 150, τ = 0.8, θ = 0.2, d = 0.05, γ = 0.002, λ = 0.01, α = 0.01, s > 1, and k ≥ 1).
In the same way, the optimal setting is as follows: Movielens-1M (r = 0.02, c = 1.4, N = 150, τ = 0.5,
θ = 0.1, d = 0.03, γ = 0.002, λ = 0.01, α = 0.01, s > 3.5, and k ≥ 0.5). Figure 6 plots the effects of only the
important parameters on the performance of the MFIC model during training on Movielens-100K.

Figure 6a presents the tuning of the learning rate to the model parameters. After continuous
training, when the learning rate was r = 0.02, the predicted rating error was the smallest in terms of
mean average error (MAE) or root mean squared error (RMSE). The clip value is a range of spatial
positions that control the user and item latent factors. A suitable clip value can effectively address
spatial multidimensional problems. According to Figure 6b, c = 1.0 is the most suitable. The number of
dimensions N determines the number of latent vectors; too large a value will increase the complexity
of the model, whereas too small a value will reduce the expressiveness of the features. Therefore,
according to Figure 6c, when N = 150, the performance of the model is optimal. The parameter τ can
be regarded as a scaling super-parameter of the global bias term that enables the model to find the
accurate prediction value. From Figure 6d, it can be concluded that the super-parameter τ facilitates the
improvement of the model performance and the prediction error was reduced when τ = 0.8. Figure 6e
shows that when θ = 0.2, the rating prediction error was the smallest. When θ = 0, the performance of
the model was drastically reduced. The confidence value θ is indispensable in this model. Dropout
was utilized to prevent latent user and item factors from being overfit during training. According
to Figure 6f, the value that was selected by the dropout rate was too large or too small to help the
model. Therefore, d = 0.05 was selected. The weight loss of the prediction function was used to balance
the contributions of users and items, and items and embedded items to the rating prediction (see
Equation (14)). Figure 6g shows that γ = 0.002 was the best choice for the model. The regularization
term λ was added to prevent overfitting of the model. According to Figure 6h, λ = 0.01 should be set.
Inspired by [34], this paper also added the loss function weight α to the model to control each loss
function term. According to Figure 6i, α = 0.01 should be selected.

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 18 

 

The selection of important parameters of the MFIC model has a substantial influence on the 
prediction performance. The training order of the parameters is r, c, N, τ, θ, d, γ, λ, α, s, and k. First, 
all parameters were set on the basis of the FML model27. Second, inspired by the parameter settings 
section in[33], one of the parameters was trained and a set of values was selected for iterative training. 
For example, on the dataset Movielens-100K, we tested the learning rate r of [ 0.009, 0.01, 0.015, 0.02, 
0.025, 0.03], the different clip value c of [0.6, 0.8, 1.0, 1.2, 1.4, 1.6], and dimension N of [50, 100, 150, 
200, 250, 300], the hyperparameter τ was tuned amongst [0.6, 0.7, 0.8, 0.9, 1.0, 1.1], the self-confidence 
value θ was tuned amongst [0, 0.1, 0.2, 0.3, 0.4, 0.5], the dropout rate d was tuned amongst [0.01, 0.03, 
0.05, 0.07, 0.09, 0.11], the prediction function weight γ was performed in [0, 0.001, 0.002, 0.003, 0.004, 
0.005], the regularization weight λ was performed in [0.001, 0.005, 0.01, 0.05, 0.1, 0.6], and the loss 
function weight α was performed in [0.001, 0.003, 0.005, 0.01, 0.03, 0.05]. Furthermore, the rating 
threshold s was selected from [0, 1, 2, 3, 4], and the pointwise mutual information value k was selected 
from [0, 1, 3, 5, 7, 9]. Finally, the next parameter was trained on the basis of the optimal parameters. 
For example, when the training parameter was c, the remaining parameters were fixed and r was set 
to the optimal value that had been trained. The stopping criterion is that the evaluation indicator root 
mean squared error (RMSE) was not further reduced. We obtained the optimal setting as follows: 
Movielens-100K (r = 0.02, c = 1.0, N = 150, τ = 0.8, θ = 0.2, d = 0.05, γ = 0.002, λ = 0.01, α = 0.01, s > 1, 
and k ≥ 1). In the same way, the optimal setting is as follows: Movielens-1M (r = 0.02, c = 1.4, N = 150, 
τ = 0.5, θ = 0.1, d = 0.03, γ = 0.002, λ = 0.01, α = 0.01, s > 3.5, and k ≥ 0.5). Figure 6 plots the effects of 
only the important parameters on the performance of the MFIC model during training on Movielens-
100K. 

 
Figure 6. Cont.



Symmetry 2020, 12, 512 9 of 18

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 18 

 

 

 
Figure 6. (a) The impact of the learning rate on the rating. (b) Clip value impact on the rating prediction
performance. (c) The impact of the number of dimensions on the rating prediction performance. (d) The
influence of hyperparameter τ on the rating prediction. (e) The impact of the confidence value on the
rating prediction performance. (f) The impact of the dropout rate on the rating prediction performance.
(g) The effect of the prediction function weights on rating prediction. (h) The effect of regularization on
the rating prediction. (i) The influence of the loss function weight on the rating prediction.



Symmetry 2020, 12, 512 10 of 18

The rating threshold s was used to select data when constructing the item cooccurrence matrix
such as s > 1, which caused all ratings that exceeded 1 in the dataset to be selected, namely, only
the data with ratings of 2, 3, 4, and 5 were selected for item cooccurrence. In the construction of the
matrix, the ratings that have little effect on the model are removed, and the complexity of the model is
reduced. Figure 7a shows that when the selection rating threshold satisfies s > 1, the error of the rating
prediction was the smallest and the error of the previous rating prediction was reduced. The pointwise
mutual information value was calculated according to Equation (8). According to Equation (9), k is the
setting choice of the pointwise mutual information value in the item cooccurrence matrix; for example,
if k ≥ 3, the culling pointwise mutual information value is in the range of 0 ≤ k < 3, and the model
complexity can be reduced again. According to Figure 7b, a pointwise mutual information value that
satisfies k ≥ 3 should be selected.Symmetry 2020, 12, x FOR PEER REVIEW 11 of 18 
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Figure 7. (a) The impacts of scoring thresholds on the rating. (b) The effect of the point mutual
information value on rating.

To make the experimental results more accurate and representative, this paper used two evaluation
indicators (MAE and RMSE) in the rating prediction, conducted six evaluations for each comparison
method, and averaged the results. To evaluate the performance of MFIC in rating prediction, this
paper considered the following comparison algorithms: bayesian probabilistic matrix factorization
(BPMF) is a probabilistic matrix factorization model with a full Bayesian processing method that uses
the Markov chain Monte Carlo method to train the model [15]. Neural rating regression (NRR) is a
prediction rating model that is based on the deep learning framework neural rating tips (NRT) [35].
Neural network matrix factorization (NNMF) uses a multilayer neural network to change the inner
product of matrix factorization to realize rating prediction [36]. FML uses the Euclidean distance
instead of the inner product of matrix factorization for metric space learning and rating prediction.

It can be concluded from Table 2 that the MFIC model outperformed all the comparison algorithms
in rating prediction and realized satisfactory prediction performance on datasets Movielens-1M and
Movielens-100K, which differ in terms of density. In addition, from the data in Table 2, it can be seen
that the evaluation indicators MAE and RMSE of the algorithm BPMF on the dataset Movielens-1M
were better than the algorithm NRR, but in the dataset Movielens-100K, the opposite was true, and
MFIC in these two dataset both of them have achieved good experimental results, indicating that the
MFIC model can also show relatively stable performance on these two datasets with different densities.
Thus, the introduction of item cooccurrence can improve the rating prediction performance.
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Table 2. Demonstration and comparison of the performance of the MFIC model and other
recommendation methods in the evaluation the MAE and RMSE of indicators on the following
two datasets.

Model Movielens-1M Movielens-100K

MAE RMSE MAE RMSE
BPMF 0.678 0.867 0.725 0.927
NRR 0.691 0.875 0.717 0.909

NNMF 0.669 0.843 0.709 0.903
FML 0.658 0.844 0.706 0.900
MFIC 0.653 0.834 0.688 0.883

Ours vs. best 0.005 0.010 0.008 0.017

4.2. Item Ranking Experiment Preparation and Experimental Results

The dataset that was used for item ranking was composed of two datasets, FilmTrust and
EachMovie [27]. The dataset was divided into a training set and a test set according to the ratio of 8:2.
Details on the dataset are presented in Table 3.

Table 3. Details of the datasets FilmTrust and EachMovie.

Datasets Number of
Users

Number of
Items

Total
Rating

Range of
Rating Sparsity

FilmTrust 1508 2071 35,497 0–5 1.13%
EachMovie 29520 1648 1,048,575 0–1 2.15%

All parameters were tuned just like the rating prediction in Section 4.1, and we stopped training the
model in the item ranking when the evaluation indicator Precision@5 showed no further improvement.
We obtained the optimal setting as follows: FilmTrust (θ = 0.7, c = 1.0, r = 0.1, β = 2.5, N = 100,
α = 0.01, d = 0.05, γ = 0.005, s > 2.5, and k ≥ 5) and EachMovie (θ = 0.1, c = 1.0, r = 0.1, β = 2, N = 100,
α = 0.01, d = 0.05, γ = 0.005, s > 0.4, and k ≥ 0.4). The figure below shows the impacts of important
parameters on FilmTrust on the performance of the MFIC model during training. Each line in the
figure represents a parameter adjustment result. Each line in the figure is the result of this tuning. Each
value on a line is an evaluation index. Additional details are presented in Figure 8. In Figure 9, the
value that corresponds to each column in Figure 9a is the result of one round of tuning. Each value is
an evaluation index, as shown in Figure 9b, as in Figure 8. Additional information is presented in
Figure 9.

In Figure 8, the optimal values for each parameter were θ = 0.7, c = 1, r = 0.1, N = 100, α = 0.01,
d = 0.05, and γ = 0.005. For hyperparameters θ, c, and r, the meanings of N, α, d, and γ were the same
as in the rating prediction and will not be explained here. The distance scaling hyperparameter β is
the minimum distance for which the control setting was negative for the user. As shown in Figure 8d,
β = 2.5 was the optimal value for sorting the items.

The rating threshold s and the pointwise mutual information value k in Figure 9 were the same as
those in the rating prediction and will not be explained here. As shown in Figure 9, when s > 2.5, the
performance of the model was optimal. When k ≥ 5, the pointwise mutual information value was
optimal for the model.

To accurately evaluate the item ranking performance of the MFIC model, this paper used several
evaluation indicators such as the mean average precision (MAP), the mean reciprocal rank (MRR),
the normalized discounted cumulative gain (NDCG), Recall@n, and Precision@n. The algorithm was
trained six times and the average value was obtained to yield more representative experimental results.
To evaluate the performance of the MFIC model, the following comparison algorithms were considered.
The neural matrix factorization (NeuMF) model adopts a processing method in which a multilayer
perceptron and matrix factorization are combined and used for item sequencing tests [4]. Collaborative



Symmetry 2020, 12, 512 12 of 18

denoising auto-encoders (CDAE) is a model with more flexible components that uses the strategy
of automatic denoising encoders [37]. Weighted regularized matrix factorization (WRMF) is an item
ranking test model with positive and negative preferences [2]. FML uses the Euclidean distance instead
of the matrix decomposition inner product to learn the metric space and item rankings [27].

According to Table 4, the MFIC model also outperformed all comparison algorithms in item
ranking, even on two datasets that differed in terms of density, namely, FilmTrust and EachMovie.
Hence, MFIC can adapt to the environment of sparse data in the item ranking prediction. According
to the experimental results, the metric learning used by MFIC far outperformed methods that use
matrix factorization algorithms such as NeuMF and WRMF. In addition, the FML algorithm with
metric learning can also be used for item ranking, but its prediction result was less accurate than the
MFIC prediction result. Thus, the introduction of item cooccurrence can also substantially facilitate
item ranking.
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Figure 8. (a)The effect of the confidence value θ on the model performance. (b) The impact of the clip
value on the model performance. (c) The impact of the learning rate r on the model performance. (d)
The effect of the distance scaling factor β on the model performance. (e) The effect of the number of
dimensions N on the model performance. (f) The influence of the loss function weight α on the model
performance. (g) The impact of the dropout rate d on the model performance. (h) The effect of the
prediction function weight on the model performance.



Symmetry 2020, 12, 512 15 of 18

Symmetry 2020, 12, x FOR PEER REVIEW 15 of 18 

 

 
(a) 

 
(b) 

Figure 9. (a) The impact of scoring threshold s on the model performance. (b) The effect of PMI value 
k on the model performance. 

In Figure 8, the optimal values for each parameter were θ = 0.7, c = 1, r = 0.1, N = 100, α = 0.01, d 
= 0.05, and γ = 0.005. For hyperparameters θ, c, and r, the meanings of N, α, d, and γ were the same 
as in the rating prediction and will not be explained here. The distance scaling hyperparameter β is 
the minimum distance for which the control setting was negative for the user. As shown in Figure 
8d, β = 2.5 was the optimal value for sorting the items. 

The rating threshold s and the pointwise mutual information value k in Figure 9 were the same 
as those in the rating prediction and will not be explained here. As shown in Figure 9, when s > 2.5, 
the performance of the model was optimal. When k ≥ 5, the pointwise mutual information value was 
optimal for the model. 

To accurately evaluate the item ranking performance of the MFIC model, this paper used several 
evaluation indicators such as the mean average precision (MAP), the mean reciprocal rank (MRR), 
the normalized discounted cumulative gain (NDCG), Recall@n, and Precision@n. The algorithm was 
trained six times and the average value was obtained to yield more representative experimental 
results. To evaluate the performance of the MFIC model, the following comparison algorithms were 
considered. The neural matrix factorization (NeuMF) model adopts a processing method in which a 
multilayer perceptron and matrix factorization are combined and used for item sequencing tests [4]. 
Collaborative denoising auto-encoders (CDAE) is a model with more flexible components that uses 
the strategy of automatic denoising encoders [37]. Weighted regularized matrix factorization 
(WRMF) is an item ranking test model with positive and negative preferences [2]. FML uses the 
Euclidean distance instead of the matrix decomposition inner product to learn the metric space and 
item rankings [27]. 

0.365 0.361 0.361 0.362 0.361 0.366 0.359 0.364 
0.666 0.661 0.663 0.662 0.665 0.671 0.659 0.664 
0.451 0.446 0.445 0.447 0.445 0.451 0.444 0.447 
0.457 0.453 0.456 0.452 0.452 0.458 0.453 0.451 
0.547 0.541 0.539 0.542 0.541 0.548 0.538 0.541 
0.686 0.674 0.676 0.679 0.675 0.685 0.673 0.677 
0.699 0.692 0.692 0.695 0.693 0.701 0.691 0.694 

0.0

1.0

2.0

3.0

4.0

5.0

s>0 s>0.5 s>1 s>1.5 s>2 s>2.5 s>3 s>3.5

precision@10 recall@10 precision@5 recall@5

map mrr ndcg

0.362 0.665 0.448 0.455 0.543 0.679 0.695 0.362 
0.666 

0.450 0.460 0.544 0.679 0.697 0.362 

0.663 
0.447 0.451 0.543 

0.677 0.694 
0.367

0.674

0.456 0.458 
0.548 

0.685 0.701 

0.363 

0.663 

0.448 0.454 
0.541 

0.674 0.693 

0.363 

0.669 

0.446 0.453 
0.541 

0.679 0.694 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

k≥2 k≥3 k≥4 k≥5 k≥6 k≥7

Figure 9. (a) The impact of scoring threshold s on the model performance. (b) The effect of PMI value k
on the model performance.

Table 4. Item ranking performances of the MFIC model and other recommendation methods on seven
evaluation indicators and two datasets.

FilmTrust

Model MAP MRR NDCG Recall@5 Precision@5 Recall@10 Precision@10
NeuMF 0.483 0.609 0.646 0.393 0.413 0.626 0.350
CDAE 0.523 0.654 0.678 0.441 0.436 0.647 0.353
WRMF 0.516 0.648 0.663 0.427 0.433 0.632 0.351

FML 0.543 0.681 0.696 0.452 0.450 0.668 0.364
MFIC 0.548 0.685 0.701 0.458 0.456 0.674 0.367

Ours vs. best 0.005 0.004 0.005 0.006 0.005 0.006 0.003

EachMovie

Model MAP MRR NDCG Recall@5 Precision@5 Recall@10 Precision@10
NeuMF 0.414 0.656 0.657 0.335 0.378 0.475 0.302
CDAE 0.432 0.678 0.673 0.356 0.394 0.497 0.311
WRMF 0.433 0.679 0.670 0.355 0.397 0.494 0.314

FML 0.466 0.708 0.694 0.392 0.419 0.533 0.325
MFIC 0.487 0.728 0.713 0.399 0.446 0.539 0.349

Ours vs. best 0.021 0.020 0.019 0.007 0.027 0.006 0.024
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5. Conclusions

In this paper, we proposed a metric factorization method with item cooccurrence for
recommendation, which mainly uses the word embedding strategy in natural language processing to
conduct item cooccurrence and metric factorization learning in a recommendation system. First, the
item cooccurrence matrix was constructed via the calculation of the pointwise mutual information value.
Then, the user–item matrix and the item cooccurrence matrix were converted into the corresponding
distance matrix, and the obtained distance matrix was decomposed into a metric space via the
Euclidean distance for latent user, item, and embedded item factor spatial position learning. Finally,
the performance in rating prediction and item ranking was evaluated. The experimental results on two
datasets for rating prediction and item ranking show that the performance of the MFIC model has
been substantially improved to that of other recommendation algorithms.
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